MONOTONE PATHS

Po-Shen Loh
Carnegie Mellon University

Joint work with Mikhail Lavrov
Theorem (Erdős-Szekeres 1935)

Every permutation of \(\{1, \ldots, n\} \) has a monotone subsequence of length about \(\sqrt{n} \).
Monotone sequences

Theorem (Erdős-Szekeres 1935)
Every permutation of \(\{1, \ldots, n\}\) has a monotone subsequence of length about \(\sqrt{n}\).

Example

\[
1 \hspace{1em} 5 \hspace{1em} 2 \hspace{1em} 7 \hspace{1em} 3 \hspace{1em} 6 \hspace{1em} 4
\]
Theorem (Erdős-Szekeres 1935)

Every permutation of \(\{1, \ldots, n\} \) has a monotone subsequence of length about \(\sqrt{n} \).

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>2</th>
<th>7</th>
<th>3</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>dec.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Proof. Under each number, write lengths of longest increasing and decreasing subsequences ending there.
Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of K_n are ordered from $1 \ldots \binom{n}{2}$, is there always a long monotone walk?
Question (Chvátal-Komlos 1971)

If edges of K_n are ordered from $1 \ldots \binom{n}{2}$, is there always a long monotone walk?
Question (Chvátal-Komlos 1971)

If edges of K_n are ordered from $1 \ldots \binom{n}{2}$, is there always a long monotone walk?

Theorem (Graham-Kleitman 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.
Question (Chvátal-Komlos 1971)

If edges of K_n are ordered from $1 \ldots \binom{n}{2}$, is there always a long monotone walk?

Theorem (Graham-Kleitman 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.

![Diagram showing a walk through vertices 1, 2, 3, and 4, illustrating the increasing walk of length $n - 1$.]
Monotone walks: lower bound

Question (Chvátal-Komlos 1971)
If edges of K_n are ordered from $1 \ldots \binom{n}{2}$, is there always a long monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.
Question (Chvátal-Komlos 1971)

If edges of K_n are ordered from $1 \ldots \binom{n}{2}$, is there always a long monotone walk?

Theorem (Graham-Kleitman 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.
Monotone walks: lower bound

Question (Chvátal-Komlos 1971)
If edges of K_n are ordered from $1 \ldots \binom{n}{2}$, is there always a long monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.
Theorem (Graham-Kleitman 1973)

There is an edge-ordering of K_n in which the longest monotone walk has length $n - 1$, for all $n \notin \{3, 5\}$.

Proof (for even n). Edges of K_n can be partitioned into perfect matchings. Assign a batch of consecutive labels to each matching.
Theorem (Graham-Kleitman 1973)

There is an edge-ordering of K_n in which the longest monotone walk has length $n - 1$, for all $n \not\in \{3, 5\}$.

Proof (for even n). Edges of K_n can be partitioned into perfect matchings.
Theorem (Graham-Kleitman 1973)

There is an edge-ordering of K_n in which the longest monotone walk has length $n - 1$, for all $n \not\in \{3, 5\}$.

Proof (for even n). Edges of K_n can be partitioned into perfect matchings.

Assign a batch of consecutive labels to each matching.
A *path* in a graph is a *self-avoiding walk*, which never visits the same vertex twice.
Definition

A *path* in a graph is a *self-avoiding walk*, which never visits the same vertex twice.

Self-avoiding walks are more complicated

- Easy poly-time algorithm to find longest increasing walk.
DEFINITION

A path in a graph is a self-avoiding walk, which never visits the same vertex twice.

SELF-AVOIDING WALKS ARE MORE COMPLICATED

- Easy poly-time algorithm to find longest increasing walk.
- In probability: self-avoiding random walk proven sub-ballistic only in 2012 by Duminil-Copin and Hammond.
Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n} - 1$.

Proof.

