Chapter 5

Minkowskian Spacetimes

In this chapter, we discuss the last of the major structural ingredients used in
our presentation of a theory of special relativity: the inner product. We offer
general definitions and results in §5.1, while results germane to a theory of
special relativity are relegated to §5.2. We are then in a position to define
a Minkowskian spacetime in §5.3, where we bring together many of the
concepts presented thus far. In §5.4, we discuss spacetime decompositions,
with some applications presented in §5.5. We follow with a discussion of
parameterizations of worldpaths in the context of a Minkowskian spacetime
in §5.6, and consider in §5.7 parameterizations of worldpaths in light of the
discussion in §5.4. Finally, in §5.8, we apply these principles to an analysis
of interstellar travel.

5.1 Inner-Product Spaces

Although the structure of a timed flat relativistic eventworld is very rich,
there is one concept that we cannot easily describe within this structure;
namely, “orthogonality”. Before we see how this concept is used in the
theory of special relativity, we introduce some necessary background.

5100 Definition: An inner-product space is a linear space V (with
scalar multiplication sm) with an additional ingredient

ip: VxV->R
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called the inner product on V, which satisfies the following rules, where
ip(u, v) is written u-v for convenience, and scalar multiplication is indicated
by juxtaposition:

(I1) u-v = v-u for allu,v €V,

(I2) w:(u+v) = w-u+w-v foralluv,weV,
(I3) (fu)-v = €&(u-v) for all§ € Ryu,v €V,
(It) (u-v=0forallveV) = u=20 for allu € V.

If (14) is replaced by (I}),
(I})) u-u>0 forallueV*,

we say that the inner-product space V is genuine.

Note that (I}) implies (I4). We are most familiar with genuine inner-product
spaces. But for our discussion of special relativity, certain kinds of non-
genuine inner-product spaces are of central importance. More will be said
about this in §5.2.

Let V be an inner-product space.

5101 Notation: Given any subset U of V, we use the notation

Ut :={vevV|u-v=0 foralucl}.

If Uy and Uy are given subsets of V such that Uy C Us, we clearly have
Uz~ C Ui-. The proof of the following Proposition is left as an Exercise.

5102 Proposition: Let { C V be given. Then U' is a subspace of V.
Moreover, if U is a subspace of V, then (U+)* = U and

dim U + dim U+ = dim V.

——Euclidean Spaces

We now give a formal definition of a Euclidean space, as alluded to in §4.1.
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5103 Definition: A Euclidean space is a flat space £ with additional
structure given by specifying an inner product on the translation space of £.
If the inner product is genuine, we say that the Euclidean space is genuine.

Given a genuine Euclidean space £ (with translation space V), we may
induce a natural distance functionon £, d : £ x £ — R, given by

d(z,y) ==y —=)- (y— )

for all z,y € £. Then d satisfies

(E1) Forallz,y€ &, d(z,y) =0 = z=y.

(Ep) Forallz,y €&, d(z,y) =d(y,z), and

(Es3) For all z,y,z € €, d(x,2) < d(z,y) +d(y, 2)-
—Signatures

As remarked earlier, we are familiar with the concept of a genuine inner-
product space; that is, an inner-product space where (I}) is valid. In this sec-
tion, we consider non-genuine inner-product spaces; that is, inner-product
spaces where (I}) is not valid. The analysis of such spaces is more sub-
tle than that of genuine inner-product spaces. However, the structure of
non-genuine inner-product spaces can be described via certain properties of
subspaces; hence, it is useful to develop some terminology to facilitate such
a description.

Let V be an inner-product space.

5104 Definition: A subspace U of V is regular if i NU+ = {0}. We say
that U is positive-regular [negative-regular| ifu-u >0 [u-u < 0] for
allu e U* =U \ {0}. We say that U is singular if U is not regular, and
totally singular ifu-u =20 for allu € Y.

We note that positive-regular and negative-regular subspaces are indeed reg-
ular, and totally singular subspaces are likewise singular. However, there can
be regular subspaces that are neither positive-regular nor negative-regular.

5105 Definition: The greatest among the dimensions of all positive-regular
[negative-regular] subspaces of V is denoted by sig™V [sig”V)], and the pair
(sig™V,sig" V) € N x N is called the signature of V.



116 CHAPTER 5. MINKOWSKIAN SPACETIMES

One may recall that if V is a genuine inner-product space, then for each
subspace U of V, U and U are supplementary. However, this need not be
the case if V is non-genuine. In fact, in §5.2, we will discuss a subspace U
of a two-dimensional non-genuine inner-product space such that U = Y}
That U is regular, however, is necessary and sufficient to guarantee that U
and U+ be supplementary.

5106 Proposition: A subspace U of V is regular if and only if U and U+
are supplementary subspaces of V.

Proof: Assume that U is a regular subspace of V. We see from Prop.
5102 that dim U + dim Y+ = dim V. Since U is regular, we have
UNUL = {0} (see Def. 5104). We apply Prop. D09 of Appendix D
to conclude that U + U+ = V. Hence, U and U’ are supplementary
subspaces of V.

The proof of the reverse implication is analogous. ¢

The following Theorem has many consequences which are important to the
study of special relativity.

5107 Theorem: (Inner-Product Signature Theorem): Let U be a
positive-regular [negative-regular] subspace of V. Then the following are
equivalent:

(1) dim U =sigtV [dim U =sig V),

(2) U is maximal among all positive-regular [negative-regular] sub-
spaces of V; that is, no positive-regular [negative-regular] sub-
space of V strictly includes U, and

(3) U™ is negative-regular [positive-regular].

Remark: We note that condition (2) does not imply that ¢/ includes every
positive-regular subspace of V. In general, there is no such “maximum”
positive-regular subspace.
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Proof: To prove this Theorem, we proceed in three steps; we show suc-
cessively that (1) = (2), that (2) = (3), and that (3) = (1).

(1) = (2) follows directly from the definition of sig™V.

