Definition
A cycle is *Hamiltonian* if it visits every vertex exactly once.
A cycle is *Hamiltonian* if it visits every vertex exactly once.

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

$\Pr(G_{n,p} \text{ is Hamiltonian}) \approx \frac{\sqrt{\ln n}{n^{1/2}}}{n^{1/2}}$.

Robinson, Wormald

$G_{3\text{-reg}}$ is Hamiltonian whp.

Bohman, Frieze

$G_{3\text{-out}}$ is Hamiltonian whp.

Cooper, Frieze

$D_{2\text{-in},2\text{-out}}$ is Hamiltonian whp.
Definition

A cycle is *Hamiltonian* if it visits every vertex exactly once.

Definition

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

- (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian *whp* if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.

Definition

A cycle is *Hamiltonian* if it visits every vertex exactly once.

Definition

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

- (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian *whp* if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- (Robinson, Wormald) $G_{3\text{-reg}}$ is Hamiltonian *whp*.

Definition

$G_{n,p}$ is Hamiltonian with high probability (whp) if the probability of it not being Hamiltonian tends to 0 as n tends to infinity.

($\omega(n)$ denotes an infinitesimal function of n.)
A cycle is *Hamiltonian* if it visits every vertex exactly once.

Definition

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

- (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.

- (Robinson, Wormald) $G_{3\text{-reg}}$ is Hamiltonian whp.

- (Bohman, Frieze) $G_{3\text{-out}}$ is Hamiltonian whp.
A cycle is *Hamiltonian* if it visits every vertex exactly once.

Definition

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

- (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian \textbf{whp} if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- (Robinson, Wormald) $G_{3\text{-}reg}$ is Hamiltonian \textbf{whp}.
- (Bohman, Frieze) $G_{3\text{-}out}$ is Hamiltonian \textbf{whp}.
- (Cooper, Frieze) $D_{2\text{-}in,2\text{-}out}$ is Hamiltonian \textbf{whp}.
Definition (3-uniform hypergraph)

\(H_{n,p;3} \): each triple appears independently with probability \(p \).
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

(Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.
Definition (3-uniform hypergraph)

\[H_{n,p;3} \]: each triple appears independently with probability \(p \).
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

![Diagram of a cycle graph](image-url)
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

Tight H-cycle

Loose H-cycle

(Frieze) $H_{n,p;3}$ has loose H-cycle whp if $p > K \frac{\log n}{n^2}$, $4 \mid n$.

(Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

Tight H-cycle
Loose H-cycle
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

Tight H-cycle

Loose H-cycle

(Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

- **Tight H-cycle**
- **Loose H-cycle**
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

Tight H-cycle

Loose H-cycle

(Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

Tight H-cycle

Loose H-cycle

(Frieze) $H_{n,p;3}$ has loose H-cycle whp if $p > \frac{K \log n}{n^2}$, $4 \mid n$.

(Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

Tight H-cycle

Loose H-cycle

(Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

(Frieze) $H_{n,p;3}$ has loose H-cycle **whp** if $p > \frac{K \log n}{n^2}$, $4 \mid n$.

Tight H-cycle

Loose H-cycle
Definition (3-uniform hypergraph)

$H_{n,p;3}$: each triple appears independently with probability p.

(Frieze) $H_{n,p;3}$ has loose H-cycle whp if $p > \frac{K \log n}{n^2}$, $4 \mid n$.

(Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.
Rainbow Hamilton cycles

Question

Does $G_{n,p}$ have a rainbow Hamilton cycle if edges are randomly colored from κ colors?
Rainbow Hamilton Cycles

Question

Does $G_{n,p}$ have a rainbow Hamilton cycle if edges are randomly colored from κ colors?

Observations

- Must have $p > \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- Must have $\kappa \geq n$.

(Cooper, Frieze) True if $p = 20 \log n/n$ and $\kappa = 20 n$.

(Janson, Wormald) True if G_{2r}-reg is randomly colored with each of $\kappa = n$ colors appearing exactly $r \geq 4$ times.
Question
Does \(G_{n,p} \) have a rainbow Hamilton cycle if edges are randomly colored from \(\kappa \) colors?

Observations
- Must have \(p > \frac{\log n + \log \log n + \omega(n)}{n} \) with \(\omega(n) \to \infty \).
- Must have \(\kappa \geq n \).

- (Cooper, Frieze) True if \(p = \frac{20 \log n}{n} \) and \(\kappa = 20n \).
Question

Does $G_{n,p}$ have a rainbow Hamilton cycle if edges are randomly colored from κ colors?

