Problem (Pugh p.42 #12(c)): If \(x = A \mid B \) is a cut in \(\mathbb{Q} \), show that

\[
x = \text{l.u.b.} \{ r^* : r \in A \}.
\]

Solution: Let \(x = A \mid B \) be a cut in \(\mathbb{Q} \), and let \(S = \{ r^* : r \in A \} \). The proof involves two substeps. We must show \(x \) is an upper bound for \(S \) and that it is the least upper bound.

1. Let \(y \in S \). Then \(y = r^* \) where \(r \in A \). \(y \) is a cut and its left set is

\[
C = \{ q \in \mathbb{Q} : q < r \}.
\]

We have \(C \subseteq A \) since for any \(q \in \mathbb{Q} \), \(q < r \) implies \(q \in A \). Hence \(y \leq x \) by the definition of order on cuts. This proves \(x \) is an upper bound for \(S \).

2. Suppose \(z = C \mid D \in \mathbb{R} \) is any upper bound for \(S \). We claim \(x \leq z \), which means \(A \subseteq C \). Let \(r \in A \). Since \(A \) has no maximum element, there exists \(\hat{r} \in A \) with \(r < \hat{r} \). Since \(\hat{r}^* \in S \) we have \(\hat{r}^* \leq z \), and this means every rational number less than \(\hat{r} \) is contained in \(C \). Since \(r \) is such a rational number, \(r \in C \). Hence \(A \subseteq C \). This proves \(x \) is the least upper bound for \(S \).

Remark: Note that in the context of this problem, if \(a \in \mathbb{Q} \) and \(x \in \mathbb{R} \), “\(a \leq x \)” has no meaning, since rationals and cuts are different kinds of objects! “\(a^* \leq x \)” means \(\{ q \in \mathbb{Q} : q < a \} \subseteq A \), however.