To show that (2) = (3), we proceed by contraposition. So assume
that " is not negative-regular. Our goal is to show that I/ is not
maximal among positive-regular subspaces of V.

Since U~ is not negative-regular, we may choose w € (U+)* such
that w-w > 0. Now if w-v = 0 for all v € U+, we would have
w € Ut = U, and hence 0 # w € U NUL, which is impossible since
U is regular (and hence U NUL = {0}). Therefore, we may choose
v € U* such that o := w-v #0. Since w - w > 0, we have

(w+v)-Ew+v)=Ew-wH2a+v-v>2da+v v

for all ¢ € R. If we use this fact with £ := 5-(1 — v - v) and put
w' = ¢w + v, we find that

1
w'-w'z2§a+v-v:2a(2—(1—v-v))-l—v-v:l.
a

Since w,v € U+, we have w' € Y+. Thus, forallu € U/ and X € R,

(W4 2w - (u+2w') = u-u+2xu-w + 2w - w
u-u+t\?

>
> 0.

Since U is positive-regular, equality can hold only if u = 0 and A = 0.
Hence, we see that U + Rw’ is a positive-regular subspace of V. If
w' € U, then w' € U NUL = {0} (since U is regular) would imply
that w' = 0, which is impossible since w' - w' > 1. Hence, w' ¢ U,
and so U + Rw' strictly includes ¢4. Thus, U/ is not maximal among
positive-regular subspaces of V.

We now show that (3) = (1). So assume that U is negative-regular.
By Def. 5105, we may choose a positive-regular subspace W of V such
that dim W = sig" V. It is clear that W NU+ = {0}, and thus (using
Uy :=W, Uy :=U*, and V := W+ U+ in Prop. D09 of Appendix D)

sighV +dim Ut = dim (W +Ut) < dim V.

Since dim V = dim U + dim U+ (by Prop. 5102), it follows that
sigtV < dim U and hence sigtV = dim U by Def. 5105. ¢
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5108 Corollary: There are positive-regular subspaces U of V such that
U™ is negative-regular. If U is such a subspace, then

dim Y =sigtV  and dim Ut =sig7V.
Moreover, we have
sigtV +sig”V =dim V.
We now prove a useful result which follows easily from Cor. 5108.

5109 Proposition: Let U be a totally singular subspace of V. Then

dim U < min{sigtV,sig"V}.

Proof: By Cor. 5108, we may choose a positive-regular subspace W of V
such that dim W = sigtV. Clearly, we must have Y N W = {0}. By
Prop. D08 of Appendix D, we see that dim ¢/ + dim W < dim V. As
a result of Cor. 5108, it follows that

dmiU < dimV —dim W
=dimV —sigtV
= sig V.
We may similarly show that dim I/ < sig?V, yielding
dim U < min{sigtV,sig"V}.

As U was arbitrary, the Proposition is proved. ¢

Remark: One can prove that there are totally singular subspaces U of V
such that dim & = min{sig™V,sig”V}, and that there are many such
subspaces when min{sig*V,sig”V} > 0.

Finally, we give a result which follows from the Inner-Product Signature
Theorem which will be useful in Chapter 7. The proof is left as an Exercise.

5110 Proposition: Let V be an inner-product space with signature (p,m) €
N x N, and put n := p+ m. Then we may find a list-basis (see Def. D05 in
Appendix D) b = (b; |i € 1..n) € V" such that
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1. bj-b;=—1for alli € 1..m,
2. bj-b;=1foralli € (m+1)..n, and

3. b;-b; =0 for all 1,5 € 1..n such that i # j.

Such a list-basis is called an orthonormal list-basis of V.

5.2 Inner-Product Spaces with sig”V =1

Now that some basic definitions and results have been presented, we look at
some applications which will be relevant to our study of special relativity.
We will be concerned with a particular class of non-genuine inner-product
spaces; namely, those for which the signature is of the form (n —1, 1), where
n € Nand n > 2.

Let an inner-product space V with sig”V = 1 be given.

Notation: We use the following notational conventions:

N ={veV|v: v <0}
V™ i={veV|v-v <0}
Vti={veV|v-v>0}
VW i={veV|v-v=0}

Note that A/ = V= UV’ We call members of V~ timelike vec-
tors, members of V1 spacelike vectors, and members of V° signal
vectors.

5200 Proposition: Let u € (V)% = V= \ {0} be given. Then {u}* is
positive-regular. Moreover, Ru and {u}* are supplementary subspaces of

V.

Proof: Clearly, Ru is negative-regular. Since sig”V = 1 and dim Ru =
1, it follows from Thm. 5107 that {u}* is positive-regular. Since
Ru is regular, it follows from Prop. 5106 that Ru and {u}* are
supplementary. ¢
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5201 Theorem: (Reverse Inner-Product Inequality): Ifu,v € V are
given and u € V™, then

(u-v)2> (u-u)(v-v). (52.1)

Equality holds if and only if one of u and v is a multiple of the other.

Proof: First, we assume that {u, v} is linearly independent and also put
w:= (u-v)u— (u-u)v. It is not hard to see that w-u = 0, and hence
w € {u}t. The linear independence of {u,v} implies that w # 0.
Since {u}+ is positive-regular (see Prop. 5200), we have that

O<w-w=((u-v)u—(u-u)v):((u-v)u—(u-u)v),

and hence
0< (u-u)((u-u)(v-v)—(u-v)?).

Since u - u < 0, we conclude that
(u-v)? > (u-u)(v-v).

Assume, on the other hand, that one of u and v is a multiple of the
other. Since u # 0, we then have v = aqu for some o € R. It is not
difficult to show that (52.1) then holds with equality. ¢

Remark: The reader may recall that if V is a genuine inner-product space,
then we have
(u-v)2<(u-u)(v-v)

for all u,v € V. It is because of the familiarity with this inequality
that the terminology “Reverse Inner-Product Inequality” is used.