Employ walkers again. When edge called, if a walker would revisit a vertex, neither walker moves. Suppose all walkers take $\leq k$ steps. At most kn^2 edges are walked. Each walker refuses at most $(k + 1)/2 - k = (k^2)/2$ edges. (n^2 walked + refused $\leq kn^2 + (k^2)n^2$)

Theorem (Calderbank-Chung-Sturtevant 1984)

There is an edge-ordering of K_n in which the longest increasing path has length $(1/2 - o(1))n$.
Theorem (Graham-Kleitman 1973)
Every edge-ordering of K_n has an increasing path of length $\sqrt{n} - 1$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
Theorem (Graham-Kleitman 1973)
Every edge-ordering of K_n has an increasing path of length $\sqrt{n} - 1$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.
Theorem (Graham-Kleitman 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n} - 1$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.
- Each walker refuses at most $\binom{k+1}{2} - k = \binom{k}{2}$ edges.
Monotone paths

Theorem (Graham-Kleitman 1973)
Every edge-ordering of K_n has an increasing path of length $\sqrt{n} - 1$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.
- Each walker refuses at most $\binom{k+1}{2} - k = \binom{k}{2}$ edges.

$$\binom{n}{2} = \text{walked} + \text{refused} \leq \frac{kn}{2} + \binom{k}{2}n = \frac{k^2 n}{2}$$
Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n} - 1$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.
- Each walker refuses at most $\binom{k+1}{2} - k = \binom{k}{2}$ edges.

$$\binom{n}{2} = \text{walked} + \text{refused} \leq \frac{kn}{2} + \binom{k}{2}n = \frac{k^2n}{2}$$

Theorem (Calderbank-Chung-Sturtevant 1984)

There is an edge-ordering of K_n in which the longest increasing path has length $(\frac{1}{2} - o(1))n$.
Model

Sample uniformly random ordering of $\binom{n}{2}$ edges.
Random ordering

Model

Sample uniformly random ordering of \(\binom{n}{2} \) edges. Equiv: assign independent Unif[0, 1] random real to each edge.

Proof sketch.
Start at arbitrary vertex, expose labels of incident edges. Smallest incident label is min of \(n - 1 \) Uniforms, so expectation is \(\frac{1}{n} \).

Take that edge, then expose labels of edges to \(n - 2 \) remaining vertices. Smallest increment is min of \(n - 2 \) Unifs, so expectation \(\frac{1}{n - 1} \).

Sum \(\frac{1}{n} + \frac{1}{n - 1} + \cdots + \frac{1}{cn} = 1 \) when \(\log \frac{1}{c} = 1 \).
Random ordering

Model
Sample uniformly random ordering of $\binom{n}{2}$ edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation
A random edge-ordering has an increasing path of length at least $(1 - \frac{1}{e})n$ a.a.s.
Model

Sample uniformly random ordering of $\binom{n}{2}$ edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation

A random edge-ordering has an increasing path of length at least \((1 - \frac{1}{e})n\) a.a.s.

Proof sketch.

- Start at arbitrary vertex, expose labels of incident edges.
- Smallest incident label is min of \(n - 1\) Uniforms, so expectation is \(\frac{1}{n}\).
Model

Sample uniformly random ordering of $\binom{n}{2}$ edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation

A random edge-ordering has an increasing path of length at least
$(1 - \frac{1}{e})n$ a.a.s.

Proof sketch.

- Start at arbitrary vertex, expose labels of incident edges.
- Smallest incident label is min of $n - 1$ Uniforms, so expectation is $\frac{1}{n}$.
- Take that edge, then expose labels of edges to $n - 2$ remaining vertices.
- Smallest increment is min of $n - 2$ Unifs, so expectation $\frac{1}{n-1}$.
Random Ordering

Model

Sample uniformly random ordering of $\binom{n}{2}$ edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation

A random edge-ordering has an increasing path of length at least $(1 - \frac{1}{e})n$ a.a.s.

Proof sketch.

