Discrete Math

Instructor: Mike Picollelli

Day 4
When counting, there are often two simple principles at work:
It’s Combinatorics Time.

When counting, there are often two simple principles at work:

The Multiplication Principle: If an event can occur in \(m \) ways, and a second event can occur *independently* in \(n \) ways, then the two events can occur in \(mn \) ways.
When counting, there are often two simple principles at work:

The Multiplication Principle: If an event can occur in m ways, and a second event can occur *independently* in n ways, then the two events can occur in mn ways.

The Addition Principle: If we can break the objects we are counting into separate, non-overlapping (disjoint) cases, the total number of objects is the sum of the numbers for each individual case.
Definition: A permutation is an ordered arrangement of distinct objects.
Definition: A permutation is an ordered arrangement of distinct objects.

The number of permutations of n distinct objects is $n!$. (Multiplication Principle)
Definition: A permutation is an ordered arrangement of distinct objects.

The number of permutations of \(n \) distinct objects is \(n! \).
(Multiplication Principle)

But what if we only want the number of permutations of \(r \) distinct objects from a collection of \(n \)?
Definition: A permutation is an ordered arrangement of distinct objects.

The number of permutations of n distinct objects is $n!$. (Multiplication Principle)

But what if we only want the number of permutations of r distinct objects from a collection of n?

This number is denoted $P(n, r)$, and, in fact,

$$P(n, r) = \frac{n!}{(n - r)!}.$$
We can view the three winners in a 10 horse race (assuming no ties) as an ordered permutation of 3 horses taken from the collection of 10.
We can view the three winners in a 10 horse race (assuming no ties) as an ordered permutation of 3 horses taken from the collection of 10.

The number of such permutations is therefore

\[P(10, 3) = \frac{10!}{(10 - 3)!} = \frac{10!}{7!} = 10 \cdot 9 \cdot 8 = 720. \]
Definition: A combination is an unordered arrangement of objects. (Not always distinct.)
Definition: A combination is an unordered arrangement of objects. (Not always distinct.)

The number of combinations of r objects from a collection of n distinct objects is denoted $C(n, r)$,
Definition: A combination is an unordered arrangement of objects. (Not always distinct.)

The number of combinations of r objects from a collection of n distinct objects is denoted $C(n, r)$, and, somehow,

$$C(n, r) = \frac{n!}{r!(n-r)!}.$$
Definition: A combination is an unordered arrangement of objects. (Not always distinct.)

The number of combinations of \(r \) objects from a collection of \(n \) distinct objects is denoted \(C(n, r) \), and, somehow,

\[
C(n, r) = \frac{n!}{r!(n - r)!}.
\]

Later, we will define binomial coefficients, which are written \(\binom{n}{r} \), and show that \(\binom{n}{r} = C(n, r) \). As a result, your instructor, who got very little sleep last night, may end up writing \(\binom{n}{r} \) when he means \(C(n, r) \).
Definition: A combination is an unordered arrangement of objects. (Not always distinct.)

The number of combinations of \(r \) objects from a collection of \(n \) distinct objects is denoted \(C(n, r) \), and, somehow,

\[
C(n, r) = \frac{n!}{r!(n-r)!}.
\]

Later, we will define **binomial coefficients**, which are written \(\binom{n}{r} \), and show that \(\binom{n}{r} = C(n, r) \). As a result, your instructor, who got very little sleep last night, may end up writing \(\binom{n}{r} \) when he means \(C(n, r) \). Please forgive him.
How many full houses are there in a standard poker deck?
How many full houses are there in a standard poker deck?

(Yes, combinatorics *is* all about gambling.)