5202 Proposition: Let u,v € N* = N \ {0} be given. Ifu-v = 0, then
u,v € VW and one of u and v is a multiple of the other.

Proof: Suppose that u-v = 0. Now if u ¢ V9, then we would have u € V—;
since v € {u}", since v # 0, and since {u}* is positive-regular (Prop.
5200), we would have v-v > 0, contradicting v € N'*. Hence u € V0,
and by a similar argument, v € V. Since u-v = 0, we must have
w-w =0 for all w € Lsp {u, v} (see Prop. D03 of Appendix D); i.e.,
Lsp {u,v} C V. By Prop. 5109, dim Lsp {u,v} < 1; i.e., one of u
and v is a multiple of the other. O
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Pitfall: In view of the previous Proposition, one may be tempted to restate
Thm. 5201 as follows: If u,v € V are given and u € N, then (u-v)? >
(u-u)(v-v), with equality if and only if one of u and v is a multiple
of the other. This restatement, however, is false (see the Exercises).

We now include a result related to Prop. 5106 in the case that sig” V = 1.

5203 Proposition: Let U be a regular subspace of V. Then either U or
Ut is positive-regular.

Proof: For all u € Y and v € Y+, we have
(ut+v) - (u+v)=u-u+v-v.

Since sig”V =1 and U + U+ =V, then either U or U+ must contain a
member of V™ ; without loss, suppose that u € Y/ N V™. Since u € U,
then U+ C {u}*; but we know from Prop. 5200 that {u}* is positive-
regular. Hence U/ must be positive-regular. O

The following Theorem gives some insight into why an inner-product space
with sig”V = 1 is an appropriate model for a theory of special relativity.
We see that N/ may be partitioned into linear cones (see Def. 3201) which
we will later interpret as the “future cone” and the “past cone”.

5204 Theorem: N> has exactly one doubleton partition whose pieces are
linear cones. For each w € V', this partition is given by

{{veNX|v-u<0},{ve/\/X|v.u>0}}.

Hence, if F is one piece of the partition, then —F is the other.

Remark: We use the symbol “F” here as we reserve the symbol “F” for
later use (see Prop. 5206 and Thm. 5300).
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Proof: Let u € V™ be given. It is left as an Exercise to show that
{{VENX|V-U<O},{VENX|V-U>0}}

is indeed a doubleton partition of A'* whose pieces are linear cones.

Now suppose that {j-: ,F } is another partition of A/ whose pieces
are linear cones, and assume without loss that F is the piece of the
partition to which u belongs. Since u-u < 0 and hence {u}* is
positive-regular (by Prop. 5200), it follows that {u}t NN = 0.
Since F C N'%, we have {u}* NF = (.

Let v € F be given. Since {u}* NF = 0, we must have v ¢ {u};
i.e., v-u # 0. Suppose that v-u > 0. Then X := —Z= > 0 because

u-u < 0. Since F is a linear cone and u,v € F , we conclude that
u—+ v e .7?/.\ But (u+ Av) -u = 0; ie., (u+ Av) € {u}, which
contradicts F N {u}+ = (). We conclude that v-u < 0. Since v € F
was arbitrary, we have F C N_:={v e N*|v-u < 0}.

Since —u € N and (—u)-u = —u-u > 0, it follows that —u must
belong to the other piece F' of the partition. By reasoning similar to
that given above, we conclude that ' C Ny := {v € N*|v-u > 0}.
Since {u}+ N N> = (), it follows that {N , N}, with N, N, as
defined above, is a partition of N'*. Hence, we must have F=N_
and F' = N, showing that {N_,N,} is the only candidate for the
desired partition. Furthermore, it is clear that N= = —A/;, and hence
F'=-F 0

5205 Corollary: Let F be one of the linear cones of the partition of N'*
described in the previous Theorem, and let u,v € F be given. Thenu-v < 0,
with equality if and only if u,v € V° and one of u and v is a multiple of the
other.

Proof: If either u-u < 0or v:-v < 0, then u-v < 0 by the previous
Theorem. So, assume that u-u =v-v =0. Since F is a linear cone
(and hence stable under addition), u + v € F C N'*¥; thus we have

0>u+v)-(u+v)=u-u+2u-v+v-v=2u-v.

Hence, u-v < 0. The remainder of the Corollary is an immediate
consequence of Prop. 5202. O
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We now include a Proposition which will be useful in §5.3.

5206 Proposition: Let F be one of the linear cones of the partition of
N* described in Thm. 5204, and put F := F U{0}. Then V = F — F.

Proof: Let v € V be given. Now if ve N = FU (—F), thenv € F — F
is immediate since 0 € F. So suppose that v ¢ N, i.e., v € V7.
Then we may choose u € {v}1 NV~; assume without loss that u € F

(otherwise replace u by —u). Put o := y/—v-v/u-u > 0. Then
(v4+ou) - (v+aou)=v-v+olu-u=0.

Moreover,
(Vv+au)-u=v-ut+au-u<o0.

These relations imply that v + au € F, so that
v=(v+au)—aueF-F.

As v € V was arbitrary, we see that V = F — F. O

——An Example

Put V := R?; if a € V, we write a = (ay,az), and put 0 := (0,0). Instead of
the usual inner product in R?, we let k¥ € PX be given, and define

a-b:= k2a1b1 — a2b2

for all a,b € V. We claim that this definition gives an inner product on V.
We leave it to the reader to show that Axioms (I;)—(I3) are satisfied.

To see that (I3) is valid, let u € V be given, and assume that u-v = 0 for all
v € V. Then for all v € V, we have k?u;v; —ugve = 0. In particular, we must
have u-v = 0 when v := (u1, —ug); i.e., k2uius — ug(—us) = k2u? +u3 = 0.
Since k£ > 0, this can occur only if u; = ug = 0; that is, w = 0. Since u € V
was arbitrary, (I;) holds.