- Start at arbitrary vertex, expose labels of incident edges.
- Smallest incident label is min of $n - 1$ Uniforms, so expectation is $\frac{1}{n}$.
- Take that edge, then expose labels of edges to $n - 2$ remaining vertices.
- Smallest increment is min of $n - 2$ Unifs, so expectation $\frac{1}{n-1}$.
- Sum $\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{cn} = 1$ when $\log \frac{1}{c} = 1$. □
Trivial bound

A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

Proof. (first moment method) For a given Hamiltonian path, it is increasing with probability $\frac{1}{(n-1)!}$. Number of Hamiltonian paths is $n!$. Expected number of increasing Hamiltonian paths is $n!$. ...
A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

Proof. (first moment method)

- For a given Hamiltonian path, it is increasing with probability \(\frac{1}{(n-1)!} \).
Random ordering: upper bound

Trivial bound

A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

Proof. (first moment method)

- For a given Hamiltonian path, it is increasing with probability \(\frac{1}{(n-1)!} \).
- Number of Hamiltonian paths is \(n! \).
A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

Proof. (first moment method)

- For a given Hamiltonian path, it is increasing with probability \(\frac{1}{(n-1)!} \).
- Number of Hamiltonian paths is \(n! \).
- Expected number of increasing Hamiltonian paths is \(n \ldots \).
In Erdős-Rényi

First moment insufficient

$G_{n,p}$ has n Hamiltonian paths on expectation when $n!p^{n-1} \sim n$, i.e., when $p \sim \frac{e}{n}$.

Theorem (Bollobás)

A.a.s., random graph process gets Hamiltonian cycle at moment that all vertices have degree ≥ 2, which is at $p \sim \log n + \log \log n + \omega n$.

Theorem (Glebov-Krivelevich 2013)

At hitting time, number of Hamiltonian cycles jumps from 0 to \((1 + o(1)) \log n e^{\log n} \) a.a.s.
First moment insufficient

$G_{n,p}$ has n Hamiltonian paths on expectation when $n!p^{n-1} \sim n$, i.e., when $p \sim \frac{e}{n}$.

Theorem (Bollobás)

A.a.s., random graph process gets Hamiltonian cycle at moment that all vertices have degree ≥ 2, which is at $p \sim \frac{\log n + \log \log n + \omega}{n}$.

Theorem (Glebov-Krivelevich 2013)

At hitting time, number of Hamiltonian cycles jumps from 0 to $\left(1 + o\left(1\right)\right) \log n e^n$ a.a.s.
In Erdős-Rényi

First moment insufficient

$G_{n,p}$ has n Hamiltonian paths on expectation when $n!p^{n-1} \sim n$, i.e., when $p \sim \frac{e}{n}$.

Theorem (Bollobás)

A.a.s., random graph process gets Hamiltonian cycle at moment that all vertices have degree ≥ 2, which is at $p \sim \frac{\log n + \log \log n + \omega}{n}$.

Theorem (Glebov-Krivelevich 2013)

At hitting time, number of Hamiltonian cycles jumps from 0 to $[\left(1 + o(1)\right)\frac{\log n}{e}]^n$ a.a.s.
A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.
Theorem (Lavrov, L.)

A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.

Recall: greedy algorithm found increasing path of length $(1 - \frac{1}{e})n \approx 0.63n$ in a random edge-ordering, but was analyzable.
Long increasing paths

Theorem (Lavrov, L.)

A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.

Recall: greedy algorithm found increasing path of length $(1 - \frac{1}{e})n \approx 0.63n$ in a random edge-ordering, but was analyzable.

Theorem (Lavrov, L.)

With backtracking, k-greedy algorithm finds an increasing path of length $0.85n$ a.a.s. in a random edge-ordering.
Theorem (Lavrov, L.)

A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.

Recall: greedy algorithm found increasing path of length $(1 - \frac{1}{e})n \approx 0.63n$ in a random edge-ordering, but was analyzable.

Theorem (Lavrov, L.)

With backtracking, k-greedy algorithm finds an increasing path of length $0.85n$ a.a.s. in a random edge-ordering.

Conjecture (Lavrov, L.)

A random edge-ordering has an increasing Hamiltonian path a.a.s.
Theorem (Chebyshev)

\[P[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2} \]
Second moment method

Theorem (Chebyshev)

\[
\mathbb{P}[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}
\]

Theorem (Lavrov, L.)

