Claim: If \(n \geq N(k, k, 3) \), then \(\exists \|Y\| \)

\((i) \) \(\|Y\| = k \)

\((ii) \) \(\text{Y are nearby} \)

\((iii) \) \(\text{Convex} \)

\(\text{Not} \)
If every 4-subset of $Y \subseteq X$ forms convex quadrilateral, then Y forms convex polygon.

Vertices of X convex hull.

Y is convex iff

$Y = $ convex hull.

Y is not convex.

Find

Triangulate Convex hull.
If $|X| = n \geq N(k, k; 3)$, then for all tuples from X, $|Y| = k$.

Take 3 points X_i, X_j, X_k with $i < j < k$. Each point is assigned a color:

- **Red** for X_i
- **Blue** for X_j
- **Blue** for X_k
If a k-set will all triples the same color:

We have to show

All 4 triples have same color.
Assume \(a < b < c \)

(i) \(a < b < c \)

(ii) \(a < b < d \)
\(a < d < c \)
\(b < c < d \)

\(a < d < a < b \)
Partially Ordered Sets:

Dilworth's Theorem

Poset: \((P, \leq)\)

- Set
- Binary relation

(i) Reflexive: \(a \leq a\).

(ii) Transitive: \(a \leq b \land b \leq c \implies a \leq c\).

(iii) Anti-symmetric: \(a \leq b \land b \leq a \implies a = b\).

(i) \(P = \{1, 2, \ldots, \delta\}\)

(ii) \(P = \{A_1, A_2, \ldots, A_m\}\)

\(\leq\) \(\subseteq\) \(a \leq b\) iff \(a \subseteq b\)

\(\leq\) \(\subseteq\)
\(a, b \) are comparable if \(a \leq b \) or \(b \leq a \)

Otherwise they are incompparable

\[a < b \iff a \leq b \text{ and } a \neq b \]

Chain: \(a_1 < a_2 < \ldots < a_s \)

Anti-chain: \(a_1, a_2, \ldots, a_s \)

all pairwise incomparable.

\[
\left[\ldots \right. \text{Sperner family} \left. \right]
\]
P is finite:

1. $m_1 = \text{max. size of a chain}$

2. $m_2 = \text{max size of anti-chain}$

3. C_1, C_2, \ldots, C_m are chains, $C_1 u \ldots C_m = P$

 minimize

4. A_1, A_2, \ldots, A_n are anti-chains, $A_1 v \ldots A_m = P$