Department of Mathematical Sciences
Carnegie Mellon University

Operations Research II 21-393

Answers to homework 2.

Q1 Solve the following 2-person zero-sum games:

\[
\begin{bmatrix}
6 & 2 & 4 \\
5 & 2 & 5 \\
4 & 1 & -3 \\
\end{bmatrix}
\begin{bmatrix}
2 & 1 & 1 & 0 & -1 \\
4 & 3 & 2 & 1 & -1 \\
1 & 1 & 0 & -1 & 1 \\
2 & 1 & 1 & -2 & -2 \\
4 & 1 & 0 & -2 & -3 \\
\end{bmatrix}
\]

Solution (2,2) is a saddle point for the first game. Thus the solution is for player A to use 1 and player B to use 2. The value of the game is 2.

For the second game we have the following sequence of row/column removals because of domination:

Remove column strategy 1.

\[
\begin{bmatrix}
1 & 1 & 0 & -1 \\
3 & 2 & 1 & -1 \\
1 & 0 & -1 & 1 \\
1 & 1 & -2 & -2 \\
1 & 0 & -2 & -3 \\
\end{bmatrix}
\]

Remove column strategy 2.

\[
\begin{bmatrix}
1 & 0 & -1 \\
2 & 1 & -1 \\
0 & -1 & 1 \\
1 & -2 & -2 \\
0 & -2 & -3 \\
\end{bmatrix}
\]

Remove column strategy 3.

\[
\begin{bmatrix}
0 & -1 \\
1 & -1 \\
-1 & 1 \\
-2 & -2 \\
-2 & -3 \\
\end{bmatrix}
\]

Remove row strategy 1.

\[
\begin{bmatrix}
1 & -1 \\
-1 & 1 \\
-2 & -2 \\
-2 & -3 \\
\end{bmatrix}
\]
Remove row strategy 4. \[
\begin{bmatrix}
1 & -1 \\
-1 & 1 \\
-2 & -3
\end{bmatrix}
\]

Remove row strategy 5. \[
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\]

The optimal strategies for this game are for player A to play rows 2 and 3 with probability 1/2 each. Similarly, player B plays columns 4 and 5 with probability 1/2 each.

Q2: Suppose the \(n \times n \) matrix \(A \) is such that all row and column sums are equal to the same value \(C \). What is the solution to this game?

Solution We can assume that \(C > 0 \). We know that

\[
P_A^{-1} = \min x_1 + x_2 + \cdots + x_n : A^T \mathbf{x} \geq 1, \; \mathbf{x} \geq 0.
\]

\[
P_B^{-1} = \min y_1 + y_2 + \cdots + y_n : A \mathbf{y} \geq 1, \; \mathbf{y} \geq 0.
\]

Next observe that \(x_i = y_j = C^{-1} \) for all \(i, j \) gives feasible solutions to these dual problems with the same value \(nC^{-1} \). It follows that \(P_A = P_B = C/n \) and that the optimal strategy for each player is to play each strategy with probability \(1/n \).

Q3 The correlation coefficient between assets A and B is .1 and the other data is given below:

<table>
<thead>
<tr>
<th>ASSET</th>
<th>(\bar{r})</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.1</td>
<td>.15</td>
</tr>
<tr>
<td>B</td>
<td>.18</td>
<td>.3</td>
</tr>
</tbody>
</table>

(a) Find the proportions \(\alpha \) of A and \(1 - \alpha \) of B that define a portfolio having minimum standard deviation.

(b) What is the value of this minimum standard deviation.

(c) What is the expected return for this portfolio.

Solution (a) Let \(\sigma(\alpha) \) be the standard deviation of \(\alpha A + (1 - \alpha) B \). Then

\[
\sigma(\alpha)^2 = .0225\alpha^2 + .009\alpha(1 - \alpha) + .09(1 - \alpha)^2.
\]

This is minimized when

\[
.045\alpha + .009 - .018\alpha - .18(1 - \alpha) = 0.
\]
or
\[\alpha = \frac{171}{207}. \]
(b)
\[\sigma(171/207) \approx 0.149. \]
(c) The expected return is
\[0.1 \times \frac{171}{207} + 0.18 \times \frac{36}{207} = \frac{2378}{20700}. \]

Q4 Suppose there are \(n \) assets which are uncorrelated. The mean return \(\bar{r} \) is the same for each asset. The return on asset \(i \) has a variance of \(\sigma_i^2 \).

(a) Describe the efficient set.

(b) Find the minim-variance point.

Solution (a) Since each asset has the same average return \(\bar{r} \), each portfolio will have the same average return \(\bar{r} \) and so the efficient set consists of a single point, \((\sigma, \bar{r})\). It remains to compute \(\sigma \).

(b) Since \(\sum_{i=1}^{n} w_i \bar{r} = \bar{r} \) is implied by \(\sum_{i=1}^{n} w_i = 1 \) we can drop one constraint in our Lagrangean formulation. Our equations then become
\[\sigma_i^2 w_i = \mu \quad i = 1, 2, \ldots, n. \]

\(w_1 + \cdots + w_n = 1 \) then implies that
\[\mu = \left(\sum_{j=1}^{n} \sigma_j^{-2} \right)^{-1} \]
and
\[w_i = \sigma_i^{-2} \left(\sum_{j=1}^{n} \sigma_j^{-2} \right)^{-1} \]
and
\[\sigma^2 = \sum_{i=1}^{n} w_i^2 \sigma_i^2 = \left(\sum_{j=1}^{n} \sigma_j^{-2} \right)^{-1}. \]

Q5 There are 3 assets with data given below:
\[V = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \quad \bar{r} = \begin{bmatrix} 0.4 \\ 0.8 \end{bmatrix} \]
(a) Find the minimum variance portfolio.