Observations

- Must have $p > \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- Must have $\kappa \geq n$.

- (Cooper, Frieze) True if $p = \frac{20 \log n}{n}$ and $\kappa = 20n$.
- (Janson, Wormald) True if $G_{2r\text{-reg}}$ is randomly colored with each of $\kappa = n$ colors appearing exactly $r \geq 4$ times.
Loose vs. rainbow H-cycles

- Connect 3-uniform hypergraphs to colored graphs
Loose vs. rainbow H-cycles

- Connect 3-uniform hypergraphs to colored graphs.

Hypergraph (bisected vertex set)
Connect 3-uniform hypergraphs to colored graphs.

Hypergraph (bisected vertex set)
Connect 3-uniform hypergraphs to colored graphs.

Hypergraph (bisected vertex set) Auxiliary graph
Loose vs. rainbow H-cycles

- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).

Hypergraph (bisected vertex set) Auxiliary graph
Loose vs. rainbow H-cycles

Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).

Frieze applied Johansson-Kahn-Vu to find perfect matchings.

Apply Janson-Wormald to find rainbow H-cycle in randomly colored random regular graph.
Theorem (Frieze, L.)

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon)\log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle \textbf{whp} when its edges are randomly colored from $\kappa = (1 + \epsilon)n$ colors.

Remarks:

- Asymptotically best possible, both in terms of p and κ.
- Still holds when ϵ tends (slowly) to zero.
Observation

If $p = \frac{(1+\epsilon) \log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10} \log n$.
Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

Justification:
- Degree of fixed vertex is Bin \([n - 1, p]\); expectation \(\sim \log n \)
If \(p = \frac{(1+\epsilon)\log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

Justification:

- Degree of fixed vertex is Bin \([n - 1, p]\); expectation \(\sim \log n \)
- By Chernoff, \(\mathbb{P} \left[\text{deg}(v) < \frac{1}{10}E \right] < e^{-\frac{2}{3}E} = n^{-\frac{2}{3}} \).
Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

Justification:

- Degree of fixed vertex is Bin \([n - 1, p]\); expectation \(\sim \log n \)
- By Chernoff, \(\mathbb{P} \left[\text{deg}(v) < \frac{1}{10} E \right] < e^{-\frac{2}{3}E} = n^{-\frac{2}{3}} \).
- Typically, all but \(< \sqrt[3]{n} \) vertices have degree \(\geq \frac{1}{10} \log n \). \(\square \)
Proof ideas

Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

First attempt to find rainbow H-cycle:

- Suppose all degrees \(\geq \frac{1}{10} \log n \).
- At each vertex, expose list of colors that appear.
Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

First attempt to find rainbow H-cycle:

- Suppose all degrees \(\geq \frac{1}{10} \log n \).
- At each vertex, expose list of colors that appear.
- Select 3 colors per vertex s.t. all selected colors are different.
Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

First attempt to find rainbow H-cycle:

- Suppose all degrees \(\geq \frac{1}{10} \log n \).
- At each vertex, expose list of colors that appear.

- Select 3 colors per vertex s.t. all selected colors are different.
Proof ideas

Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

First attempt to find rainbow H-cycle:

- Suppose all degrees \(\geq \frac{1}{10} \log n \).
- At each vertex, expose list of colors that appear.
- Select 3 colors per vertex s.t. all selected colors are different.
- Expose those edges only; like \(G_{3\text{-out}} \).
Proof ideas

Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

First attempt to find rainbow H-cycle:

1. Suppose all degrees \(\geq \frac{1}{10} \log n \).
2. At each vertex, expose list of colors that appear.
3. Select 3 colors per vertex s.t. all selected colors are different.
4. Expose those edges only; like \(G_{3\text{-out}} \).
Proof ideas

Observation

If \(p = \frac{(1+\epsilon) \log n}{n} \), then almost all vertices have degree \(\geq \frac{1}{10} \log n \).

First attempt to find rainbow H-cycle:

- Suppose all degrees \(\geq \frac{1}{10} \log n \).
- At each vertex, expose list of colors that appear.

![Diagram](image)

- Select 3 colors per vertex s.t. all selected colors are different.
- Expose those edges only; like \(G_{3\text{-out}} \).

Already requires 3n colors.
Saving the constant factor

Sprinkling

Reserve $p' = \frac{\epsilon}{2} \cdot \frac{\log n}{n}$ and $\kappa' = \frac{\epsilon n}{2}$ for 2nd phase.
Saving the constant factor

Sprinkling

Reserve $p' = \frac{\epsilon}{2} \cdot \frac{\log n}{n}$ and $\kappa' = \frac{\epsilon n}{2}$ for 2nd phase.