Let \(X \) be the number of Hamiltonian increasing paths. Then \(\mathbb{E}[X^2] \sim en^2 \).
Theorem (Chebyshev)

\[\mathbb{P} \left[|X - \mathbb{E}[X]| \geq t \right] \leq \frac{\text{Var}[X]}{t^2} \]

Theorem (Lavrov, L.)

Let \(X \) be the number of Hamiltonian increasing paths. Then

\[\mathbb{E}[X^2] \sim en^2. \]

Theorem (Paley-Zygmund)

For nonnegative random variables \(X \),

\[\mathbb{P}[X > 0] \geq \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]} \]
Profiles

Calculation

Let $X = I_1 + \cdots + I_n!$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$
\mathbb{E} \left[X^2 \right] = \sum_{j,k} \mathbb{E} [I_j I_k]
$$
Let \(X = I_1 + \cdots + I_n! \), a sum with one indicator random variable per potential Hamiltonian increasing path.

\[
\mathbb{E} \left[X^2 \right] = \sum_{j,k} \mathbb{E} [I_j I_k]
\]

\[
= \sum_{P,Q} \mathbb{P} \text{ [both } P \text{ and } Q \text{ increasing]}
\]
Let \(X = I_1 + \cdots + I_n! \), a sum with one indicator random variable per potential Hamiltonian increasing path.

\[
\mathbb{E} \left[X^2 \right] = \sum_{j,k} \mathbb{E} [I_j I_k] = \sum_{P,Q} \mathbb{P} \left[\text{both } P \text{ and } Q \text{ increasing} \right]
\]

Simplest profile: \(P, Q \) edge-disjoint

\[
P
\]
\[
Q
\]
Profiles

Calculation

Let $X = I_1 + \cdots + I_n!$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$E \left[X^2 \right] = \sum_{j,k} E \left[I_j I_k \right]$$

$$= \sum_{P,Q} \mathbb{P} \left[\text{both } P \text{ and } Q \text{ increasing} \right]$$

Simplest profile: P, Q edge-disjoint

Given P and Q, $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$
Let $X = I_1 + \cdots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\mathbb{E} \left[X^2 \right] = \sum_{j,k} \mathbb{E} [I_j I_k]$$

$$= \sum_{P,Q} \mathbb{P} \left[\text{both } P \text{ and } Q \text{ increasing} \right]$$

Simplest profile: P, Q edge-disjoint

P
\[-------------------\]
Q

- Given P and Q, $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$
- Number of (P, Q) embeddings: $n!n!$
Let $X = I_1 + \cdots + I_n!$, a sum with one indicator random variable per potential Hamiltonian increasing path.

\[
\mathbb{E}[X^2] = \sum_{j,k} \mathbb{E}[I_j I_k] = \sum_{P,Q} \mathbb{P} \left[\text{both } P \text{ and } Q \text{ increasing} \right]
\]

Simplest profile: P, Q edge-disjoint

\begin{itemize}
 \item Given P and Q, $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$
 \item Number of (P, Q) embeddings: $n!n$
 \item Total contribution of profile: n^2
\end{itemize}
Let $X = I_1 + \cdots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\mathbb{E} \left[X^2 \right] = \sum_{j,k} \mathbb{E} \left[I_j I_k \right]$$

$$= \sum_{P,Q} \mathbb{P} \left[\text{both } P \text{ and } Q \text{ increasing} \right]$$

Simplest profile: P, Q edge-disjoint

- Given P and Q, $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$
- Number of (P, Q) embeddings: $n!n! \frac{1}{e^2}$
- Total contribution of profile: $n^2 \frac{1}{e^2}$
Another easy profile

![Diagram with labels a, c, a', b, b']

Probability

Total number of edge labels: \(a + b + c + a' + b'\).

Lowest \(a + b\) of them must be in left branches. They can be split into top-left and bottom-left in \((a + b)\) ways.

