1. Show that the number of sequences out of \(\{a, b, c\}^n \) which do not contain a consecutive sub-sequence of the form \(xx \) where \(x = a, b \) satisfies the recurrence \(b_0 = 1, b_1 = 3 \) and

\[
b_n = b_{n-1} + 2(b_{n-2} + \cdots + b_0) + 2b_0.
\]

(Hint: Consider the number of sequences where the first \(c \) from the left is at position \(k \).)

Deduce from this that

\[
b_n = 2b_{n-1} + b_{n-2}.
\]

Solution: Let \(B_n \) denote the set of allowed sequences of length \(n \). Suppose that \(c \) appears first in position \(k \). Then the sequence starts \(abab\cdots \) or \(baba\cdots \), then \(c \) and then any sequence from \(B_{n-k} \). Thus the number of such is \(2b_{n-k} \) for \(1 \leq k \leq n \). The extra \(2b_0 = 2 \) counts sequences without \(c \).

To get (2), subtract equation (1) with \(n \) replaced by \(n - 1 \) from equation (1).

2. Show that the number of sequences out of \(\{a, b, c\}^n \) which do not contain a consecutive sub-sequence of the form \(abc \) satisfies the recurrence \(b_0 = 1, b_1 = 3, b_2 = 9 \) and

\[
b_n = 2b_{n-1} + c_n
\]

\[
c_n = c_{n-1} + b_{n-2} + c_{n-2} + b_{n-3}
\]

where \(c_n \) is the number of such sequences that start with \(a \).

Now find a recurrence only involving \(b_n \), by using (3) to eliminate \(c_n \) from (4).

Solution: There are \(2b_{n-1} \) sequences of the required form that start with \(b \) or \(c \). There are \(c_n \) sequences that start with \(a \). This explains (3).

There are \(c_{n-1} \) sequences that start with \(aa \), \(b_{n-2} \) sequences that start with \(ac \), \(c_{n-2} \) sequences that start with \(aba \) and \(b_{n-3} \) sequences that start with \(abb \). This covers the possibilities for sequences starting with \(a \).

We have

\[
b_n - 2b_{n-1} = b_{n-1} - 2b_{n-2} + b_{n-2} + b_{n-3} - 2b_{n-3} + b_{n-3}
\]

and so

\[
b_n = 3b_{n-1} - b_{n-3}.
\]

3. Let \(a_0, a_1, a_2, \ldots \) be the sequence defined by the recurrence relation

\[
a_n + 3a_{n-1} + 2a_{n-2} = n \quad \text{for } n \geq 2
\]

with initial conditions \(a_0 = 1 \) and \(a_1 = 3 \). Determine the generating function for this sequence, and use the generating function to determine \(a_n \) for all \(n \).
Solution:

\[
\sum_{n=2}^{\infty} (a_n + 3a_{n-1} + 2a_{n-2})x^n = \sum_{n=2}^{\infty} nx^n
\]

\[
a(x) - 1 - 3x + 3x(a(x) - 1) + 2x^2a(x) = \frac{x}{(1-x)^2} - x
\]

\[
a(x)(1 + 3x + 2x^2) = \frac{x}{(1-x)^2} + 1 + 5x
\]

\[
a(x) = \frac{x}{(1+x)(1+2x)(1-x)^2} + \frac{1+5x}{(1+x)(1+2x)}
\]

\[
= \frac{17/4}{1+x} + \frac{-31/9}{1+2x} + \frac{1/36}{1-x} + \frac{1/6}{(1-x)^2}
\]

\[
= \sum_{n=0}^{\infty} \left(\frac{17}{4}(-1)^n - \frac{31}{9}(-2)^n + \frac{1}{36} + \frac{1}{6}(n+1) \right) x^n.
\]

So

\[
a_n = \frac{17}{4}(-1)^n - \frac{31}{9}(-2)^n + \frac{1}{36} + \frac{1}{6}(n+1) \quad \text{for } n \geq 0.
\]