1 Problems

Putnam 2006/A4. Let \(S = \{1, 2, \ldots, n\} \) for some integer \(n > 1 \). Say a permutation \(\pi \) of \(S \) has a local maximum at \(k \in S \) if

(i) \(\pi(k) > \pi(k + 1) \) for \(k = 1 \);
(ii) \(\pi(k - 1) < \pi(k) \) and \(\pi(k) > \pi(k + 1) \) for \(1 < k < n \);
(iii) \(\pi(k - 1) < \pi(k) \) for \(k = n \).

(For example, if \(n = 5 \) and \(\pi \) takes values at \(1, 2, 3, 4, 5 \) of \(2, 1, 4, 5, 3 \), then \(\pi \) has a local maximum of 2 at \(k = 1 \), and a local maximum of 5 at \(k = 4 \).) What is the average number of local maxima of a permutation of \(S \), averaging over all permutations of \(S \)?

Putnam 2006/A5. Let \(n \) be a positive odd integer and let \(\theta \) be a real number such that \(\theta/\pi \) is irrational. Set \(a_k = \tan(\theta + k\pi/n) \), \(k = 1, 2, \ldots, n \). Prove that

\[
\frac{a_1 + a_2 + \cdots + a_n}{a_1 a_2 \cdots a_n}
\]

is an integer, and determine its value.

Putnam 2006/A6. Four points are chosen uniformly and independently at random in the interior of a given circle. Find the probability that they are the vertices of a convex quadrilateral.