1. Let \(r_n = r(3, 3, \ldots, 3) \) be the minimum integer such that if we \(n \)-color the edges of the complete graph \(K_N \) there is a monochromatic triangle.

(a) Show that \(r_n \leq n(r_{n-1} - 1) + 2 \).

(b) Using \(r_2 = 6 \), show that \(r_n \leq \lceil n!e \rceil + 1 \).

Solution: Let \(N = n(r_{n-1} - 1) + 2 \) and consider an \(n \)-coloring \(\sigma \) of the edges of \(K_N \). Now consider the \(N-1 \) edges incident to vertex \(N \). There must be a color, \(n \) say, that is used at least \(r_{n-1} \) times, Pigeon Hole Principle. Now let \(V \subseteq [N-1] \) denote the set of vertices \(v \) for which the edge \(\{v, N\} \) is colored \(n \). Consider the coloring of the edges of \(V \) induced by \(\sigma \). If one of these \(\{v_1, v_2\} \) has color \(N \) then it makes a triangle \(v_1, v_2, N \) with 3 edges colored \(n \). Otherwise the edges of \(V \) only use \(n-1 \) colors and since \(|V| \geq r_{n-1} \) we see by induction that \(V \) contains a mono-chromatic triangle.

(b) Using \(r_2 = 6 \), show that \(r_n \leq \lceil n!e \rceil + 1 \).

Solution: Divide the inequality (a) by \(n! \) and putting \(s_n = r_n/n! \) we obtain

\[
s_n \leq s_{n-1} - \frac{1}{(n-1)!} + \frac{2}{n!}.
\]

We write this as

\[
s_n - s_{n-1} \leq -\frac{1}{(n-1)!} + \frac{2}{n!}
\]

\[
s_{n-1} - s_{n-2} \leq -\frac{1}{(n-2)!} + \frac{2}{(n-1)!}
\]

\[
s_3 - s_2 \leq -\frac{1}{1!} + \frac{2}{2!}
\]

Summing gives

\[
s_n - s_2 \leq -1 + \frac{1}{n!} + \sum_{k=2}^{n} \frac{1}{k!} \leq -1 + \frac{1}{n!} + e - 2.
\]

Now \(s_2 = 3 \) and multiplying the above by \(n! \) gives \(r_n \leq n!e + 1 \). We round down, as \(r_n \) is an integer.

2. Show that if the edges of \(K_{m+n} \) are colored red and blue then either (i) there is a red path with \(m \) edges or (ii) a vertex of blue degree at least \(n \).

Solution: If there is no vertex of blue degree at least \(n \) then the red graph has minimum degree at least \(m \). Let \(P = x_1, x_2, \ldots, x_k \) be a longest path in the red graph. All of \(x_k \)'s neighbors in the red graph lie on \(P \), else \(P \) can be extended. But \(x_k \) has at least \(m \) neighbours and so \(k \geq m + 1 \).
3. Given a set I of n intervals in \mathbb{R}, assume that there is no nested set of intervals with size k (a set of intervals are nested if for every pair, one is completely contained inside the other). Then prove that there exists a subset of size $\lceil n/k \rceil$ where no pair of intervals are nested.

Solution: The nesting property defines a partial order. By Dilworth's theorem, if the longest chain has size k, the set of intervals can be partitioned into k sets where each set is an anti-chain. One such anti-chain has size at least $\lceil n/k \rceil$.