(1) Let \(n > 0 \). Prove that for any \(n \times n \) matrix \(A \), the following statements are equivalent:
(a) \(AB = BA \) for all \(n \times n \) matrices \(B \).
(b) \(AB = BA \) for all invertible \(n \times n \) matrices \(B \).

Claim: \(AB = BA \) for all \(B \) if and only if \(A = r1_{n \times n} \) for some real \(r \).
Proof: Clearly if \(A = r1 \) then \(AB = BA = rB \). For converse, let \(AB = BA \) for all \(B \). Let \(D_{ij} \) be the \(n \times n \) matrix with a 1 in the \(ij \) place and zeroes elsewhere. Then easily \(AD_{ij} \) is the matrix whose \(j \) column is the \(i \) column of \(A \), with zeroes elsewhere. Similarly \(D_{ij}A \) is the matrix whose \(i \) row is the \(j \) row of \(A \), with zeroes elsewhere. Since \(AD_{ij} = D_{ij}A \), we see that the row \(i \) and column \(j \) are zero except at the diagonal entry and that \(a_{ii} = a_{jj} \). This proves the claim.

Claim: if \(AB = BA \) for all invertible \(B \) then \(AB = BA \) for all \(B \).
Proof: Note that for all \(i, j \) the matrix \(1_{n \times n} + D_{ij} \) is invertible. So \(A + AD_{ij} = D_{ij} + A \), hence \(AD_{ij} = D_{ij}A \). Now we are done by the first part.

(2) Let \(n > 0 \) and let \(A \) be an \(n \times n \) matrix. For all \(t \geq 0 \), let \(N_t \) be the nullspace of \(A^t \), where by convention \(A^0 = 1_{n \times n} \).

Prove that:
(a) \(N_t \subseteq N_{t+1} \) for all \(t \).
 If \(v \in N_t \) then \(A^t v = 0 \), so \(A^{t+1} v = A(A^t v) = A0 = 0 \) and \(v \in N_{t+1} \).
(b) The dimension of \(N_t \) (the nullity of \(A^t \)) is eventually constant, that is there is a number \(d \) such that \(\text{dim}(N_t) = d \) for all sufficiently large \(t \). \(\text{dim}(N_t) \) is an integer, is increasing and bounded above by \(n \), so is eventually constant.
(c) If \(T \) is the least \(t \) such that \(\text{dim}(N_t) = d \), then \(T \leq d \).
 \(N_t \neq N_{t+1} \) if and only if \(\text{dim}(N_t) < \text{dim}(N_{t+1}) \). If \(N_t = N_{t+1} \) then we note that
 \[v \in N_{t+2} \implies Av \in N_{t+1} \implies Av \in N_t \implies v \in N_{t+1} \, \]
 so that \(N_{t+1} = N_{t+2} \).
 It follows that as function of \(t \) the number \(\text{dim}(N_t) \) is strictly increasing for an initial segment of \(N \), and then becomes constant. Since the eventual value is \(d \), clearly \(T \leq d \).

Proof that for all integers \(n > 0 \), \(d \) and \(T \) such that \(0 < T \leq d \leq n \) there is a matrix \(A \) such that the nullity of \(A^t \) is \(d \) for all \(t \geq T \), and \(T \) is the least \(t \) such that the nullity of \(A^t \) is \(d \).

Rather than give the matrix \(A \) explicitly we describe where it takes each basis element in the standard basis. Note that the nullity of a \(n \times n \) matrix
B is $n - \text{rank}(B)$, so what we need is a matrix A such that $\text{rank}(A^t)$ stabilises at $n - d$ for $t \geq T$.

Let A be the matrix which fixes e_j for $1 \leq j \leq n - d$, moves e_j to e_{j+1} for $n - d < j < n - d + T$, and sends e_j to 0 for $n - d + T \leq j \leq n$.

(3) Let $0 < m < n$. Let A be $n \times m$ and let B be $m \times n$. Prove that AB is not invertible. Is it true in general that BA is not invertible?

AB is an $n \times n$ matrix. B has rank at most m. Since $(AB)v = A(Bv)$, the column space of AB is the set of Aw where w is in the column space of B. So if we fix a basis for the column space of B and multiply each element from the left by A we get a set which spans the column space of AB, hence $\text{rank}(AB) \leq \text{rank}(B) \leq m < n$ and AB is not invertible.

If $A = (12)$ and $B = A^T$ then $AB = AA^T = (5)$ is invertible.

(4) For the purposes of the following question we will identify the real number r with the 1×1 matrix whose only entry is r. In particular when we write “$M \geq 0$” when M is 1×1 we mean that the entry of M is non-negative.

Let $m > 1$ and let X be a $1 \times m$ matrix, that is a row vector of length m. Prove that:

(a) $XX^T \geq 0$.

XX^T is the sum of the squares of the entries in X.

(b) XX^T has rank one if $X \neq 0$.

If $X \neq 0$ then $XX^T \neq 0$, so has nonzero rank. But the column space of XX^T is contained in the column space of X, a space of dimension 1, so XX^T has rank exactly one.

(c) X^TX is symmetric.

$(X^TX) = X^T(X^T)^T = X^TX$.

(d) $A(X^TX)A^T \geq 0$ for all row vectors A of length m.

$A(X^TX)A^T = (AX^T)(XA^T)$. Since AX^T is 1×1 it is equal to its transpose so $AX^T = XA^T = (r)$ say, and now $A(X^TX)A^T \geq 0 = (r^2) \geq 0$.