CHASING A FAST ROBBER

Po-Shen Loh
Carnegie Mellon University

Joint work with Alan Frieze and Michael Krivelevich
Question

How many cops are required to catch a single robber on a given connected graph G, with perfect information?
Setting (Nowakowski, Winkler)

Question

How many cops are required to catch a single robber on a given connected graph G, with perfect information?

Rules

1. Cops choose starting positions first.
2. Then Robber chooses starting position.
3. Each cop either moves by 1 edge, or stays put.
4. Robber either moves by 1 edge, or stays put.
5. Repeat steps 3 and 4.

Cops win when a cop occupies the same vertex as Robber.

Remark: It is possible for Robber to win, e.g., if G is a cycle on 4 or more vertices and there is only 1 cop.
Question

How many cops are required to catch a single robber on a given connected graph G, with perfect information?

Rules

1. Cops choose starting positions first.
2. Then Robber chooses starting position.
3. Each cop either moves by 1 edge, or stays put.
4. Robber either moves by 1 edge, or stays put.
5. Repeat steps 3 and 4.

Cops win when a cop occupies the same vertex as Robber.

Remark: It is possible for Robber to win, e.g., if G is a cycle on 4 or more vertices and there is only 1 cop.
Definition

The *cop number* of a graph $c(G)$ is the minimum number of cops required to win against any robber strategy.
Cop Number

Definition

The *cop number* of a graph $c(G)$ is the minimum number of cops required to win against any robber strategy.

Theorem (Aigner, Fromme 1984)

The cop number of Manhattan is 3.

Proof idea. Cop maintains invariant: for every vertex $v \in P$, he is closer to v than Robber is. (Possible since P is a shortest path.)
Definition

The *cop number* of a graph $c(G)$ is the minimum number of cops required to win against any robber strategy.

Theorem (Aigner, Fromme 1984)

The cop number of any planar graph is at most 3.
Definition
The *cop number* of a graph $c(G)$ is the minimum number of cops required to win against any robber strategy.

Theorem (Aigner, Fromme 1984)
The cop number of any planar graph is at most 3.

Lemma
If P is a shortest path between some $a, b \in G$, then one cop is sufficient to keep Robber off P.
Definition

The *cop number* of a graph $c(G)$ is the minimum number of cops required to win against any robber strategy.

Theorem (Aigner, Fromme 1984)

The cop number of any planar graph is at most 3.

Lemma

If P is a shortest path between some $a, b \in G$, then one cop is sufficient to keep Robber off P.

Proof idea. Cop maintains invariant: for every vertex $v \in P$, he is closer to v than Robber is. (Possible since P is a shortest path.)
Definition

The *cop number* of a graph $c(G)$ is the minimum number of cops required to win against any robber strategy.

Theorem (Aigner, Fromme 1984)

The cop number of *any planar graph* is at most 3.

Proof idea. Two paths between same pair of points make a closed circuit, cutting the planar graph into two regions.
Definition

The *cop number* of a graph $c(G)$ is the minimum number of cops required to win against any robber strategy.

Theorem (Aigner, Fromme 1984)

The cop number of any planar graph is at most 3.

Proof idea. Two paths between same pair of points make a closed circuit, cutting the planar graph into two regions.
Projective plane graph

There are C_4-free bipartite graphs with all degrees $\Theta(\sqrt{n})$.

Corollary

The cop number of a general graph can be as large as $\Omega(\sqrt{n})$.

Proof. Let G be a projective plane graph. Suppose there are fewer than $\delta(G)$ cops. Robber stays put, unless a cop moves to an adjacent vertex. Since no C_3 or C_4, total number of robber's neighbors dominated/occupied by cops is $<\delta$, so robber can escape. □
General graphs: lower bound

Projective plane graph

There are C_4-free bipartite graphs with all degrees $\Theta(\sqrt{n})$.

Corollary

The cop number of a general graph can be as large as $\Omega(\sqrt{n})$.

Proof.

- Let G be a projective plane graph.
- Suppose there are fewer than $\delta(G)$ cops.
There are C_4-free bipartite graphs with all degrees $\Theta(\sqrt{n})$.

Corollary

The cop number of a general graph can be as large as $\Omega(\sqrt{n})$.

Proof.