Highest \(a' + b'\) labels can split into top-right and bottom-right in \((a' + b')\) ways, so profile probability is \((a + b)(a' + b')(a + b + c + a' + b')\)!
Another easy profile

\[a \quad c \quad a' \]

\[b \quad b' \]

Probability

- Total number of edge labels: \(a + b + c + a' + b' \).
Another easy profile

![Diagram](image)

Probability

- Total number of edge labels: $a + b + c + a' + b'$.
- Lowest $a + b$ of them must be in left branches.
Another easy profile

Probability

- Total number of edge labels: \(a + b + c + a' + b'.\)
- Lowest \(a + b\) of them must be in left branches.
- They can be split into top-left and bottom-left in \(\binom{a+b}{a}\) ways.
Another easy profile

- Total number of edge labels: \(a + b + c + a' + b' \).
- Lowest \(a + b \) of them must be in left branches.
- They can be split into top-left and bottom-left in \(\binom{a+b}{a} \) ways.
- Highest \(a' + b' \) labels can split into top-right and bottom-right in \(\binom{a'+b'}{a'} \) ways,
Another easy profile

\[a \quad c \quad a' \]
\[b \quad b' \]

Probability

- Total number of edge labels: \(a + b + c + a' + b' \).
- Lowest \(a + b \) of them must be in left branches.
- They can be split into top-left and bottom-left in \(\binom{a+b}{a} \) ways.
- Highest \(a' + b' \) labels can split into top-right and bottom-right in \(\binom{a'+b'}{a'} \) ways, so profile probability is

\[
\frac{\binom{a+b}{a} \binom{a'+b'}{a'}}{(a + b + c + a' + b')!}
\]
Bigger profile

\[
\text{Probability} = (a_1 + b_1)(a_2 + b_2)(a_3 + b_3)(a_4 + b_4)
\]

\[
\sum a_i + \sum b_i + \sum c_i
\]

Number of embeddings

Embed top path: \(n! \)

Bottom path has \((c_1 + 1) + (c_2 + 1) + (c_3 + 1)\) vertices already fixed.

Remaining vertices can be embedded in \((n - c_1 - c_2 - c_3 - 3)! \cdot e^{-2}\) ways.
Probability

\[
\frac{(a_1+b_1) \binom{a_1}{a_1} (a_2+b_2) \binom{a_2}{a_2} (a_3+b_3) \binom{a_3}{a_3} (a_4+b_4) \binom{a_4}{a_4}}{(\sum a_i + \sum b_i + \sum c_i)!}
\]
Probability

\[\frac{(a_1 + b_1) (a_2 + b_2) (a_3 + b_3) (a_4 + b_4)}{(\sum a_i + \sum b_i + \sum c_i)!} \]

Number of Embeddings

- Embed top path: \(n! \)
Probability

\[
\frac{(a_1+b_1)}{a_1} \frac{(a_2+b_2)}{a_2} \frac{(a_3+b_3)}{a_3} \frac{(a_4+b_4)}{a_4} \frac{(\sum a_i + \sum b_i + \sum c_i)!}{(\sum a_i + \sum b_i + \sum c_i)!}
\]

Number of Embeddings

- Embed top path: \(n!\)
- Bottom path has \((c_1 + 1) + (c_2 + 1) + (c_3 + 1)\) vertices already fixed.
Probability

\[
\frac{(a_1+b_1) (a_2+b_2) (a_3+b_3) (a_4+b_4)}{(\sum a_i + \sum b_i + \sum c_i)!}
\]

Number of Embeddings

- Embed top path: \(n! \)
- Bottom path has \((c_1 + 1) + (c_2 + 1) + (c_3 + 1)\) vertices already fixed.
- Remaining vertices can be embedded in \((n - c_1 - c_2 - c_3 - 3)! \cdot e^{-2}\) ways.
Care required

When a common segment has length 1, i.e., some $c_i = 1$, the single common edge can also be traversed backwards.
GENERAL PROFILE

![Diagram]

CARE REQUIRED

When a common segment has length 1, i.e., some $c_i = 1$, the single common edge can also be traversed backwards.

DOUBLING FACTOR

- Probability is still

$$\frac{(a_1+b_1) \cdot (a_2+b_2) \cdot (a_3+b_3) \cdot (a_4+b_4)}{(\sum a_i + \sum b_i + \sum c_i)!}$$

- Number of embeddings is still $n!(n - c_1 - c_2 - c_3 - 3)! \cdot e^{-2}$.
When a common segment has length 1, i.e., some $c_i = 1$, the single common edge can also be traversed backwards.