What is the signature of V? We note that for all @ € R*, we have

(,0) - (@, 0) = K*a® > 0.
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Hence, R(1,0) is a positive-regular subspace of V. Similarly, we see that
R(0, 1) is a negative-regular subspace of V. Hence, by the definitions of sig™V
and sig~V, we must have sigtV > 1 and sig” V > 1. But by Cor. 5108, we
must also have sig™V +sig”V = dim V = 2. This forces sigtV = 1 = sig” V.
Hence, V has signature (1,1).

We now ask the following questions: Are there other positive-regular or
negative-regular subspaces of V7 Are there subspaces of V which are neither
positive-regular nor negative-regular? What do such subspaces look like?

To answer the first question, suppose that U is a positive-regular subspace
of V different from {0}. We must have dim &/ = 1, and hence we may choose
u € V such that &/ = Ru. Then

0 < (u1,u2) - (u1,u2) = k2u% — u%,

and hence k|ui| > |uz|. Indeed, we may characterize all positive-regular
subspaces of V in this way: if u € V is such that k|ui| > |ug|, then Ru is a
positive-regular subspace of V. Similarly, it can be shown that if u € V is
such that k|ui| < |ug|, then Ru is a negative-regular subspace of V.

What happens if u € V is such that k|ui| = |uz|? Suppose we are given
such a w € V. Then u-u = k*u? —u2 = 0. Aslongasu # 0, Ru is a
one-dimensional subspace of V such that v-v = 0 for all v € Ru. Thus, Ru
is totally singular. It is not difficult to show that there are exactly two such
subspaces of V; namely, R(1, %) and R(—1, k).

What do these subspaces look like in V = R? when R? is represented by
a coordinatized plane? We see R(1, k) and R(—1,%) as the oblique lines in
Figure 52a. Moreover, if a subspace lies within the shaded area of Figure
52a, then it must be negative-regular. Analogously, if a subspace lies outside
of the shaded area and its boundary, then it must be positive-regular.
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Figure 52a

Suppose that ¢ is a one-dimensional subspace of V. What does U look
like? We first choose u € V* such that & = Ru. Then if v € U, we have

0=u-v=Kkuv — UgV2,

i.e., E2uiv1 = ugue.

Assume that ugp # 0. Then vy = %k%l’ and hence v = (vl, Z—;k%l) =
Z—;(uQ,k2u1). Thus, we see that v is a multiple of (ug,k?u;). It is not

difficult to show that we must have U+ = R(uQ,k2u1). If ug = 0, then we
have k2ujvq = ugve = 0. But ug # 0, since u # 0. Hence, v; must be zero,

and hence v = (0,v2) = 2-(0, k2up) = e (u2,k?u1). In an analogous

way, we see that U/ must be R(uy, k?u;).
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Figure 52b

Thus, in either case, we have U+ = R(ug,k?u1). From Thm. 5107, we
see that if I is positive-regular, then U~ is negative-regular, and if I/ is
negative-regular, then U~ is positive-regular.

What if U is neither positive-regular nor negative-regular? Then U is totally
singular, and must be either R(1, k) or R(—1, k). In either case, the fact that
Ut = R(ugy, k>up) implies that U = U+,

—Intrinsic Geometry of Spacetime Diagrams

It will often be useful to draw diagrams of physical phenomena in order
to facilitate an understanding of them. We now analyze the important
geometrical principles which underlie the construction of such diagrams.
The principles involved are similar to those just discussed, but are applied
in a “coordinate-free” and hence more geometrically concrete setting.

Let a Euclidean space £ be given (see Def. 5103) with dim £ = 2. Assume
that the translation space V of £ satisfies sig™V = sig"V = 1. Let F be one
of the linear cones described in Thm. 5204, and denote by j-:l the set of
vectors v € F with v-v = —1. We begin with a useful Proposition.

5207 Proposition: Let d € .7?1 be given. Then there are exactly two
vectors u in V satisfying

u-u=1 and u-d=0.
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Ifu is one, then —u is the other. Moreover, {d,u} is a basis of V.

Proof: From Prop.5200, we see that I/ := {d}~ is positive-regular. Since
sig”V =sig™V = 1, we must have dim I/ = 1. Hence there are exactly
two vectors u in U satisfying u - u = 1, one being the opposite of the
other. This proves the first part of the Proposition.

It is easily seen that {d,u} is linearly independent and hence a basis
of V. ¢

We are now ready to prove the main result of this section.

5208 Theorem: Letd € ﬁl be given. Then there is exactly one doubleton
{a,b} C V° such that d = a + b. Moreover, {a,b} is a basis of V and
V0 = Ra URb.

Proof: Suppose that a doubleton {a,b} C V° is given such that d = a+b.
Then
d-(a—b)=(a+b)-(a—b)=a-a—b-b=0,

and hence a — b € {d}*. Also, we have
(a—b)-(a—b)=—-2a-b=—(a+b)-(a+b)=1.

By Prop. 5207, there are exactly two elements v in {d}* such that
v-v = 1; let u be one of them. Thena—-b =uora—b = —u,
and hence 2a = d + u or 2a = d — u. Interchanging u with —u only
interchanges a and b, and hence the doubleton {a,b} is determined
by d. On the other hand, if we define a and b by

1 1

then {a,b} C V? and d = a + b. Since {d,u} is a basis of V (see
Prop. 5207), so is {a, b}.

We now show that V° = Ra URb. To this end, let f € V° be given.

Since {a,b} is a basis for V, we may determine £,7 € R such that

f = £a + nb. Since f € V°, we have
0=f-f=¢%a-a+2na-b+n’b-b=2na-b.

From Cor. 5205, it follows that a - b # 0. Hence, either £ = 0 or
n = 0; i.e., f is a scalar multiple of either a or b. O
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Illustration: We use this result to discuss representations of N and Fin
the plane. Let a basis {a,b} for V be given such that {a,b} C V°.
That we may choose such a basis follows from the previous Theorem;
simply choose d € .7/-:1, and let {a,b} be the basis of V described in
that Theorem. We represent V° = Ra URb by the two lines in Figure
52¢(1) and divide V\ VY into four quadrants as labelled in that Figure.
It is easy to see that any vector v represented in quadrant I can be
written as v = aa + Bb, where «, 5 € P*. For such v, we have

v.-v=c’a-a+2afa-b+’b-b=2apa-b.