- Let G be a projective plane graph.
- Suppose there are fewer than $\delta(G)$ cops.
- Robber stays put, unless a cop moves to an adjacent vertex.
- Since no C_3 or C_4, total number of robber’s neighbors dominated/occupied by cops is $< \delta$, so robber can escape. □
Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.
Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$
Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$

Proof sketch. To guard the graph with $\frac{n}{t} + t^t$ cops:
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$

Proof sketch. To guard the graph with $\frac{n}{t} + t^t$ cops:

- If there is vertex of degree $\geq t$, put one cop there and eliminate it and its neighborhood from the graph.
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$

Proof sketch. To guard the graph with $\frac{n}{t} + t^t$ cops:

- If there is vertex of degree $\geq t$, put one cop there and eliminate it and its neighborhood from the graph.
- Repeat until all degrees $\leq t$.

Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$

Proof sketch. To guard the graph with $\frac{n}{t} + t^t$ cops:

- If there is vertex of degree $\geq t$, put one cop there and eliminate it and its neighborhood from the graph.
- Repeat until all degrees $\leq t$.
- Repeat shortest path lemma until diameter $\leq t$.
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every \(n \)-vertex graph is \(O(\sqrt{n}) \).

Upper bounds

- Frankl (1987): \(\frac{n}{\log n} \cdot \log \log n \)

Proof sketch. To guard the graph with \(\frac{n}{t} + t^t \) cops:

- If there is vertex of degree \(\geq t \), put one cop there and eliminate it and its neighborhood from the graph.
- Repeat until all degrees \(\leq t \).
- Repeat shortest path lemma until diameter \(\leq t \).
- Only \(t^t \) vertices remain; put one cop on each. □
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every \(n \)-vertex graph is \(O(\sqrt{n}) \).

Upper bounds

- Frankl (1987): \(\frac{n}{\log n} \cdot \log \log n \)
- Chiniforooshan (2008): \(\frac{n}{\log n} \)

Proof sketch. To guard the graph with \(\frac{n}{t} + t^t \) cops:

- If there is vertex of degree \(\geq t \), put one cop there and eliminate it and its neighborhood from the graph.
- Repeat until all degrees \(\leq t \).
- Repeat shortest path lemma until diameter \(\leq t \).
- Only \(t^t \) vertices remain; put one cop on each.

\[\square\]
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$
- Chiniforooshan (2008): $\frac{n}{\log n}$
- Lu-Peng, Scott-Sudakov: $\frac{n}{2\sqrt{\log_2 n}}$.

Proof sketch. To guard the graph with $\frac{n}{t} + t^t$ cops:

- If there is a vertex of degree $\geq t$, put one cop there and eliminate it and its neighborhood from the graph.
- Repeat until all degrees $\leq t$.
- Repeat shortest path lemma until diameter $\leq t$.
- Only t^t vertices remain; put one cop on each. □

General graphs: upper bound

Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$
- Chiniforooshan (2008): $\frac{n}{\log n}$
- Lu-Peng, Scott-Sudakov: $n/2\sqrt{\log_2 n}$.

Variations

- On $G_{n,p}$: Bollobás-Kun-Leader, Łuczak-Prałat.
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every \(n \)-vertex graph is \(O(\sqrt{n}) \).

Upper bounds

- Frankl (1987): \(\frac{n}{\log n} \cdot \log \log n \)
- Chiniforooshan (2008): \(\frac{n}{\log n} \)
- Lu-Peng, Scott-Sudakov: \(\frac{n}{2\sqrt{\log_2 n}} \).

Variations

- On \(G_{n,p} \): Bollobás-Kun-Leader, Łuczak-Prałat.
- Ranged weapons: Bollobás-Chiniforooshan-Prałat.
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$
- Chiniforooshan (2008): $\frac{n}{\log n}$
- Lu-Peng, Scott-Sudakov: $\frac{n}{2\sqrt{\log_2 n}}$

Variations

- On $G_{n,p}$: Bollobás-Kun-Leader, Łuczak-Prałat.
- Ranged weapons: Bollobás-Chiniforooshan-Prałat.
Meyniel’s Conjecture
The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper Bounds
- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$
- Chiniforooshan (2008): $\frac{n}{\log n}$
- Lu-Peng, Scott-Sudakov: $n/2\sqrt{\log_2 n}$.

Variations
- On $G_{n,p}$: Bollobás-Kun-Leader, Łuczak-Prałat.
- Ranged weapons: Bollobás-Chiniforooshan-Prałat.
- Faster cop.
General graphs: upper bound

Meyniel’s Conjecture

The cop number of every n-vertex graph is $O(\sqrt{n})$.

