1 Problems

Putnam 1992/A1. Prove that \(f(n) = 1 - n \) is the only integer-valued function defined on the integers that satisfies the following conditions.

- \(f(f(n)) = n \), for all integers \(n \);
- \(f(f(n + 2) + 2) = n \), for all integers \(n \);
- \(f(0) = 1 \).

Putnam 1992/A2. Define \(C(\alpha) \) to be the coefficient of \(x^{1992} \) in the power series about \(x = 0 \) of \((1 + x)^\alpha \). Evaluate

\[
\int_0^1 \left(C(-y - 1) \sum_{k=1}^{1992} \frac{1}{y + k} \right) dy.
\]

Putnam 1992/A3. For a given positive integer \(m \), find all triples \((n, x, y)\) of positive integers, with \(n \) relatively prime to \(m \), which satisfy

\[
(x^2 + y^2)^m = (xy)^n.
\]