Doubling factor

- Probability is still

\[
\frac{(a_1 + b_1) (a_2 + b_2) (a_3 + b_3) (a_4 + b_4)}{(\sum a_i + \sum b_i + \sum c_i)!}
\]

- Number of embeddings is still $n!(n - c_1 - c_2 - c_3 - 3)! \cdot e^{-2}$.
- We pick up a factor of 2 for each $c_i = 1$.

Therefore, second moment of number of Hamilton increasing paths is \[\mathbb{E}[X^2] = \]

\[
\sum_{a_1, a_2, \ldots, b_1, b_2, \ldots, c_1, c_2, \ldots} n! \left[n - \sum (c_i + 1) \right]! e^{-2} \cdot \frac{\prod (a_i + b_i)}{[\sum a_i + \sum b_i + \sum c_i]!} \cdot 2^{\# \{i: c_i = 1\}}
\]
Therefore, second moment of number of Hamilton increasing paths is

\[\mathbb{E} [X^2] = \sum_{a_1, a_2, \ldots} n! \left[n - \sum (c_i + 1) \right]! e^{-2} \cdot \frac{\prod (a_i + b_i)}{[\sum a_i + \sum b_i + \sum c_i]!} \cdot 2^\# \{i: c_i = 1\} \]

which, after some work, turns out to be \((1 + o(1))en^2\).
Cost of Greed

Greedy Algorithm
Always pick edge with smallest increment to a new vertex.

Potential Gain
Consider the following greedy outcome:
Greedy algorithm, with temptation

Greedy algorithm

Let k be a constant, say 5.
Greedy Algorithm, with Temptation

Greedy Algorithm

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal *next-labeled edge to new vertex* which is incident to end of path.
Greedy algorithm, with temptation

Let k be a constant, say 5.

When extending path, do not immediately pick smallest increment.

Reveal next-labeled edge to new vertex which is incident to end of path.

Reveal next edge incident to exploration tree at end of path.
Greedy algorithm, with temptation

Greedy algorithm

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal next-labeled edge to new vertex which is incident to end of path.
- Reveal next edge incident to exploration tree at end of path.
- Repeat until exploration tree has k edges.
Greedy algorithm, with temptation

Greedy algorithm

- Let \(k \) be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal next-labeled edge to new vertex which is incident to end of path.
- Reveal next edge incident to exploration tree at end of path.
- Repeat until exploration tree has \(k \) edges.
- Extend path to earliest subtree.
GREEDY ALGORITHM, WITH TEMPTATION

Greedy Algorithm

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal *next-labeled edge to new vertex* which is incident to end of path.
- Reveal *next edge* incident to exploration tree at end of path.
- Repeat until exploration tree has k edges.
- Extend path to earliest subtree.
- Replace exploration tree by that subtree, and repeat.
k-Greedy Algorithm

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal **next-labeled edge to new vertex** which is incident to end of path.
- Reveal **next edge** incident to exploration tree at end of path.
- Repeat until exploration tree has k edges.
- Extend path to **largest** subtree.
- Replace exploration tree by that subtree, and repeat.
Analysis of k-greedy

Time to grow path from $\ell \to \ell + 1

- Suppose exploration tree has t vertices, and path has length ℓ.
Analysis of \(k \)-greedy

Time to grow path from \(\ell \to \ell + 1 \)

- Suppose exploration tree has \(t \) vertices, and path has length \(\ell \).
- To grow exploration tree by 1 vertex, increment is min of \(t(n - \ell) \) Uniforms, so typically \(\frac{1}{t(n - \ell)} \).