Upper bounds

- Frankl (1987): $\frac{n}{\log n} \cdot \log \log n$
- Chiniforooshan (2008): $\frac{n}{\log n}$
- Lu-Peng, Scott-Sudakov: $n/2\sqrt{\log_2 n}$.

Variations

- On $G_{n,p}$: Bollobás-Kun-Leader, Łuczak-Prałat.
- Ranged weapons: Bollobás-Chiniforooshan-Prałat.
Theorem (FGKNS, 2010)

If the robber can traverse up to 2 edges per move, then $\Omega(\sqrt{\log n})$ cops are required to catch the robber on the $n \times n$ grid.

Questions

Suppose the robber can travel $R \geq 2$ edges per move. Are there graphs which require more than \sqrt{n} cops?

Can one prove an $o(n)$ upper bound?

Remarks.

Projective plane graphs were used for the old lower bound, but these are hard to analyze for fast robber strategies. Previous upper bound arguments used diameter lemma, which does not apply for fast robber.
Theorem (FGKNS, 2010)

If the robber can traverse up to 2 edges per move, then $\Omega(\sqrt{\log n})$ cops are required to catch the robber on the $n \times n$ grid.

Questions

Suppose the robber can travel $R \geq 2$ edges per move.

- Are there graphs which require more than \sqrt{n} cops?
- Can one prove an $o(n)$ upper bound?
Theorem (FGKNS, 2010)

If the robber can traverse up to 2 edges per move, then $\Omega(\sqrt{\log n})$ cops are required to catch the robber on the $n \times n$ grid.

Questions

Suppose the robber can travel $R \geq 2$ edges per move.
- Are there graphs which require more than \sqrt{n} cops?
- Can one prove an $o(n)$ upper bound?

Remarks.

- Projective plane graphs were used for the old lower bound, but these are hard to analyze for fast robber strategies.
Theorem (FGKNS, 2010)

If the robber can traverse up to 2 edges per move, then \(\Omega(\sqrt{\log n}) \) cops are required to catch the robber on the \(n \times n \) grid.

Questions

Suppose the robber can travel \(R \geq 2 \) edges per move.

- Are there graphs which require more than \(\sqrt{n} \) cops?
- Can one prove an \(o(n) \) upper bound?

Remarks.

- Projective plane graphs were used for the old lower bound, but these are hard to analyze for fast robber strategies.
- Previous upper bound arguments used diameter lemma, which does not apply for fast robber.
Theorem 1 (Frieze, Krivelevich, L.)

Let R be the robber’s speed. There exist n-vertex graphs which:

- require $n^{1 - \frac{1}{R-2}}$ cops to catch the robber, if $3 \leq R \leq \infty$;
- require $\frac{n}{800^2}$ cops to catch the robber, if $R = \infty$.

Theorem 2 (Frieze, Krivelevich, L.)

For any $R \geq 1$ and any connected graph G on n vertices, $\frac{n}{\alpha \sqrt{\log \alpha n}}$ cops are sufficient to catch any speed-R robber, where $\alpha = 1 + \frac{1}{R}$. This smoothly extends the best upper bound to fast robbers.
Theorem 1 (Frieze, Krivelevich, L.)

Let R be the robber’s speed. There exist n-vertex graphs which:
- require $n^{1 - \frac{1}{R-2}}$ cops to catch the robber, if $3 \leq R \leq \infty$;
- require $\frac{n}{800^2}$ cops to catch the robber, if $R = \infty$.

Theorem 2 (Frieze, Krivelevich, L.)

For any $R \geq 1$ and any connected graph G on n vertices, $\frac{n}{\alpha \sqrt{\log \alpha n}}$ cops are sufficient to catch any speed-R robber, where $\alpha = 1 + \frac{1}{R}$.

This smoothly extends the best upper bound to fast robbers.
Earlier: if cannot guard G efficiently, then deduce structure:

- Degrees are not too large.
Earlier: if cannot guard G efficiently, then deduce structure:

- Degrees are not too large.
- Diameter is not too large.
Earlier: if cannot guard G efficiently, then deduce structure:

- Degrees are not too large.
- Diameter is not too large.
Earlier: if cannot guard G efficiently, then deduce structure:

- Degrees are not too large.
- Diameter is not too large.

