1. Prove that if we 2-color the edges of K_n then either (i) there is a vertex of Red degree at least $\frac{n}{2} - 1$ or (ii) there is a Blue triangle. Show also that it is possible to have a 2-coloring in which the maximum Red degree is $\frac{n}{2} - 1$ and in which there is no Blue triangle.

Solution If there is no vertex of Red degree $\geq \frac{n}{2} - 1$ then every vertex has minimum Blue degree $\geq \frac{n}{2} + 1$. Thus the number of Blue edges is greater than $\frac{n^2}{4}$ and so by Turan’s Theorem (Graph Theory Notes p60) there is a Blue triangle.

Alternative proof Let (u, v) be a Blue edge. Both u, v have at least $\frac{n}{2}$ Blue neighbors outside u, v. This means they have a common Blue neighbor.

If $n = 2m$ we can split the vertex set $[n]$ into two sets A, B of size m. Then if we color edges inside A or inside B Red and edges between A, B Blue then every vertex has Red degree $\frac{n}{2} - 1$ and there is no Blue triangle.

2. Prove that if we 2-color the edges of K_6 then there are at least two monochromatic triangles.

Solution Assume w.l.o.g. that triangle $(1, 2, 3)$ is Red and that $(4, 5, 6)$ is not Red and in particular that edge $(4, 5)$ is Blue. If $x = 4, 5$ or 6 then there can be at most one Red edge joining x to 1, 2, 3, else we get a Red triangle. So we can assume that there are two Blue edges joining each of 4, 5 to 1, 2, 3. So there must be $x \in \{1, 2, 3\}$ such that both $(x, 4)$ and $(x, 5)$ are Blue. But then triangle $(x, 4, 5)$ is Blue.

Alternative proof Given the coloring, let us count the number N of paths of length two which consist of a Red edge followed by a Blue edge. Let r_i denote the number of Red edges incident with i. Then we have

$$N = \sum_{i=1}^{6} r_i(6 - r_i) \leq \sum_{i=1}^{6} 6 = 36.$$

Each of the 20 triangles of K_6 contains 0 or 2 of these paths. So at most 18 contain 2 and there are at least 2 mono-colored triangles.
3. Prove that if \(n \geq R(2k, 2k) \) and if we 2-color the edges of \(K_{n,n} \) then there is a mono-chromatic copy of \(K_{k,k} \).

Solution Given a coloring \(\sigma \) of \(K_{n,n} \) we construct a coloring \(\tau \) of the edges of \(K_n \) as follows. If \(i < j \) then we give the edge \((i, j)\) of \(K_n \) the same color that is given to edge \((i, j)\) under \(\sigma \).

Since \(n \geq R(2k, 2k) \) we see that \(K_n \) contains a mono-colored copy of \(K_{2k} \). If the set of vertices of this copy is \(S \), divide \(S \) into two parts \(S_1, S_2 \) of size \(k \) where \(\max S_1 < \min S_2 \). It follows that the bipartite sub-graph of \(K_{n,n} \) defined by \(S_1, S_2 \) is mono-colored under \(\sigma \).