Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2010: Test 4

Name:______________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Q1: (40pts)

How many ways are there of k-coloring the squares of the above picture if the group acting is e_0, e_2, p, q where e_j is rotation by $2\pi j/4$ and p, q are horizontal and vertical reflections.

(All small squares are meant to be of the same size here).

Solution

\[
\begin{array}{|c|c|c|c|}
\hline
\text{g} & e_0 & e_2 & p & q \\
\text{|Fix(g)|} & k^{17} & k^9 & k^{12} & k^{12} \\
\hline
\end{array}
\]

So the total number of colorings is

\[
\frac{k^{17} + k^9 + k^{12} + k^{12}}{4}
\].
Q2: (40pts)
Consider the following take-away game: There is a pile of \(n \) chips. A move consists of removing 1 or 4 chips. Determine the Sprague-Grundy numbers \(g(n) \) for \(n \geq 0 \) and prove that they are what you claim.

Solution: After looking at the first few numbers 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, \ldots one sees that

\[
g(n) = \begin{cases}
0 & n = 0, 2 \mod 5 \\
1 & n = 1, 3 \mod 5 \\
2 & n = 4 \mod 5
\end{cases}
\]

We verify this by induction. It is true for \(n \leq 10 \) by inspection. For \(n > 10 \) we have that if \(n = 5m + s \) then

\[
g(n) = \text{mex}\{g(n-1), g(n-4)\} = \text{mex}\{g(5(m-1)+s+4), g(5(m-1)+s+1)\}
\]

So, by induction

\[
g(n) = \begin{cases}
\text{mex}\{g(5(m-1)+4), g(5(m-1)+1)\} = \text{mex}\{2, 1\} = 0 & s = 0 \\
\text{mex}\{g(5m), g(5(m-1)+2)\} = \text{mex}\{0, 0\} = 1 & s = 1 \\
\text{mex}\{g(5m+1), g(5(m-1)+3)\} = \text{mex}\{1, 1\} = 0 & s = 2 \\
\text{mex}\{g(5m+2), g(5(m-1)+4)\} = \text{mex}\{0, 2\} = 1 & s = 3 \\
\text{mex}\{g(5m+3), g(5m)\} = \text{mex}\{0, 1\} = 2 & s = 4
\end{cases}
\]

The result follows by induction.
Q3: (20pts)
In the game Split Nim a player removes chips from a non-empty pile and then if desired, has the further option of splitting the reduced pile into two non-empty piles (if the reduced pile has more than one chip). Show that Split Nim has the same N and P positions as ordinary Nim.

Solution: We prove this by induction on the total number t of chips. $t = 0$ is a P position in both games.

Now suppose that $t > 0$ and the position is an N position for Nim. If the player uses regular Nim strategy then the resulting position is a P position for Nim and by induction this is a P position for Split Nim.

Suppose then that $t > 0$ and the position is a P position for Nim. Suppose that the pile sizes are p_1, p_2, \ldots, p_k. Suppose that the player first removes chips to leave p'_1 chips in the first pile. We know that $p'_1 \oplus p_2 \oplus \cdots \oplus p_k \neq 0$ is an N position for Split Nim by induction.

So, suppose that the player now splits the first pile into two piles of size a, b. We will argue that $a \oplus b \oplus p_2 \oplus \cdots \oplus p_k \neq 0$. This is an N position for Nim and it will be an N position for Split Nim by induction. Suppose to the contrary that $a \oplus b \oplus p_2 \oplus \cdots \oplus p_k = 0$. We will argue that $c = a \oplus b \leq a + b$. It follows that the previous position was in fact an N position for Nim, since the player could have removed $p_1 - c$ chips and left a P position.

But if $a = \sum_i a_i 2^i$ and $b = \sum_i b_i 2^i$ then

$$a + b - (a \oplus b) = \sum_i (a_i + b_i - (a_i \oplus b_i))2^i \geq 0.$$