$\mathcal{V}_{x, G} = \frac{1}{|G|} \sum_{g \in G} |F_{ux}(g)|$

$n = 2m$

2 colors
\[V_{x,G} = \frac{1}{|G|} \sum_{g \in G} |F_{uv}(g)| \]

\[n = 2m \]

\[b \]

\[c \]

\[d \]

\[e \]

\[f \]

\[g \]

\[h \]

\[i \]

\[j \]

\[k \]

\[l \]

\[m \]

\[n \]

\[o \]

\[p \]

\[q \]

\[r \]

\[s \]
\[P \leq \mathcal{A} \]

\[n \leq 2n \]

\[g \leq e \]

\[\text{colors} \]

\[\frac{1}{\text{Fix}(\mathcal{A})} \]

\[2^{n^2} \]

\[2^{n^2/4} \]

\[b \]

\[c \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[n/(n+1)/2 \]

\[2 \]
g is partitioning D into cycles. All things in same cycle have same color.
Cycles of a permutation

\[\Pi : D \rightarrow D \]

\[\Gamma \] in a digraph

\[\Pi \]

Example

\[\begin{array}{ccccccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 \pi(i) & 6 & 3 & 1 & 0 & 5 & 1 & 9 & 7 & 2 & 4 & 8 \\
\end{array} \]

Union of disjoint cycles
Polya's Theorem

Domain $X = \{ x : D \rightarrow C \}$

Colors

Group $G = \{ \text{permutations of } D \}$

"Induce" permutation on X

$g \in X$

$g \times n = ?$

$\forall c \in X, g \times n \in X$

$g \times x (d) = x(g^{-1}(d))$

g

color of cl under $g \times x$
$D + \text{coloring} = \infty$

\[g : D \rightarrow D \]

New coloring \[g \ast \pi \]

\[g \ast \pi (d) = \pi (g^{'} (d)) \]
Goal

We know how to count “distinct” colorings of X

Suppose we have 2 colors, R & B

$|O| = 100$

How many “distinct” colorings have 60 R & 40 B.
Pattern Inventory

\[x \in X \]

Colors are \(R, B, G \).

\[x(d) \]

\[\omega_{x(d)} \equiv \text{"weight" of a color}. \]

If \(C = R, B, G, \ldots \),

\[w_R = R, \quad w_B = B, \quad \omega (x) = \prod_d \omega_{x(d)} \]

\[R^3 B \]
\[P I = \sum_{c \in S^*} \omega(c) \]

S* contains one coloring from each orbit.

Coefficient of \(R^3 B^3 \)

\(\text{ord}_4 = \# \text{ of distinct colorings with } 3R \& 3B \)
Ex: 2

\[P \Sigma = R^4 + R^3 B + 2R^2 B^2 + RB^3 + B^4 \]