Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2009: Test 1

Name: ___________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Q1: (40pts)

k a’s, k b’s and $n - 2k$ c’s are placed on the vertices of an n vertex polygon so that each a is followed clockwise by b which is followed by a non-empty sequence of c’s until the next a. Show that the number of ways of doing this is

$$\frac{n}{k} \binom{n-2k-1}{k-1}.$$

Solution: There are n ways of choosing a place to put an a. A b follows immediately. Let there be x_i c’s between the ith b and the $i + 1$’th a. Then we have $x_1 + \cdots + x_k = n - 2k$ and $x_1, \ldots, x_k \geq 1$. The number of choices for the x’s is thus $\binom{n-2k-1}{k-1}$ and we multiply by n/k to account for the choice of the “first” a and for over-counting.
Q2: (40pts)
n children take off their jackets and shoes and put them into a pile on the floor and go and play. How many ways are there of giving to each of the children a pair of matching shoes and a jacket, so that no child gets his/her own jacket and shoes. Your answer should be a summation.

Re-call that if $A_1, A_2, \ldots, A_N \subseteq A$ then

$$
\left| \bigcap_{i=1}^{N} \bar{A}_i \right| = \sum_{S \subseteq [N]} (-1)^{|S|} |A_S|.
$$

Solution: Suppse that child i is given the jacket of child $\pi_1(i)$ and the shoes of child $\pi_2(i)$. Let

$$
A_i = \{ (\pi_1, \pi_2) : \pi_1(i) = \pi_2(i) = i \}
$$

for $i = 1, 2, \ldots, n$.

We need to compute $\left| \bigcap_{i=1}^{n} \bar{A}_i \right|$. Now if $|S| = k$ then $|A_S| = ((n-k)!)^2$ since we have fixed $\pi_1(i), \pi_2(i)$ for $i \in S$ and the remaining values can be permuted arbitrarily. Thus

$$
\left| \bigcap_{i=1}^{n} \bar{A}_i \right| = \sum_{S \subseteq [N]} (-1)^{|S|} ((n-|S|)!)^2 = \sum_{k=0}^{n} (-1)^k \binom{n}{k} ((n-k)!)^2.
$$
Q3: (20pts) How many ways are there of placing k a’s and n − k b’s on the vertices of an n vertex polygon so that each a is separated by an odd number of b’s. There are different answers for n odd or n even.

Solution: There are n choices as to where to put an a on a vertex. Suppose that after this there are x_i b’s between each a where $x_1 + \cdots + x_k = n - k$ and each x_i is odd. Let d_k be the number of choices for the x_i’s, in which case the solution is nd_k/k.

Each x_i can be written as $2y_i + 1$ where $y_i \geq 0$ for $i = 1, 2, \ldots, k$ and $2(y_1 + \cdots + y_k) + k = n - k$. If there is a solution then $n = 2(y_1 + \cdots + y_k + k)$ is even i.e. there are no solutions for odd n. Otherwise, if n is even then $y_1 + \cdots + y_k = n/2 - k$ and the number of choices for the y_i’s and hence the x_i’s is $\binom{n/2-k-1}{k-1}$. So the final answer is

$$\frac{n}{k} \binom{n/2 - 1}{k - 1}.$$ \hspace{1cm} (1)

Alternate solution found by some students:
The polygon’s vertices are partitioned into a sequence of segments where each segment starts with an a and continues with an odd number of b’s. Thus each segment is even and so n must be even. Furthermore, if $n = 2m$ and we partition the vertices into $A = \{1, 3, \ldots, 2m - 1\}$ and $B = \{2, 4, \ldots, 2m\}$ then all a’s must be placed in A or all a’s must be placed in b and any such placement is valid. Thus the number of choices is

$$2 \binom{n/2}{k}.$$

You can check that this is the same as (1).