Let \(R \) be a ring.

Definition 1. The nilradical of \(R \) is \(\sqrt{0} \).

Claim 1. \(\sqrt{0} = \bigcap \{ P : P \text{ prime} \} \)

Proof. We already saw that \(\sqrt{0} \subseteq \bigcap \{ P : P \text{ prime} \} \). Suppose \(a \in R \) is not nilpotent, and let \(S = \{ 1, a, a^2, \ldots \} \). Note that \(0 \notin S \) and \(S \) is multiplicatively closed, so any maximal element in \(\{ I : I \cap S = \emptyset, I \text{ ideal} \} \) is a prime ideal not containing \(a \). \(\square \)

If \(a \) is a unit, then \((a) = R \) so \(a \) is not in any maximal ideal. If \(a \) is a nonunit, then \((a) \neq R \), so \((a) \) can be extended to a maximal ideal of \(R \).

From this, we can conclude that \(\bigcup \{ M : M \text{ maximal ideal} \} \) is the set of nonunits.

Definition 2. We say \(R \) is local iff \(R \) has exactly one maximal ideal.

Claim 2. \(R \) is local iff the set of nonunits in \(R \) forms an ideal.

Definition 3. The Jacobson radical of \(R \) (denoted \(J \)) is the intersection of all maximal ideals.

Claim 3. Let \(M \) be a maximal ideal, and let \(r \in R \). Then, \(r \notin M \) iff there is \(s \in R \) such that \(rs - 1 \in M \).

Proof. Note that \(R/M \) is a field as \(M \) is maximal, so \(r \notin M \) iff \(r + M \neq 0 \) in \(R/M \) iff \(r + M \) unit. So this is true iff there is \(s \in R \) such that \(1 + M = (r + M)(s + M) = rs + M \), or \(rs - 1 \in M \).

Now, \(r \notin J \) iff there is \(M \) maximal such that \(r \notin M \). From the previous lemma, \(r \notin M \) iff there is \(s \in R \) such that \(rs - 1 \in M \). Taking the contrapositive, we see that \(r \in J \) iff for all \(M \) maximal and all \(s \in R \), \(rs - 1 \notin M \). This is equivalent to saying that for all \(s \in R \), \(rs - 1 \) is a unit. For cosmetic reasons we we rewrite the conclusion as \(r \in J \) iff \(1 + rs \) is a unit for all \(s \in R \).

Definition 4. We say that \(M \) is an \(R \)-module iff

1. \((M, +)\) is an abelian group
2. There is a map \(R \times M \to M \) that maps \((r, m) \mapsto rm\) such that
 - \(r(m_1 + m_2) = rm_1 + rm_2 \)
 - \((rs)m = r(sm) \)
 - \((r_1 + r_2)m = r_1m + r_2m \)
 - \(1m = m, 0m = 0 \)

Example: Let \(\phi : R \to S \) be a ring HM. Define scalar multiplication \(R \times S \to S \) by \((r, s) \mapsto \phi(r)s\). NOTE: As in this course we are assuming \(\phi(1_R) = 1_S \), this makes \(S \) into an \(R \)-module.

Definition 5. An \(R \)-algebra is a ring \(S \) together with a ring HM \(R \to S \).
Note: If R is a ring, then R is an R-module.

Definition 6. Let M be an R-module. Then, $N \subseteq M$ is a submodule of M (we write $N \leq M$) iff

1. $(N, +) \leq (M, +)$
2. $\forall r \in R, \forall n \in N, rn \in N$.

Note: The R-submodules of R are the ideals.

If $N \leq M$, then M/N has a module structure by $r(m + N) = rm + N$. This is well-defined since $m_1 + N = m_2 + N$ iff $m_1 - m_2 \in N$, so $r(m_1 - m_2) \in N$.

Definition 7. If M, N are R-modules, then $\phi : M \rightarrow N$ is a module homomorphism (HM) iff

1. $\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$
2. $\phi(rm) = r\phi(m)$.

First IM theorem: $\text{im}(\phi) \cong M/\ker(\phi)$.

Claim 4. Let M be an R-module, $X \subseteq M$. The least submodule of M containing X is

$$ (X)_{R} = \{ \sum_{\text{finite}} r_i x_i : r_i \in R, x_i \in X \} $$

Definition 8. We say M is finitely generated (fg) iff there is $X \subseteq M$ finite such that $(X)_{R} = M$.

Fact: There is an integral domain R and a fg R-module M such that not all submodules of M are fg.

Example: Let $R = \mathbb{Z}[x_1, x_2, \ldots] = \bigcup_{i \in \mathbb{N}} \mathbb{Z}[x_1, \ldots, x_i]$. Let $M = R$, and let $N = (x_1, x_2, \ldots)_{R}$. Note that $M = (1)_{R}$, so M is f.g. However, N is not f.g. Suppose that $N = (f_1, \ldots, f_k)_{R}$. Choose m so large that all variables appearing in the f_is are x_j for some $j < m$. As $x_m \in N$, we have $x_m = \sum g_i f_i$ for some $g_i \in R$. Set $x_j = 0$ for $j < m$ and $x_m = 1$ to get a contradiction, as all polynomials in N have no constant term.