Suppose that a-b < 0; we then have v - v < 0. Thus, each vector
represented in quadrant I belongs to . By similar analysis, it can be
shown that those vectors represented in quadrant III also belong to

N, while those represented in quadrants IT and IV do not belong to
N.

Figure 52¢(1) Figure 52¢(2)

On the other hand, suppose that a-b > 0. Then it follows that those
vectors represented in quadrants IT and IV belong to A/, while those
represented in quadrants I and III do not.

These two cases are exhaustive; it follows from Cor. 5205 that a-b
cannot be zero.

It is customary to represent N by quadrants which open up towards
the top of the page and down towards the bottom of the page (see
Figure 52¢(2)). It is also customary to forego representing a and b
explicitly, since V° = Ra U Rb does not depend on that particular
choice of a and b; only the lines representing V° are drawn. Note that
points on these lines also represent vectors in AV, as V° C N.
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The two quadrants shaded in Figure 52¢(2), along with the lines which
form their respective boundaries but excluding the intersection of these
lines, represent the partition {f ﬁ}L of N* as described in Thm.
5204. Tt is customary to represent F by the quadrant opening up,
and —F by the one opening down. Sometimes Fis represented alone,

being described by the upper half of Figure 52¢(2).

Illustration: Letd € .7?1 be given. If a and b are sides of a parallelogram
with diagonal d and whose sides are parallel to the lines representing
the boundary of F, then {a, b} is that basis of V described in Thm.
5208. The vectors a—b and b — a (as described in the proof of Thm.
5208) are represented in Figure 52d.

Figure 52d

Let u €V and e € {a—b,b—a} be given, and determine u;,us € R
such that u = u;d + uge. If u € Fi, then relative to the basis {d, e}
of V, we have that

—1=u-u=(ud + uge) - (urd + uge) = —u? + u3,
or equivalently,
uf —ud =1.

Thus, the members of ]?1 form a branch of a hyperbola since they
exhaust solutions to the equations

u?—us=1, wu; >0.

For example, if we put u := v/2d + e, we have u? —u3 = 1, and hence

u € F, is on this branch of the hyperbola (see Figure 52).
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Figure 52e

The asymptotes of the hyperbola are formed by the members of V°.
It can easily be shown, as above, that if u € V°, then u? —u2 = 0; i.e.,
uy = :|:u2.

We conclude this section with some results which will be important in §7.2,
but which are valid in the context of this section. We assume, as in the
beginning of this section, that an inner-product space V with sig”V =1 is
given.

5209 Proposition: Let!{ be a singular subspace of V and put T := UNU~ .
Then T is the only totally singular subspace of Y. We have dim T =1 and
U\T C V*t. Moreover, ifdim U = 2, then {u}* "U =T forallu e U\ T.

Proof: Since U is not regular, it follows from Def. 5104 that 7 is not the
zero space. It is clear from Def. 5104 that 7 is totally singular. By
Prop. 5109 we have dim 7 < sig”V = 1 and hence dim 7 = 1. Hence
we may choose t € V0 such that t #Z 0 and 7 = Rt.

Now let u € U \ 7 be given. Since t € 7 C U+, we have t -u = 0. We
cannot have u-u < 0, i.e., u € V7, because if this were the case, it
would follow from Thm. 5204 that t-u >0ort-u <0; i.e., t-u # 0.
We cannot have u - u = 0 because then u,t € N* and it would follow
from Prop. 5205 that u is a multiple of t; i.e., u € 7. We conclude
that u-u > 0. Since u € Y \ 7 was arbitrary, we have Y \ T C V™.
This inclusion also shows that the only non-zero signal vectors in U
are also in 7 i.e., that T is the only totally singular subspace of U.

Now assume that dim &/ = 2 and let u € U\ 7 be given. Since {u} C U
and hence U+ C {u}*, it follows that 7 = U+ NU C {u}r nU. Tt
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follows from & \ 7 C V* that u-u > 0. Since dim & = 2, {t,u} must
be a basis of U.

Let v € {u}* N be given. We can then determine «, 8 € R such that
v = at + Bu. Since t € U+, we have u-t = 0 and since v € {u}+,
we have v-u=0. Hence 0 =u-v=at-u+ fu-u = Pu- u. Since
u-u > 0, it follows that # = 0 and hence v = at € 7. We conclude
that {u}* C 7 and hence {u}t N/ =T. %

5210 Corollary: Every subspace of V of dimension three or more includes
a two-dimensional positive-regular subspace.

Proof: Let U be a subspace of V with dim &/ > 3. If U/ is singular, we can
put 7 := U NU*L as in Prop. 5209 and choose a supplement W of T~
in Y. Since W* CU\ T, it follows from Prop. 5209 that W* C V7,
which means that W is positive-regular. Since dim 7 = 1, we have
dim W > 3 — 1 = 2, and hence every two-dimensional subspace of W
is positive-regular.

On the other hand, if U is regular, then we can apply Thm. 5107
to U and choose a positive-regular subspace W of U with dim W =
sigtid =dim U — 1 > 2. Thus, any two-dimensional subspace of W is
positive-regular. O

5.3 Minkowskian Spacetimes

In the following Theorem, we bring together many of the results seen in
previous chapters. With this Theorem, we set the stage for what follows in
the remainder of the book.

Let a Euclidean space £ with translation space V such that dim V > 2 and
sig”V = 1 be given. Select one of the linear cones of the decomposition
described in Thm. 5204, call it , and put F := F U {0}. Define the
relation < on & by

r<y<=y—czeF

for all z,y € £, the mapping 7 : F — P by
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for all u € F, and the function t : Gr(<) — P by

t(z,y) == 71(y — )

for all (z,y) € Gr(<).

