FIELD THEORY HOMEWORK 1 SOLUTIONS

JC

(1) Let G be a group, and recall that if $X \subseteq G$ then $\langle X \rangle$ is the smallest subgroup of G containing X. Recall also that $g^h = hgh^{-1}$.

(a) Prove that if $x^h \in X$ for all $x \in X$ and $h \in G$, then $\langle X \rangle \lhd G$.

The elements of $\langle X \rangle$ are finite products of elements of X and their inverses. Since $(xy)^h = x^hy^h$ and $(x^{-1})^h = (x^h)^{-1}$, it is clear that $(X)^h \subseteq \langle X \rangle$ for all h, hence it is normal.

(b) Let G be the group whose elements are permutations of \mathbb{Z}, with the group operation being composition. Find a subset $X \subseteq G$ such that X is finite, all the elements of X have finite order, and $\langle X \rangle$ is infinite.

Let σ be the permutation which exchanges $2n$ and $2n + 1$ for all n, while τ exchanges $2n$ and $2n - 1$ for all n. They both have order two, but $\tau\sigma$ moves $2n$ to $2n + 2$ for all n so has infinite order.

(2) Prove that if R is a subring of S, and P is a prime ideal of S then $R \cap P$ is a prime ideal of R. Does M being maximal in S imply that $R \cap M$ is maximal in R?

Proof 1: $1 \notin P$, so that $1 \notin P \cap R$. Also if $r, s \in R$ and $rs \in P \cap R$ then by primeness either $r \in P$ or $s \in P$.

Proof 2: The composition of the inclusion map from R to S and the quotient map from S to S/P has kernel $R \cap P$. Its image is a subring of S/P, hence an ID, but also its image is (by the 1st IM theorem) isomorphic to $R/R \cap P$, so $R \cap P$ is prime.

It is false in general that M maximal implies $R \cap M$ maximal. For example \mathbb{Z} is a subring of \mathbb{Q}, (0) is maximal in the field \mathbb{Q} but not in the non-field \mathbb{Z}.

(3) Let p be a prime number and let R be the subset of \mathbb{Q} consisting of rational numbers of the form a/b where p does not divide b. Prove that R is a subring of \mathbb{Q}. What are the units of R? Prove that R has exactly one maximal ideal.

R is easily seen to be a subring, since p is prime and the sum and product of $a_1/b_1, a_2/b_2$ can both be written with denominator b_1b_2.

The units are exactly those rational numbers of form a/b where neither a, b are divisible by p. Since a maximal ideal can not contain any units, any maximal ideal is a subset of the non-units. In this ring the non-units are the multiples of p, so in fact (p) is the only maximal ideal.

(4) Let R be a ring. Prove that the set of $r \in R$ such that $r^n = 0$ for some $n > 0$ is an ideal of R.

0 is clearly such an element. If $r^n = 0$ then $(ar)^n = a^n r^n = 0$. Finally if $r^m = s^n = 0$ then $(r + s)^{m+n}$ can be expanded as a sum of terms r^is^j where $i + j = m + n$, so that either $i \geq m$ or $j \geq n$ and hence $(r + s)^{m+n} = 0$.

1
Cultural note: this ideal is called the \textit{nilradical} of R and its elements are called \textit{nilpotent}.