Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2011: Test 3

Name: _______________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Q1: (40pts)
(a) Show that a graph G with minimum degree at least δ contains a path of length δ.
(b) Suppose that the edges of $K_n, n = s + t$ are colored red or blue. Show that either (i) there is a vertex incident to s red edges or (ii) there is a blue path of length t.
Solution:
(a) Let $P = (x_0, x_1, \ldots, x_k)$ be a longest path in G. Since P is a longest path, all neighbors of x_0 are contained in $\{x_1, x_2, \ldots, x_k\}$. The degree of x_0 is at least δ and so $k \geq \delta$.
(b) If there is no vertex with blue degree s or more, then every vertex has red degree at least $s + t - 1 - (s - 1) = t$ and we can just apply part (a).
Q2: (40pts)
Let n, p, q be positive integers and let $N = pqn^2 + 1$. Suppose that x_1, x_2, \ldots, x_N are positive integers. Show that either (i) there is a subsequence of length $n + 1$ in which each successive term increases by a multiple of q or (ii) a subsequence of length $n + 1$ in which each successive term decreases by a multiple of q or (iii) a constant subsequence of length $p + 1$.

Solution: If (iii) does not hold then there are at least $\lceil N/p \rceil = qn^2 + 1$ distinct values in the sequence. For $0 \leq i < q$ let σ_i be the sub-sequence consisting of distinct values equal to $i \mod q$. There must be some i such that σ_i is of length at least $n^2 + 1$. We can then apply the Erdős-Szekeres theorem to this sub-sequence.
Q3: (20pts) Let $\Omega = \Sigma^n$ denote the set of sequences over the alphabet $\Sigma = \{a, b, c\}$. We say that sequences $x = x_1x_2\cdots x_n$ and $y = y_1y_2\cdots y_n$ collide if there exists $1 \leq i \leq n$ such that $x_i = y_i$. $A \subseteq \Omega$ is a colliding set if every pair $x, y \in A$ collide. Determine a value L such that

(i) $|A| \leq L$ for every colliding set A.

(ii) There exists a colliding set of size L.

Solution:

(i) We first define the function $f : \{a, b, c\} \rightarrow \{a, b, c\}$ by $f(a) = b, f(b) = c, f(c) = a$. For $x = x_1x_2\cdots x_n \in \Omega$ we define $f(x) = f(x_1)f(x_2)\cdots f(x_n) \in \Omega$. Note that $x, f(x), f^2(x)$ are distinct and do not collide and also $f^3(x) = x$. Let $A(x) = \{x, f(x), f^2(x)\}$. Note next that if $y \not\in A(x)$ then $A(y) \cap A(x) = \emptyset$. The sets $A(x), x \in \Omega$ partition Ω and each colliding set contains at most one sequence in each $A(x)$ and so a colliding set has size at most $|\Omega|/3 = 3^{n-1}$.

(ii) The set of sequences with $x_1 = a$ is a colliding set of size 3^{n-1}.