Main lemma

Using only edges and colors from Phase 1, there is a partition into rainbow intervals, such that:

- All intervals have length $L = \frac{14}{\epsilon}$.
Sprinkling

Reserve $p' = \frac{\epsilon}{2} \cdot \frac{\log n}{n}$ and $\kappa' = \frac{\epsilon n}{2}$ for 2nd phase.

Main Lemma

Using only edges and colors from Phase 1, there is a partition into rainbow intervals, such that:

- All intervals have length $L = \frac{14}{\epsilon}$.
- Each A-vertex has $\geq \frac{\epsilon^2}{40L} \log n$ B-neighbors in Phase 2.
- Each B-vertex has $\geq \frac{\epsilon^2}{40L} \log n$ A-neighbors in Phase 2.
Final rainbow linking

- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.

Aux. digraph: vertices are intervals; edges oriented $B \rightarrow A$.

Directed H-cycle in $D_{2\text{-in,2\text{-out}}}$ links all intervals via Phase 2.

□
- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.
- Now only requires $2 \cdot \frac{2n}{L} = \frac{2}{7}\epsilon n$ colors, out of Phase 2’s $\frac{\epsilon n}{2}$.

\[A \rightarrow B \]
Final rainbow linking

- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.
- Now only requires $2 \cdot \frac{2n}{L} = 2 \cdot \frac{\epsilon n}{2}$ colors, out of Phase 2’s $\frac{\epsilon n}{2}$.

A B A B A B

Aux. digraph: vertices are intervals; edges oriented $B \rightarrow A$.

Directed H-cycle in D 2-in,2-out links all intervals via Phase 2.
- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.
- Now only requires $2 \cdot \frac{2n}{L} = \frac{2}{7} \epsilon n$ colors, out of Phase 2’s $\frac{\epsilon n}{2}$.

Aux. digraph: vertices are intervals; edges oriented $B \to A$.
- Directed H-cycle in $D_{2\text{-in},2\text{-out}}$ links all intervals via Phase 2. □
Constructing intervals

Theorem (Ajtai, Komlós, Szemerédi; de la Vega)

Let \(p = \frac{\omega}{n} \), where \(0 < \omega < \log n - 3 \log \log n \). Then \(G_{n,p} \) has a path of length \((1 - \frac{1}{\omega})n \) \(\text{whp} \).
Theorem (Ajtai, Komlós, Szemerédi; de la Vega)

Let \(p = \frac{\omega}{n} \), where \(0 < \omega < \log n - 3 \log \log n \). Then \(G_{n,p} \) has a path of length \((1 - \frac{1}{\omega})n \) whp.

To obtain intervals:

- Adapting proof of de la Vega, find rainbow path of length \(n - o(n) \) in Phase 1.
- Break the long path into intervals of length \(L = \frac{14}{\epsilon} \).
Theorem (Ajtai, Komlós, Szemerédi; de la Vega)

Let \(p = \frac{\omega}{n} \), where \(0 < \omega < \log n - 3 \log \log n \). Then \(G_{n,p} \) has a path of length \((1 - \frac{1}{\omega})n \) whp.

To obtain intervals:

- Adapting proof of de la Vega, find rainbow path of length \(n - o(n) \) in Phase 1.
- Break the long path into intervals of length \(L = \frac{14}{\epsilon} \).
- Absorb all missing vertices into system of intervals, using minimum degree two.

\[\square \]
Theorem (Frieze, L.)

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon) \log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle *whp* when its edges are randomly colored from $\kappa = (1 + \epsilon) n$ colors.
Theorem (Frieze, L.)

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon) \log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle whp when its edges are randomly colored from $\kappa = (1 + \epsilon)n$ colors.

Edge-colored random graph process:

- Start with n isolated vertices.
- Each round, add a new edge, selected uniformly at random from all missing edges.
- Randomly color the new edge from a set C of size at least n.
Theorem (Frieze, L.)

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon) \log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle whp when its edges are randomly colored from $\kappa = (1 + \epsilon)n$ colors.

Edge-colored random graph process:
- Start with n isolated vertices.
- Each round, add a new edge, selected uniformly at random from all missing edges.
- Randomly color the new edge from a set C of size at least n.

Question

Does a rainbow Hamilton cycle appear as soon as the minimum degree is at least two and at least n colors have arrived?