3. Number theory

Po-Shen Loh
CMU Putnam Seminar, Fall 2015

1 Classical results

Warm-up. Let \(p \) be a prime. Expand \((x + y + z)^p\), reducing the coefficients modulo \(p \).

Fermat. For any prime \(p \) and any integer \(a \) not divisible by \(p \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

Euler. For any positive integer \(n \) and any integer \(a \) relatively prime to \(n \),
\[a^{\phi(n)} \equiv 1 \pmod{n}, \]
where \(\phi(n) \) is the number of integers in \(\{1, \ldots, n\} \) that are relatively prime to \(n \).

Wilson. For every prime \(p \), we have \((p-1)! \equiv -1 \pmod{p}\).

Lucas. Let \(n \) and \(k \) be non-negative integers, with base-\(p \) expansions \(n = (n_t n_{t-1} \ldots n_0)_{(p)} \) and \(k = (k_t k_{t-1} \ldots k_0)_{(p)} \), respectively. Then
\[\binom{n}{k} \equiv \binom{n_t}{k_t} \times \binom{n_{t-1}}{k_{t-1}} \times \cdots \times \binom{n_0}{k_0} \pmod{p}. \]

2 Problems

1. Let \(p \) be an odd prime. Expand \((x - y)^{p-1}\), reducing the coefficients modulo \(p \).

2. Does there exist an infinite sequence of positive integers \(a_1, a_2, a_3, \ldots \) such that \(a_m \) and \(a_n \) are relatively prime if and only if \(|m - n| = 1\)?

3. The sets \(\{a_1, a_2, \ldots, a_{999}\} \) and \(\{b_1, b_2, \ldots, b_{999}\} \) together contain all the integers from 1 to 1998. For each \(i \), \(|a_i - b_i| \in \{1, 6\}\). For example, we might have \(a_1 = 18, a_2 = 1, b_1 = 17, b_2 = 7 \). Show that \(\sum_{i=1}^{999} |a_i - b_i| \equiv 9 \pmod{10}. \)

4. Let \(r \) and \(s \) be odd positive integers. The sequence \(a_n \) is defined as follows: \(a_1 = r, a_2 = s \), and \(a_n \) is the greatest odd divisor of \(a_{n-1} + a_{n-2} \). Show that, for sufficiently large \(n \), \(a_n \) is constant and find this constant (in terms of \(r \) and \(s \)).

5. Let \(n \) be an arbitrary positive integer. Show that the following sequence is eventually constant modulo \(n \):
\[2, \ 2^2, \ 2^{2^2}, \ 2^{2^{2^2}}, \ 2^{2^{2^{2^2}}}, \ldots \]

6. For a positive integer \(a \), define a sequence of integers \(x_1, x_2, \ldots \) by letting \(x_1 = a \) and \(x_{n+1} = 2x_n + 1 \) for \(n \geq 1 \). Let \(y_n = 2^{x_n} - 1 \). Determine the largest possible \(k \) such that for some positive integer \(a \), the numbers \(y_1, \ldots, y_k \) are all prime.
7. Show that there exists a set \(A \) of positive integers with the following property: for any infinite set \(S \) of primes, there exist two positive integers \(m \) in \(A \) and \(n \) not in \(A \), each of which is a product of \(k \) distinct elements of \(S \) for some \(k \geq 2 \).

3 Homework

Please write up solutions to two of the problems, to turn in at next week’s meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.