II. Preliminaries

Let n be a positive integer. We denote by \mathbb{R}^n the set of all n-tuples of real numbers $x = (x_1, x_2, \ldots, x_n)$ with the usual notions of addition and scalar multiplication. We use the same symbol 0 to denote the real number zero as well as the zero element of \mathbb{R}^n when there is no danger of confusion.

By a norm on \mathbb{R}^n we mean a function $\| \cdot \| : \mathbb{R}^n \to \mathbb{R}$ satisfying

\begin{enumerate}
 \item $\|x\| > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$,
 \item $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$,
 \item $\|x + y\| \leq \|x\| + \|y\|$ for all $x, y \in \mathbb{R}^n$.
\end{enumerate}

Property (iii) is called the \textit{triangle inequality}. An important consequence of this property is that if a and b are real numbers with $a < b$ and $g : [a, b] \to \mathbb{R}^n$ is continuous then

\begin{equation}
\| \int_a^b g(t) dt \| \leq \int_a^b \|g(t)\| dt.
\end{equation}

All norms on \mathbb{R}^n are \textit{equivalent} in the sense that if $\| \cdot \|$ and $\| \| \| \|$ are norms then there exist constants $m, M > 0$ such that

\begin{equation}
m\|x\| \leq \|\|x\|| \leq M\|x\| \quad \text{for all } x \in \mathbb{R}^n.
\end{equation}

For each $p \in [1, \infty)$ the function $\| \cdot \|_p : \mathbb{R}^n \to \mathbb{R}$ defined by

\begin{equation}
\|x\|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{1/p} \quad \text{for all } x \in \mathbb{R}^n
\end{equation}

is a norm. In addition, the function $\| \cdot \|_\infty : \mathbb{R}^n \to \mathbb{R}$ defined by

\begin{equation}
\|x\|_\infty = \max \{|x_i| : i = 1, 2 \ldots n\}
\end{equation}

is also a norm. Observe that
(2.5) \[\|x\|_\infty \leq \|x\|_1 \leq n\|x\|_\infty \quad \text{for all } x \in \mathbb{R}^n. \]

The case \(p = 2 \) is especially important because \(\| \cdot \|_2 \) is associated with an inner product. Recall that the dot product or inner product of \(x, y \in \mathbb{R}^n \) is defined by

(2.6) \[x \cdot y = \sum_{i=1}^{n} x_i y_i, \]

so that

(2.7) \[\|x\|_2 = \sqrt{x \cdot x} \quad \text{for all } x \in \mathbb{R}^n. \]

The Cauchy-Schwarz inequality, which says that

(2.8) \[|x \cdot y| \leq \|x\|_2 \|y\|_2 \quad \text{for all } x, y \in \mathbb{R}^n, \]

will play an important role in our analysis of differential equations.

The norm \(\| \cdot \|_2 \) is called the Euclidean norm. An especially useful feature of this norm is that if \(I \) is an interval, \(g : I \rightarrow \mathbb{R}^n \) is differentiable then the function \(t \mapsto \|g(t)\|_2^2 \) is differentiable on \(I \) and

(2.9) \[\frac{d}{dt} (\|g(t)\|_2^2) = 2g(t) \cdot \dot{g}(t) \quad \text{for all } t \in I. \]

For each \(\delta > 0 \) and \(x \in \mathbb{R}^n \), we put

(2.10) \[B_\delta(x) = \{ y \in \mathbb{R}^n : \|y - x\|_2 < \delta \}. \]

Let \(D \) be a subset of \(\mathbb{R}^n \). A point \(x_0 \in D \) is said to be an interior point of \(D \) if there exists \(\delta > 0 \) such that \(B_\delta(x_0) \subset D \). The set of all interior points of \(D \) is called the interior of \(D \) and is denoted by \(\text{int}(D) \). We say that \(D \) is open if \(\text{int}(D) = D \). We say that \(D \) is closed if \(\mathbb{R}^n \setminus D \) is open.

A point \(x_0 \in \mathbb{R}^n \) is called a boundary point of \(D \) if

(2.11) \[\forall \delta > 0, \ B_\delta(x_0) \cap D \neq \emptyset \quad \text{and} \quad B_\delta(x_0) \cap (\mathbb{R}^n \setminus D) \neq \emptyset, \]

i.e. for every \(\delta > 0 \), \(B_\delta(x_0) \) contains points that belong to \(D \) as well as points that do not belong to \(D \). The set of all boundary points of \(D \) is called the boundary of \(D \) and is denoted by \(\partial D \). It is not too difficult to show that \(D \) is closed if and only if \(\partial D \subset D \). We say that \(D \) is bounded if there exists \(M \in \mathbb{R} \) such that
(2.12) \[\|x\|_2 \leq M \text{ for all } x \in D. \]

Remark 2.1: In view of the equivalence of norms on \(\mathbb{R}^n \), the notions of interior, boundary, open set, closed set, bounded set do not change if \(\| \cdot \|_2 \) is replaced by any other norm in (2.10).

We say that \(D \) is **convex** if

(2.13) \[tx + (1 - t)y \in D \quad \text{for all } x, y \in D, \ t \in [0, 1], \]

i.e., \(D \) contains the line segment joining each pair of points in \(D \). The following result will be very useful.

Brouwer’s Fixed-Point Theorem: Let \(D \) be a nonempty, closed, bounded, convex subset of \(\mathbb{R}^n \) and assume that \(f : D \to \mathbb{R}^n \) is continuous. If \(f(x) \in D \) for every \(x \in D \) then there is at least one point \(x^* \in D \) such that \(f(x^*) = x^* \).

Let \(m \) be a positive integer. Then \(\mathbb{R}^m \times \mathbb{R}^n \) can be identified with \(\mathbb{R}^{m+n} \).

Remark 2.2: Let \(S \) be a subset of \(\mathbb{R}^m \) and \(T \) be a subset of \(\mathbb{R}^n \).

(i) If both \(S \) and \(T \) are open, then \(S \times T \) is open.

(ii) If both \(S \) and \(T \) are closed, then \(S \times T \) is closed.

(iii) If both \(S \) and \(T \) are bounded, then \(S \times T \) is bounded.

(iv) If both \(S \) and \(T \) are convex, then \(S \times T \) is convex.