5300 Theorem: The space £ with future cone F and timelapse t as given
above is a genuine (in the sense of Def. 3205) timed flat eventworld. More-
over, the precedence < is relativistic and F is closed (see §3.4). Finally, if
z,y,z € £ are such that © < y < z, then

t(z, 2) = t(z,y) + t(y, 2)

if and only ify € [z, 2].

Proof: We begin with the following Lemma.

5301 Lemma: The function 7 is superadditive in the sense that
T(u+v) > 7(u) +7(v)

for all u,v € F, with equality if and only if either u or v is a positive
scalar multiple of the other.

Proof: Let u,v € F be given. If either u or v is 0, then the assertion
is trivial, since 7(0) = 0. In this case, either u or v is a 0-multiple
of the other.

So assume that u,v € F* = F. Then

2 2

Tu4v)2=—(u+v) - (utv)=ru)?-2u-v+7(v)

By the Reverse Inner-Product Inequality (Thm. 5201), we have
(u-v)? > (u-u)(v.v) = 7(w)r(v)?

with equality if and only if either u or v is a strictly positive
scalar multiple of the other. That the scalar multiple is strictly
positive follows from the fact that u,v € F*.

Since u-v < 0 (Cor. 5205), it follows that —u - v > 7(u)7(v),
and hence

7(u+v)2 > 7(u)? + 27(u)7(v) + 7(v)? = (r(u) + 7(v))>.
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Since Rng 7 C P, we conclude that
T(u+v) > 7(u) + 7(v).

Moreover, we see from the preceding argument that equality holds
if and only if either u or v is a strictly positive scalar multiple of
the other. O

It is easy to see that since F is a linear cone, then so is F. We see
from Prop. 5206 that V = F — F. It therefore follows from Prop.
3204 that £ with precedence < has the structure of a flat eventworld.

That £ is genuine is left as an Exercise. It follows immediately from
the definition of 7 that 7(au) = a7 (u) for all u € F and o € P. With
these observations and Lemma 5301, we conclude from Thm. 3302
that £ has the structure of a timed flat eventworld.

That the precedence is relativistic and F is closed is left as an Exer-
cise. The last statement in the Theorem follows directly from Lemma
5301. 0

5302 Definition: When the precedence < and the timelapse t are re-
lated to F and the inner product as in Thm. 5300, we say that £ is a
Minkowskian spacetime. In this case, we have (see Not. 3408)

Fi={ueF|r(u)=1}={ueFlu-u= -1},
and we call members of F; world-directions. When u € V* U {0}, we put

lu| := vu-u.

Remark: The previous Theorem tells us that given a non-genuine Eu-
clidean space & with dim £ > 2 and sig”V = 1, we may endow &
with the structure of a relativistic timed flat eventworld by choosing
a piece F of the linear-cone decomposition described in Thm. 5204,
and then defining < and t as described in Thm. 3302. In essence, the
only assumptions made about £ are that dim £ > 2 and sig™V = 1.

What about a converse of this Theorem? We pose the following ques-
tion: suppose that £ and £’ are both Minkowskian spacetimes with
precedences < and <’ respectively. If ¢ : &€ — £’ is such that ¢ is
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invertible and z < y <= ¢(z) <’ p(y) for all z,y € &£ (that is, ¢
is an order-isomorphism), what may we say about ¢ in terms of the
flat space structures of £ and £'? In other words, if we know that
the orders on £ and £’ and related isomorphically by ¢, how are the
flat space structures of £ and &’ related by ¢? Remarkably, when
dim £,dim £ > 3, the answer to this question is that ¢ is a flat iso-
morphism (see [8] and the literature cited there). That is, there is
a linear mapping L : V — V' (where V =& - €& and V' = &' — &)
such that ¢(z) = ¢+ L(z — q) for all z € £ and ¢ € £. Moreover, L
is a positive scalar multiple of an orthogonal (inner-product preserv-
ing) transformation. One can conclude that the precedence relation
alone determines the flat space structure in a Minkowskian spacetime
whose dimension is three or more. Also note that it was not necessary
to assume anything about timelapse functions! In fact, the timelapse
function is determined by the precedence relation to within a strictly
positive scale factor. The reader is encouraged to investigate the case
when dim £ = dim £’ = 2 to see that, in this case, there are infinitely
many flat space structures compatible with the precedence relation.

We now consider £ to be a Minkowskian spacetime in the sense of Def.
5302.

Since {F, —F} is determined by the inner product on V (see Def. 5302 and
Thm. 5204), we see that the precedence relation is determined by the inner
product to within reversal. We may also describe the signal relation — (as
given in Def. 1501) by way of the inner product as follows.

5303 Theorem: Let z,y € £ be given such that x < y. Then the following
are equivalent:

(1) z—uy.
2 (y-2)-(y—2)=0.

3) [z,9] =[z,9].

Proof: (1) = (2). Since z < y, we must have (y — z) - (y —z) < 0; so

suppose that (y —z) - (y — z) < 0. Then we may choose e € {y — z}+
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such that e-e = 1 and o € P* such that a < 37(y — z). With m as
the midpoint of [z,y], define

g+ :=m+ae, ¢g_:=m— qe.

One may easily show that ¢;,q_ € [z,y]. But since [z,y] is totally
ordered by <, we must have either g4 < g_ or ¢_ < ¢4, and thus

0>(g+—q)-(g+ — g ) =4’ >0.

As this is a contradiction, we must have (y — z) - (y — z) = 0.

(2) = (3). Since the relation < is connected (see Defs. 3200 and
3203), we have that [z,y] C [z,y]. To show that [z,y] C [z,y], let
z € [z,y] be given. Then z < z < y, and since

Ty—2)’=—-(y—=) (y—x) =0,

we have
t(m,z) + t(zay) S t(.’E,y) = T(y - q,‘) =0.

