1. In this problem, we will consider the initial value problem
\[\frac{dy}{dt} = (1 + y^2) \cos(t); \quad y(0) = 0. \]
(a) Find the exact solution (analytically).
(b) Use the MATLAB routine \texttt{eul} to produce an approximate solution on the interval [0, 6], with step size h=1. Determine the maximum error for this approximation by comparing with the exact solution. Repeat this eight times, halving the step size each time. Produce a log-log plot showing maximum error vs. step size.
(c) Repeat part 1b using \texttt{rk2} instead of \texttt{eul}.
(d) Repeat part 1b using \texttt{rk4} instead of \texttt{eul}.
(e) Use \texttt{Matlab} to display on a single diagram the plots of the exact solution and the approximate solutions generated by each of the three methods using a step size of h=.25. Use a distinctive marking for each method. (Note that when you print the graph it will appear in black and white, so simply choosing different colors may not work very well.)

2. A function of the form \(y = ax^b \) is called a power function. Use \texttt{Matlab}'s \texttt{plot} command to sketch the plot of each of the power functions on the interval [0, 2]:
(a) \(y = 2x^3 \)
(b) \(y = 200x^4 \)
(c) \(y = 50x^{-2} \)
Then use the \texttt{loglog} command to produce a log-log plot on the same interval. Describe what the graph of a power function looks like when drawn on a loglog graph.

3. The accuracy of any numerical method in solving a differential equation of the form \(y' = f(t, y) \) depends on how strongly the equation depends on the variable \(y \). (The error bounds depend on the derivatives of \(f \) with respect to \(y \).) To see this experimentally, consider the two initial value problems
\[y' = y; \quad y(0) = 1 \]
and
\[y' = e^t; \quad y(0) = 1. \]
Note that \(y(t) = e^t \) is the solution to both problems.
(a) Use \texttt{eul} to compute approximate solutions to the two initial value problems on [0, 1] using a step size of h=.01. Compare the accuracy of the solutions to the two problems.
(b) Repeat this process for the routines \texttt{rk2} and \texttt{rk4}.