1. Prove that if \(u, v \) are the only vertices of odd degree in a graph \(G \), then there is a path from \(u \) to \(v \) in \(G \).

Solution: We have to show that \(u, v \) are in the same component of \(G \). But if they are in different components, \(u \in C_1, v \in C_2 \) then the sub-graph induced by \(C_1 \) has one odd vertex, \(u \). This contradicts the fact that every graph has an even number of vertices.

2. Let \(G = (V, E) \) be a graph with minimum degree at least three. Show that it contains a cycle of even length. (Hint: Consider a longest path).

Solution: Let \(P = (x = x_0, x_1, \ldots, x_k) \) be a longest path in \(G \). Let \(x_1, x_i, x_j, 1 < i < j \) be three neighbors of \(x \). If \(i \) is odd then the cycle \((x_0, x_1, \ldots, x_i, x_0)\) has \(i + 1 \) edges and is even and so we can assume that \(i, j \) are both even. But then the cycle \((x_0, x_i, x_{i+1}, \ldots, x_j, x_0)\) has \(j - i + 2 \) edges and is even.

3. Prove that if \(T_1, T_2, \ldots, T_k \) are pair-wise intersecting sub-trees of a tree \(T \), then \(T \) has a vertex common to \(T_1, T_2, \ldots, T_k \). (Hint: use induction on \(k \)).

Solution: Assume inductively that \(H = \bigcap_{i=1}^{k} T_i \) is non-empty. \(H \) must be a sub-tree of \(T \), for if \(u, v \in H \) then each \(T_i \) contains the path from \(u \) to \(v \) in \(T \). Now let \(\Gamma = T \setminus H \) be obtained by deleting the vertices of \(H \) from \(T \). Let \(C_1, C_2, \ldots, C_m \) be the components of \(\Gamma \). Each \(C_i \) contains a unique vertex \(v_i \) that is adjacent to \(\Gamma \). If \(C_1 \) contained two such vertices \(u, u' \) then either the path from \(u \) to \(u' \) goes through \(\Gamma \) and then \(u, u' \) are in different components of \(\Gamma \) or it avoids \(\Gamma \) and then \(T \) contains a cycle, contradiction.

Suppose now that \(T_{k+1} \) does not share a vertex with \(\Gamma \). Then \(T_{k+1} \) must be contained in a single component \(C_1 \), say. For if \(T_{k+1} \) meets \(C_1 \) and \(C_2 \) then \(T_{k+1} \) must contain a path from \(C_1 \) to \(C_2 \) and this must go through \(\Gamma \). We claim now that \(v_1 \) belongs to \(T_1, T_2, \ldots, T_{k+1} \). Suppose that \(w \in C_1 \) is in \(T_1 \) and \(T_{k+1} \). Then \(T_1 \) contains a path from \(w \) to \(\Gamma \) and this goes through \(v_1 \). But then \(v_1 \in \Gamma \), contradiction.