Since Rng t C P, this inequality must actually be equality, and by
Thm. 5300, z € [z,y]. As z was arbitrary, we see that [z,y] C [z,y].
Since [z,y] C [z,y] C [z,y], it follows that [z,y] = [z,y].

(3) = (1). It follows from (3) that [z,y] is totally ordered, and
hence from Def. 1501 that z — y. O

The following Proposition will be illustrated while discussing the emission
and reception of electromagnetic signals in §5.8. We remark that if £ is a
straight worldline, then it follows from Def. 3300(2) that t; = t|..

5304 Proposition: Let £ be a straight material worldline, and let e € £
be given. Then there is exactly one x € L such that x — e and exactly
one y € L such that e — y. In addition, there is exactly one z € L such
that e — z € {u}t. This z is the midpoint of [z,y], so that z — 1z = y — 2.
Moreover, |e — z| = 3t(z,y) = Ltz (z,y).

Proof: Since L is a straight material worldline, we may choose ¢ € £ and
u € F such that £ = ¢+ Ru. Since Ru and {u}* are supplementary
(Prop. 5200), we may determine € R and w € {u}* such that
e—g=nu+w.
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Put z := e — w — |w|u. Then we have z = ¢+ (n — |w|)u € £ and

(e-2)-(e—2) = |<w|2+ |v|v\u;g - (w -+ [w|u)

= 0.

Figure 53a

We also have that

(e—z)-u=(w+|wju)-u
= —|w| <0,
and hence e — z € F. It follows from Thm. 5303 that z — e. It
is left as an Exercise that there can be no other event in £ with this
property.
The proof that there is exactly one y € L such that e — y is similar.
Since u € Fj, we have Ru + {u}* =V and Ru N {u}* = {0}. Hence

LN (e+{u}) is a singleton; we let z be the member of this singleton.
Clearly, z is the only event in £ satisfying e — z € {u}*.

We know that z = e —w — |w|u; we can analogously show that y must
satisfy y = e — w + |w|u. From this, we see that the midpoint m of
[z,y] is given by

m =t 3y—)

e—w— [wlu+ 1(2|wlu)

= € — W.
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Hence, e — m = w € {u}*. Since m € [z,y] C £, we find that m € L.
Since z is the only event in £ satisfying e — z € {u}*, we see that in
fact, m = z.

Finally, we see that

t(z,y)* = ~(y —2) - (y — 2)
= —(2wlu) - (2jw|u)
= dlw]?
= 4le — 2|
The desired result follows immediately. O

5305 Definition: Let £ be a straight material worldline, and let ¢ € £ be
given. We define the distance from e to £ by

1
dSt(ea ‘C) = it(ma y)a
where x and y are determined by e and L as in the previous Proposition.

The careful reader may have noticed that in this definition, distance is de-
fined in terms of the timelapse along a worldpath. How is this possible? In
special relativity, there is no distinction between “distance” and “timelapse”.

Distances and timelapses are specified relative to physical units, such as
second (“s”), meter (“m”), year (“yr”), inch (“in”), or mile (“mi”). These
various units are related by conversion factors. For example, the unit “s”
(second) is related to “m” (meter) by

1s = 299, 792, 458m.

This conversion is exact, having been settled upon in 1986 by international
agreement. This number is the figure usually given for the “speed of light”.
The exact conversion lin = 2.54cm has been “legalized” in the U.S. since
1959, and in the United Kingdom since 1963.

When giving distances in terms of units such as “second” or “year”, it is
customary to use the term “light-second” or “light-year”. Then the “speed
of light” is the dimensionless number, 1, as in “1 light-year per year”.

The definition of distance given by Def. 5305 is the one that is the concep-
tual basis for distance measurements by radar and laser beams. It contrasts
with the pre-classical notion of distance (see §4.1) which is the conceptual
basis for distance measurements by rulers and measuring tapes.
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5.4 Spacetime Decompositions

In this section, we consider how one might decompose a Minkowskian space-
time relative to a given world-direction (in the sense of Def. 5302). We may
imagine this world-direction as representing an “observer” whose worldpath
is a straight line, the direction of which is the given world-direction. We
may also think of this world-direction as generating a reference frame, the
locations of which are all straight worldlines (i.e., “observers”), the direction
of each being the given world-direction.

For the remainder of this section, let a Minkowskian spacetime £ be given,
with all notations as introduced in §5.3.

Let d € F; be given. Upon examining Def. 4200, it seems plausible that a
candidate for the reference frame determined by d is {z + Rd |z € £}.

But what of instants and the bijection as described in Thm. 42017 Given
the decomposition of £ as described in that Theorem, it seems reasonable
to use the decomposition (Rd, {d}*) of V for an analogous decomposition
of £. One is immediately led to guess that {z + {d}* |z € £} would form a
suitable collection of instants. Moreover, a natural timelapse on the set of
instants is apparent: simply require that the timelapse between two instants
be that multiple of d which separates them. Such a timelapse can naturally
be extended to all of £ as suggested by Prop. 2402.

We base a formal development of the reference frame relative to d upon
the foregoing observations. The result is the following definition of relative
precedence.

5400 Definition: The precedence relative to d, denoted by <gq, is
defined by

T<qy <= (y—z)-d<0
for all x,y € £. The timelapse relative to d, tq : Gr(<q) — P, is defined
by

ta(z,y) :=—(y—=z)-d

for (z,y) € Gr(<q). The signed timelapse relative tod, tq : £x& — R,
is given by the same formula for all z,y € £.

Note that in Figure 54a, we have z <q v, y — z = td + we, and t4q(z,y) = t.
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Figure 54a

It is left as an Exercise to verify that <4 is reflexive, transitive, and total (and
hence classical). We may define (as in Def. 1201) simultaneity relative
to d by

T~qy = x<gyand y <4

for all z,y € £. We have that ~q is an equivalence relation (see Thm.
1202), and that if z,y € £, then z ~q y if and only if (y —z)-d = 0. As
in Def. 1205, we define the past, present, and future relative to d; and
we therefore have, for all z € &,

Pastq(z) == {z € £|(z — z) -d > 0},
Presq(z) := {z € E|(z —z) -d =0},
Futa(z) == {z € &|(z —z)-d < 0}.

