MA 355 Homework 1

• For each subset of \(\mathbb{R} \), give its maximum, minimum, supremum, and infimum, if they exist:
 \{1, 3\}: min and inf=1, max and sup=3
 \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}: min and inf=\(\frac{1}{2}\), max=none, sup=1
 (−\(\infty\), 4): min and inf=none, max=none, sup=4

p.21: #1. (a) Suppose \(r \in \mathbb{Q} \) and \(x \) is irrational and \(r + x \) is rational. Then \(r = \frac{p}{q} \) and \(r + x = \frac{s}{t} \) for \(p, q, s, t \in \mathbb{Z} \) where \(q, t \neq 0 \). Thus \(x = (r + x) - r = \frac{s}{t} - \frac{p}{q} = \frac{sq - pt}{qt} \). Since \(sq - pt \) and \(tq \) are integers and \(tq \neq 0 \), \(x \) is rational. This is a contradiction. ∴ If \(r \) is rational and \(x \) is irrational then \(r + x \) is irrational.

(b) (a) Suppose \(r \in \mathbb{Q} \) and \(x \) is irrational and \(rx \) is rational. Then \(r = \frac{p}{q} \) and \(rx = \frac{s}{t} \) for \(p, q, s, t \in \mathbb{Z} \) where \(q, t \neq 0 \). Thus \(x = rx \frac{1}{r} = \frac{s}{t} * \frac{p}{q} = \frac{sp}{tq} \). Since \(sp \) and \(tq \) are integers and \(tq \neq 0 \), \(x \) is rational. This is a contradiction. ∴ If \(r \) is rational and \(x \) is irrational then \(rx \) is irrational.

#2. Suppose there exists a rational number \(r \) whose square is 12. Write \(r \) in lowest terms, \(r = \frac{m}{n} \) where \(m, n \in \mathbb{Z} \) and have no factors in common. Then \(m^2 = 12n^2 = 3 \times 2^2 \times n^2 \). Since 3 appears in the right-hand side, 3 divides \(m^2 \). But 3 is prime, so it must divide \(m \); hence \(m^2 \) must be divisible by 9. But then 3 divides \(n^2 \) and therefore \(n \) as well, contrary to the assumption that \(m \) and \(n \) have no common factors. Thus there is no rational number whose square is 12.

4. Since \(E \) is nonempty, it has at least one element, say, \(x \). Since \(\alpha \) is a lower bound of \(E \), we know \(\alpha \leq x \). Similary, since \(\beta \) is an upper bound of \(E \), \(x \leq \beta \). By the transitivity of the order \(\leq \), we conclude \(\alpha \leq \beta \).

5. Since \(A \) is nonempty and bounded below, there exists \(\inf A \). By definition, \(\inf A \leq x, \forall x \in A \), so \(-\inf A \geq -x, \forall x \in A \), i.e., \(-\inf A \geq y, \forall y \in -A \). Thus \(-\inf A \) is an upper bound of \(-A \).

The set \(-A \) is thus nonempty and bounded above, hence there exists \(\sup(-A) \). Since \(\sup(-A) \geq y, \forall y \in -A, -\sup(-A) \leq -y, \forall y \in -A \), i.e., \(-\sup(-A) \leq x, \forall x \in A \). Thus \(-\sup(-A) \) is a lower bound of \(A \). Now \(-\inf A \geq \sup(-A), -\sup(-A) \leq \inf A \) since a lower bound is not bigger than the greatest lower bound and an upper bound is not smaller than the least upper bound. But these last inequalities are equivalent to \(-\inf A \geq \sup(-A), -\inf A \leq \sup(-A) \). Hence \(-\inf A = \sup(A) \).

• Suppose \(x, y \in \mathbb{R} \) and \(x < y \). Consider \(\tilde{x} = \frac{x}{\sqrt{2}} \) and \(\tilde{y} = \frac{y}{\sqrt{2}} \). By the density of the reals, there exists a rational number \(r \) such that \(\tilde{x} < r < \tilde{y} \) which implies \(\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}} \). Define \(w = r\sqrt{2} \) which is irrational by a previous #1b.