Definition

A graph G is a **c-expander** if every set S of at most half the vertices has $|N(S) \setminus S| \geq c|S|$.
Earlier: if cannot guard G efficiently, then deduce structure:

- Degrees are not too large.
- Diameter is not too large.

Definition

A graph G is a **c-expander** if every set S of at most half the vertices has $|N(S) \setminus S| \geq c|S|$.

Observation

If G needs many cops, then G is an expander.

Justification:

- If set S does not expand, station cops on $|N(S) \setminus S| < c|S|$.
Earlier: if cannot guard G efficiently, then deduce structure:

- Degrees are not too large.
- Diameter is not too large.

Definition

A graph G is a **c-expander** if every set S of at most half the vertices has $|N(S) \setminus S| \geq c|S|$.

Observation

If G needs many cops, then G is an expander.

Justification:

- If set S does not expand, station cops on $|N(S) \setminus S| < c|S|$.
- The robber can never pass this barrier, so the problem reduces to either S or $G \setminus (N(S) \cup S)$.
- Cost in cops is only c-fraction of vertices removed.
To show pn cops suffice:

- May assume all degrees $\leq \frac{1}{p}$.
To show pn cops suffice:

- May assume all degrees $\leq \frac{1}{p}$.
- May assume all sets expand by factor $\geq (1 + \frac{1}{p})$.

Randomly place cops at every vertex with probability p. Choose T so that $(1 + \frac{1}{p})^T = \frac{1}{p}$. Hall's Theorem: every vertex within distance RT from robber has distinct cop within distance T from it. Catch robber in T rounds. Works as long as $(1 + \frac{1}{p})^{RT} \ll n$. \square
Benefits of expansion

To show pn cops suffice:

- May assume all degrees $\leq \frac{1}{p}$.
- May assume all sets expand by factor $\geq (1 + \frac{1}{p})$.
- Randomly place cops at every vertex with probability p.

\[\text{Choose } T \text{ so that } (1 + \frac{1}{p})^T \approx \frac{1}{p}. \]

Hall’s Theorem: every vertex within distance RT from robber has distinct cop within distance T from it.

Catch robber in T rounds.

Works as long as \((1 + \frac{1}{p})^RT \ll n\).

\[\square \]
To show pn cops suffice:

- May assume all degrees $\leq \frac{1}{p}$.
- May assume all sets expand by factor $\geq (1 + \frac{1}{p})$.
- Randomly place cops at every vertex with probability p.
- Choose T so that $(1 + \frac{1}{p})^T = \frac{1}{p}$.
- Hall’s Theorem: every vertex within distance RT from robber has distinct cop within distance T from it.

- Catch robber in T rounds.
To show \(pn\) cops suffice:

- May assume all degrees \(\leq \frac{1}{p}\).
- May assume all sets expand by factor \(\geq (1 + \frac{1}{p})\).
- Randomly place cops at every vertex with probability \(p\).
- Choose \(T\) so that \((1 + \frac{1}{p})^T = \frac{1}{p}\).
- Hall’s Theorem: every vertex within distance \(RT\) from robber has distinct cop within distance \(T\) from it.

\[\text{Catch robber in } T \text{ rounds.}\]
To show \(pn \) cops suffice:

- May assume all degrees \(\leq \frac{1}{p} \).
- May assume all sets expand by factor \(\geq (1 + \frac{1}{p}) \).
- Randomly place cops at every vertex with probability \(p \).
- Choose \(T \) so that \((1 + \frac{1}{p})^T = \frac{1}{p} \).
- Hall’s Theorem: every vertex within distance \(RT \) from robber has distinct cop within distance \(T \) from it.

\[k \]

\[RT \]

\[T \]

- Catch robber in \(T \) rounds.
To show pn cops suffice:

- May assume all degrees $\leq \frac{1}{p}$.
- May assume all sets expand by factor $\geq (1 + \frac{1}{p})$.
- Randomly place cops at every vertex with probability p.
- Choose T so that $(1 + \frac{1}{p})^T = \frac{1}{p}$.
- Hall’s Theorem: every vertex within distance RT from robber has distinct cop within distance T from it.

- Catch robber in T rounds.
To show pn cops suffice:

- May assume all degrees $\leq \frac{1}{p}$.
- May assume all sets expand by factor $\geq (1 + \frac{1}{p})$.
- Randomly place cops at every vertex with probability p.
- Choose T so that $(1 + \frac{1}{p})^T = \frac{1}{p}$.
- Hall’s Theorem: every vertex within distance RT from robber has distinct cop within distance T from it.

