1 Problems

Putnam 2008/A4. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \leq e \\ xf(\ln x) & \text{if } x > e. \end{cases}$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?

Putnam 2008/A5. Let $n \geq 3$ be an integer. Let $f(x)$ and $g(x)$ be polynomials with real coefficients such that the points $(f(1), g(1)), (f(2), g(2)), \ldots, (f(n), g(n))$ in \mathbb{R}^2 are the vertices of a regular n-gon in counterclockwise order. Prove that at least one of $f(x)$ and $g(x)$ has degree greater than or equal to $n - 1$.

Putnam 2008/A6. Prove that there exists a constant $c > 0$ such that in every nontrivial finite group G there exists a sequence of length at most $c \ln |G|$ with the property that each element of G equals the product of some subsequence. (The elements of G in the sequence are not required to be distinct. A subsequence of a sequence is obtained by selecting some of the terms, not necessarily consecutive, without reordering them; for example, $4, 4, 2$ is a subsequence of $2, 4, 6, 4, 2$, but $2, 2, 4$ is not.)