Exam #3 — Review

1. Let
 \[A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ -2 & -4 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \]

 (a) Determine the projection of \(b \) onto the column space of \(A \)?

2. Let
 \[A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 4 & -2 \\ 2 & 1 & 8 & 0 \\ -2 & -1 & -8 & 0 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} -1 \\ -3 \\ 7 \\ -1 \end{bmatrix} \]

 (a) Find an orthogonal basis for \(\text{row}(A) \).
 (b) Find a vector \(r \in \text{row}(A) \) and a vector \(n \in \text{nul}(A) \) such that \(v = r + n \). How many ways are there to do this?
 (c) What are the dimensions of \(\text{row}(A) \), \(\text{col}(A) \), and \(\text{nul}(A) \)? [Naturally, more than just a number is expected. How did you arrive at that number?]

3. Let \(A \) be an \(m \times n \) matrix. Justify the following claims:

 (a) For all vectors \(v \in \mathbb{R}^m \) there are vectors \(r \in \text{row}(A^T) \) and \(n \in \text{nul}(A^T) \) such that \(v = r + n \).
 (b) For every vector \(r \in \text{row}(A^T) \) there is a vector \(x \in \mathbb{R}^n \) such that \(r = Ax \).
 (c) For every vector \(c \in \text{col}(A^T) \) there is a vector \(x \in \mathbb{R}^n \) such that \(A^T Ax = c \).
 (d) For any vector \(b \in \mathbb{R}^m \), the equation \(A^T Ax = A^T b \) have at least one solution.

4. Consider the matrix
 \[A := \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{bmatrix} \]

 (a) Find a basis for \(\text{nul}(A) \).
 (b) Find a basis for \(\text{col}(A) \).
 (c) Find the matrix for the orthogonal projection onto the nullspace of \(A \), \(\text{proj}_{\text{nul}(A)} \)

5. Let
 \[\begin{cases} x_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} , x_2 = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} , x_3 = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix} \end{cases} \]
(a) Apply the Gram-Schmidt process to the set \(\{x_1, x_2, x_3\} \) to obtain an orthogonal set \(\{v_1, v_2, v_3\} \).

(b) Let \(W = \text{span}(v_1, v_2) \). Find an orthogonal decomposition of the vector \(u = \begin{bmatrix} -3 \\ 3 \\ -6 \end{bmatrix} \) into \(u = w + w^\perp \) where \(w \in W \) and \(w^\perp \in W^\perp \).

6. (a) Is \(\{1 + x, 1 + x^2, x - x^2\} \) a basis for \(P_2 = \{a + bx + cx^2 : a, b, c \in \mathbb{R}\} \)?

(b) Show that for an \(m \times n \) matrix, \(A \), the solution set to \(Ax = b \) is a subspace of \(\mathbb{R}^n \) if and only if \(b = 0 \).