1 Prove that \(f(x) = \sqrt{x} \) is uniformly continuous on \([0, \infty)\).
Step I: Notice that \(f(x) \) is uniformly continuous on \([0, 2] \) because \([0, 2] \) is compact. So given, \(\epsilon > 0 \), \(\exists \delta > 0 \) such that \(|f(x) - f(y)| < \epsilon \) for \(|x - y| < \delta \).
Step II: Notice that \(f(x) \) is uniformly continuous on \([1, \infty)\). For \(|\sqrt{x} - \sqrt{y}| = |\sqrt{x} - \sqrt{y}| \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}} = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \).
Since \(x, y \in [1, \infty) \), we see that \(\sqrt{x} + \sqrt{y} \geq 2 \). So \(|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\frac{1}{2} \sqrt{x} + \frac{1}{2} \sqrt{y}} < \frac{2 \epsilon}{\delta} \). Thus for \(\epsilon > 0 \), take \(\delta = 2 \epsilon \).
The for \(|x - y| < 2 \epsilon, \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \frac{|x - y|}{2} < \frac{2 \epsilon}{2} = \epsilon \).
Step III: Thus for \(\epsilon > 0 \), let \(\delta = \min(1, 2 \epsilon, \delta_1) \). The for \(|x - y| < \delta \), we see that a) \(x \) and \(y \) are either both in \([0, 2] \) or both in \([1, \infty) \). b) If \(x, y \) are both in \([0, 2] \), then \(|x - y| < \delta < \delta_1 \) implies \(|f(x) - f(y)| < \epsilon \) by Step I. c) If \(x, y \) are both in \([1, \infty) \) then \(|x - y| < \delta < \frac{\delta}{2} \) implies \(|f(x) - f(y)| < \epsilon \) by Step II. Therefore uniformly continuous.

2 Let \(D \subset \mathbb{R} \). Let \(f : D \rightarrow \mathbb{R} \) be uniformly continuous on \(D \) and suppose \(\{x_n\} \) is a Cauchy sequence in \(D \). Then \(\{f(x_n)\} \) is a Cauchy sequence.
Pf: Given any \(\epsilon > 0 \), since \(f \) is uniformly continuous on \(D \) there exists a \(\delta > 0 \) such that \(|f(x) - f(y)| < \epsilon \) whenever \(|x - y| < \delta \) and \(x, y \in D \). Since \(\{x_n\} \) is a Cauchy sequence, there exists a number \(N \) such that \(|x_n - x_m| < \delta \) whenever \(m, n > N \). Thus for \(m, n > N \) we have \(|f(x_n) - f(x_m)| < \epsilon \), so \(\{f(x_n)\} \) is a Cauchy sequence.

3 Let \(D \subset \mathbb{R} \). Let \(f : D \rightarrow \mathbb{R} \) be uniformly continuous on the bounded set \(D \). Prove that \(f \) is bounded on \(D \).
Pf: Suppose \(f(D) \) is not bounded.
Claim: There is a sequence \(s_n \in D \) such that \(f(s_n) \geq n, \forall n \). Pf: Construct the sequence by given \(n \in \mathbb{N} \). Define the set \(f(D, n) = \{x \in D : f(x) < n\} \). This nonempty because \(f(D) \) is not bounded. So choose \(s_n \) to be any point in \(f(D, n) \). Then choose \(s_{n+1} \) to be any point in \(f(D, n+1) \), etc. We get a sequence of points, \(s_n \) such that \(f(s_n) \geq n, \forall n \).
Now, since \(D \) is bounded we know that \(\{s_n\} \) has a convergent subsequence (call it \(\{s_{nk}\} \)). This subsequence is Cauchy (because all convergent sequences are). Then by the previous problem, \(f(\{s_{nk}\}) \) is Cauchy too. Thus \(f(\{s_{nk}\}) \) is convergent (because all Cauchy sequences are). But this is impossibly because \(f(\{s_{nk}\}) \geq n_k \).

4 Use the definition of derivative to find the derivative of \(f(x) = \sqrt{x} \) for \(x > 0 \).
\[
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}}.
\]

5 Let \(f(x) = x^2 \sin \left(\frac{1}{x^2} \right) \) for \(x \neq 0 \) and \(f(0) = 0 \).
a) Show that \(f \) is differentiable in \(\mathbb{R} \).
If \(x \neq 0 \) then \(f'(x) = 2x \sin \left(\frac{1}{x^2} \right) - 2x^2 \cos \left(\frac{1}{x^2} \right) \). If \(x = 0 \) then \(f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} h^2 \sin \left(\frac{1}{h^2} \right) = \lim_{h \to 0} h \sin \left(\frac{1}{h^2} \right) = 0 \).
b) Show that \(f' \) is not bounded on the interval \([-1, 1]\).
Assume that \(f' \) is bounded. Then there exists \(M \) such that \(|f'(x)| \leq M \forall x \in [-1, 1] \). Then take \(x_0 \) such that \(x_0 > M \), \(x_0 > 1 \) and \(\sqrt{x_0} = n \) for some \(n \in \mathbb{N} \). Since \(M \) is finite, clearly \(x_0 \) exists. Look at \(\frac{1}{x_0} \). We see that \(\frac{1}{x_0} > 1 \), and \(|f'(\frac{1}{x_0})| = |\frac{2}{x_0} \sin(n\pi) - x_0 \cos(n\pi)| = x_0 > M \).