(Sanity check: in Greedy, \(t = k = 1 \).)
Analysis of k-greedy

Time to grow path from $\ell \to \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ.
- To grow exploration tree by 1 vertex, increment is min of $t(n - \ell)$ Uniforms, so typically $\frac{1}{t(n-\ell)}$.
- To grow exploration tree to k edges, total increment is typically

$$
\frac{1}{n-\ell} \left(\frac{1}{t} + \frac{1}{t+1} + \cdots + \frac{1}{k} \right).
$$

(Sanity check: in Greedy, $t = k = 1$.)
Analysis of k-greedy

Time to grow path from $\ell \rightarrow \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ.
- To grow exploration tree by 1 vertex, increment is min of $t(n - \ell)$ Uniforms, so typically $\frac{1}{t(n-\ell)}$.
- To grow exploration tree to k edges, total increment is typically
 \[
 \frac{1}{n - \ell} \left(\frac{1}{t} + \frac{1}{t+1} + \cdots + \frac{1}{k} \right).
 \]
- (Sanity check: in Greedy, $t = k = 1$.)
Analysis of k-greedy

Time to grow path from $\ell \to \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ.
- To grow exploration tree by 1 vertex, increment is min of $t(n - \ell)$ Uniforms, so typically $\frac{1}{t(n-\ell)}$.
- To grow exploration tree to k edges, total increment is typically
 \[
 \frac{1}{n-\ell} \left(\frac{1}{t} + \frac{1}{t+1} + \cdots + \frac{1}{k} \right).
 \]
- (Sanity check: in Greedy, $t = k = 1$.)

Typical time to grow path from $0 \to \ell$

\[
\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell} \right) \cdot \left(\text{typical } \frac{1}{t} + \cdots + \frac{1}{k} \right).
\]
Observation

If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process.
Observation

If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process (random recursive tree).
Observation
If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process (random recursive tree).

Chinese Restaurant Process
When \(n \)-th person enters restaurant:
- Start new table with probability \(\frac{1}{n} \).
- Join existing table with probability proportional to size.
Typical residual exploration tree

Observation

If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process (random recursive tree).

Chinese Restaurant Process

When n-th person enters restaurant:

- Start new table with probability $\frac{1}{n}$.
- Join existing table with probability proportional to size.

Golomb-Dickman constant

If T_k is largest table after k people, then

$$\mathbb{E} \left[\frac{T_k}{k} \right] \to 0.6243$$
Calculation for k-greedy

Typical time to grow path from $0 \rightarrow \ell$

$$\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell}\right) \cdot \left(\text{typical } \frac{1}{T_k} + \cdots + \frac{1}{k}\right).$$
Calculation for k-greedy

Typical time to grow path from $0 \to \ell$

\[
\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell} \right) \cdot \left(\text{typical } \frac{1}{T_k} + \cdots + \frac{1}{k} \right).
\]

Typical factor

- For large (but constant k):

\[
\frac{1}{T_k} + \cdots + \frac{1}{k} \approx \log \frac{k}{T_k}
\]
Calculation for k-greedy

Typical time to grow path from 0 → ℓ

$$
\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell} \right) \cdot \left(\text{typical} \ \frac{1}{T_k} + \cdots + \frac{1}{k} \right).
$$

Typical factor

- For large (but constant k):
 $$
 \frac{1}{T_k} + \cdots + \cdots \frac{1}{k} \approx \log \frac{k}{T_k}
 $$

- As k grows, factor decreases; for $k = 100$, factor is about 0.5219.
Typical time to grow path from $0 \to \ell$

\[
\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell}\right) \cdot \left(\text{typical } \frac{1}{T_k} + \cdots + \frac{1}{k}\right).
\]

Typical factor

- For large (but constant k):

\[
\frac{1}{T_k} + \cdots + \frac{1}{k} \approx \log \frac{k}{T_k}
\]

- As k grows, factor decreases; for $k = 100$, factor is about 0.5219.

- Typical length is when

\[
\log \frac{n}{n - \ell} = \frac{1}{0.5219} \quad \Rightarrow \quad \ell = (1 - e^{-1/0.5219})n.
\]
Theorem (Lavrov, L.)

- A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.
- With backtracking, k-greedy algorithm finds an increasing path of length $0.85n$ a.a.s. in a random edge-ordering.
- Let X be the number of Hamiltonian increasing paths. Then $E[X^2] \sim en^2$.

Conjecture (Lavrov, L.)

A random edge-ordering has an increasing Hamiltonian path a.a.s.