(b) Find another efficient portfolio by setting $\lambda = 1, \mu = 0$.

(c) If the risk-free rate is $r_f = .2$, find the efficient portfolio of risky assets.

Solution The equations determining efficient portfolios are

$$
2w_1 + w_2 + \cdot4\lambda + \mu = 0
$$

$$
w_1 + 2w_2 + w_3 + \cdot8\lambda + \mu = 0
$$

$$
w_2 + 2w_3 + \cdot8\lambda + \mu = 0
$$

$$
w_1 + w_2 + w_3 = 1
$$

$$
.4w_1 + .8w_2 + .8w_3 = r
$$

where r is the target return.

(a) r is not specified i.e. there is no requirement. Thus we drop the 5th equation and put $\lambda = 0$.

By symmetry $w_1 = w_3 = w$ and the equations become

$$
2w + w_2 + \mu = 0
$$

$$
2w + 2w_2 + \mu = 0
$$

$$
2w + w_2 = 1
$$

So

$$
w_1 = \frac{1}{2}, w_2 = 0, w_3 = \frac{1}{2}, \lambda = 0, \mu = -1
$$

is the solution.

(b) Now the equations become

$$
2w_1 + w_2 + \cdot4 = 0
$$

$$
w_1 + 2w_2 + w_3 + \cdot8 = 0
$$

$$
w_2 + 2w_3 + \cdot8 = 0
$$

So

$$
w_1 = -1, w_2 = -2, w_3 = -3, \lambda = 1, \mu = 0.
$$

To get the actual solution we scale this to give

$$
w_1 = 1/6, w_2 = 1/3, w_3 = 1/2.
$$

(c) Following the argument in Section 6.9, we solve the following equations (6.10):

$$
\sum_{i=1}^{n} \sigma_{k,i}v_i = \bar{r}_k - r_f \quad k = 1, 2, \ldots, n
$$
\[
\begin{align*}
2v_1 + v_2 &= .2 \\
v_1 + 2v_2 + v_3 &= .6 \\
v_2 + 2v_3 &= .6
\end{align*}
\]

Thus

\[v_1 = .2, \; v_2 = -.2, \; v_3 = -.4.\]

Then we put

\[w_i = \frac{v_i}{\sum_{k=1}^{n} v_k}\]

yielding

\[w_1 = .5, \; w_2 = -.5, \; w_3 = 1.\]

Q6 Solve the following quadratic programming problem:

Minimise

\[(x_1 + x_2)^2 + (x_1 - x_3)^2 + x_3^2.\]

Subject to

\[x_1 + x_2 + x_3 = 1 \text{ and } x_1, x_2, x_3 \geq 0.\]

Solution
\[y = \frac{1}{2} \cos^2 x + \frac{1}{2} \sin^2 x = \frac{1}{2} \quad \text{subject to} \quad \sin x + \cos x = 1 \]

\[\text{numerators (c} + \cos x)^2 + (\sin x - c)^2 + \cos x \]
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
$$\frac{y}{1} = \epsilon \times \epsilon \times 0 = 0$$

Optimal solution

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$\frac{x_1}{1}$</td>
<td>$\frac{x_1}{2}$</td>
<td>$\frac{x_1}{1}$</td>
<td>$\frac{x_1}{2}$</td>
</tr>
<tr>
<td>x_2</td>
<td>$\frac{x_2}{2}$</td>
<td>$\frac{x_2}{3}$</td>
<td>$\frac{x_2}{2}$</td>
<td>$\frac{x_2}{3}$</td>
</tr>
<tr>
<td>x_3</td>
<td>$\frac{x_3}{1}$</td>
<td>$\frac{x_3}{2}$</td>
<td>$\frac{x_3}{1}$</td>
<td>$\frac{x_3}{2}$</td>
</tr>
<tr>
<td>x_4</td>
<td>$\frac{x_4}{1}$</td>
<td>$\frac{x_4}{2}$</td>
<td>$\frac{x_4}{1}$</td>
<td>$\frac{x_4}{2}$</td>
</tr>
<tr>
<td>x_5</td>
<td>$\frac{x_5}{1}$</td>
<td>$\frac{x_5}{2}$</td>
<td>$\frac{x_5}{1}$</td>
<td>$\frac{x_5}{2}$</td>
</tr>
<tr>
<td>x_6</td>
<td>$\frac{x_6}{1}$</td>
<td>$\frac{x_6}{2}$</td>
<td>$\frac{x_6}{1}$</td>
<td>$\frac{x_6}{2}$</td>
</tr>
<tr>
<td>x_7</td>
<td>$\frac{x_7}{1}$</td>
<td>$\frac{x_7}{2}$</td>
<td>$\frac{x_7}{1}$</td>
<td>$\frac{x_7}{2}$</td>
</tr>
</tbody>
</table>