- Catch robber in T rounds.
To show pn cops suffice:

- May assume all degrees $\leq \frac{1}{p}$.
- May assume all sets expand by factor $\geq (1 + \frac{1}{p})$.
- Randomly place cops at every vertex with probability p.
- Choose T so that $(1 + \frac{1}{p})^T = \frac{1}{p}$.
- Hall’s Theorem: every vertex within distance RT from robber has distinct cop within distance T from it.

- Catch robber in T rounds.
- Works as long as $(\frac{1}{p})^{RT} \ll n$.

□
Lower bound

Robber strategy on \(G_{n,p} \)

- Let \(C \) be vertices occupied by cops.
Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
- Robber stays outside C^+.

Proof.

For $np = n$, show speed-1 robber can elude n^{1-c} cops.

In $G_{n,p}$, any $H = G - C^+$ has np-core of size 0.

Say robber is in core, and cops move. Let C' be new cop positions. Since $C' \subset C^+$, robber can still move within H. New core also has size 0, so it overlaps old core. By properties of $G_{n,p}$, robber can reach new core fast. □
Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
- Robber stays in $\frac{np}{3}$-core of $G \setminus C^+$.

Proof. For $np = n$, show speed-1 robber can elude n^{1-c} cops.

In $G_{n,p}$, any $H = G \setminus C^+$ has $\frac{np}{3}$-core of size 0.

Say robber is in core, and cops move. Let C' be new cop positions. Since $C' \subset C^+$, robber can still move within H.

New core also has size 0, so it overlaps old core.

By properties of $G_{n,p}$, robber can reach new core fast. □
Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
- Robber stays in $\frac{np}{3}$-core of $G \setminus C^+$.

Proof. For $np = n^c$, show speed-$\frac{1}{c}$ robber can elude n^{1-c} cops.
Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
- Robber stays in $\frac{np}{3}$-core of $G \setminus C^+$.

Proof. For $np = n^c$, show speed-$\frac{1}{c}$ robber can elude n^{1-c} cops.
- In $G_{n,p}$, any $H = G \setminus C^+$ has $\frac{np}{3}$-core of size $0.99n$.
Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
- Robber stays in $\frac{np}{3}$-core of $G \setminus C^+$.

Proof. For $np = n^c$, show speed-$\frac{1}{c}$ robber can elude n^{1-c} cops.

- In $G_{n,p}$, any $H = G \setminus C^+$ has $\frac{np}{3}$-core of size $0.99n$.
- Say robber is in core, and cops move.
Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
- Robber stays in $\frac{np}{3}$-core of $G \setminus C^+$.

Proof. For $np = n^c$, show speed-$\frac{1}{c}$ robber can elude n^{1-c} cops.

- In $G_{n,p}$, any $H = G \setminus C^+$ has $\frac{np}{3}$-core of size $0.99n$.
- Say robber is in core, and cops move.
- Let C' be new cop positions.
Lower bound

Robber strategy on $G_{n,p}$

- Let C be vertices occupied by cops.
- Let C^+ be C, together with neighboring vertices.
- Robber stays in $\frac{np}{3}$-core of $G \setminus C^+$.

Proof. For $np = n^c$, show speed-$\frac{1}{c}$ robber can elude n^{1-c} cops.

- In $G_{n,p}$, any $H = G \setminus C^+$ has $\frac{np}{3}$-core of size $0.99n$.
- Say robber is in core, and cops move.
- Let C' be new cop positions.
- Since $C' \subseteq C^+$, robber can still move within H.
- New core also has size $0.99n$, so it overlaps old core.
- By properties of $G_{n,p}$, robber can reach new core fast. □
Remarks.

- Our lower bound robber strategy is (necessarily) more complex, so we use $G_{n,p}$ instead of the projective plane.
- Our upper bound matches the first-order constants of Lu-Peng and Scott-Sudakov, using expansion instead of diameter.
Remarks.

- Our lower bound robber strategy is (necessarily) more complex, so we use $G_{n,p}$ instead of the projective plane.
- Our upper bound matches the first-order constants of Lu-Peng and Scott-Sudakov, using expansion instead of diameter.

Open problems.

- Are $\omega(\sqrt{n})$ cops required to catch a speed-2 robber? Our bound only exceeds \sqrt{n} for $R \geq 5$.
- What if cops and robber move at the same speed $R \geq 2$?