It follows that the partition of £ determined by ~g; that is, the set of all
instants relative to d, is given by

Iq = {Presq(z) |z € £}.
Given z € £, we have

Presq(z) = {z €| (2 —z)-d =0}
={ze&|z—ze{d}'}
=+ {d}"*.

Hence
Tq={z+{d}" |z €&},
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which validates our earlier conjecture. In addition, the relation <4 on I'g,
defined for all 0,0’ € Tq by 0<4q0’ <= z <q ' forallz € 0, 2’ €0, is a
total order (see Prop. 1403).

It is also left as an Exercise to verify that the precedence <4 and timelapse
tgq give &£ the structure of a classical timed eventworld. Moreover, we may
define dstq : Gr(~q) — P by

dsta(z,y) = |y — x|

for all (z,y) € Gr(~g). This makes sense, since if z ~gq y, then y — z €
{d}*+ c vt U {0}. This structural ingredient gives £ (with <4 and tq) the
structure of a pre-classical spacetime.

It is left as an Exercise to show that the set of all worldlines whose direction
space is Rd; that is,
Fa:={¢+Rd|q €&},

is a reference frame (as in Def. 4200). Thus, the pre-classical spacetime
& becomes a Newtonian spacetime by singling out the reference frame Fg4.
Members of Fq are called locations relative to d; moreover, we see that
Fq has the natural structure of a Euclidean space (see Thm. 4202). Tt is
left as an Exercise to verify that dgq (the distance function for Fq; see Thm.
4202) satisfies

da(z +Rd,y +Rd) = /(y —x) - (y — 2) + ((y — 2) - d)? (54.1)
for all z,y € &.

How does the precedence (relative to d) compare to relativistic precedence?
It is easy to verify that for all z,y € £, we have x <y = z <q y, and
thus <4 is a coarser relation on £ than <. It is left as an Exercise to show
that for z,y € £, < y if and only if we have x <q y for alld € F;. We
also have, given z € &£, that Fut(z) C Futq(z) and Past(z) C Pastq(z).

We conclude this section with an important result. Given two different
world-directions (which we may imagine to represent two different “ob-
servers”), it is natural to ask how the classical structure determined by
one of them is “perceived” by the other. The rest of this chapter is con-
cerned to a large extent with applications of this Theorem, and so we defer
an interpretation to subsequent sections.
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5401 Theorem: Let d; and dy be two distinct world-directions. Also, put
D; :=Rdy, Dy := Rdy, Wy := {d1}*, and Wy := {d2}*. Then D; and D
are positive-regular and YW, and W, are negative-regular. Moreover,

(1)

There is exactly one u € R, exactly one v € P*, and exactly
one e; € W, with |e;| = 1 such that

ds = N(dl + Vel).

We have v €]0,1] and p € 1 + P*; moreover, i and v are
related by

1 1
and v=,4/1—- —.

o= 7\/1—1/2 w?

With p and v as determined in (1), there is exactly one ey €
W, with |es| = 1 such that

d1 = /L(dQ - I/eQ).

We have
e = p(er +vdy)
and
e; = p(ez — vdy).
We have
—di-da=p=-e;-e
and

—dl-egz,uu:dg-el.

Proof: It is immediate that D; and Dy are negative-regular. That W; and
Wy are positive-regular follows from Prop. 5200.

1).

Since D; and W; are supplementary, there is exactly one y € R

and exactly one f € W; such that dy = pud; + f. Since neither d;
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nor dy is a multiple of the other, we must have f # 0. Since W is
positive-regular and Dj is negative-regular, it follows that do # f and
hence u # 0. Hence, since W, is positive-regular, there is exactly one
v € P* and exactly one e; € W; such that |e;| = 1 and f = pve;.
Thus, d2 = p(d; + vey).

(2). From (1), we see that do-d; = u(d; +ve1)-dy = —p, and hence
g = —d; - dy. From the Reverse Inner-Product Inequality (Thm.
5201), we have

(d1 . d2)2 > (d1 . d1)(d2 . d2) =1,

as neither d; nor ds is a multiple of the other. From Cor. 5205, it
follows that d; - d2 < 0, and hence d; - d3 < —1. Thus, u € 1 + P*.

From (1), it follows that
—-1=dy-dy = /L(dl + I/el) - H(dl + Vel) = —,LI,2 + /121/2.

Since p,v € P* and p > 1, this relationship results in

Thus, since y > 1, we must have v €]0,1[. It follows that

1

w= V1—12

(3). Since 4 = —d; - dg, we have (d; — pds) - d2 = 0, and hence
d; — puds € Wy, Thus, there is exactly one A € P* and exactly one
ez € Wy such that |ez] =1 and d; — pda = —Aez. Then

A = (=)deg) - (—Aez) = (di — pudy) - (dy — pd) = p* — 1.

Hence, since A\ € P*,

1
/\Z\/;ﬂ—l:u,/l—ﬁzuu.

Hence, we have d; — ude = —puvey, or d; = p(ds — ves).

(4) and (5) are easy consequences of (1), (2), and (3). 0
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With the notations of the previous Theorem, yu is called the time-dilation
between d; and d,, v is called the relative speed between d; and do,
and e; is called the direction of motion of ds relative to d; (with an
analogous nomenclature for e;). The appropriateness of these terms will be
discussed in detail in the remainder of this chapter.

Remark: With the notations of the previous Theorem, let ¢ € £ be given,
and put H := ¢+ Lsp {d1,d2} = ¢+ Lsp {d1,e1} = g+ Lsp {d2, e2}-
We may define

z,t : H—>Rand 2/,¢' : H >R
so that for all e € H, we have
e =1z(e)d;s +t(e)e; = z'(e)da + t'(e)es.

Then it follows directly from (3) and the second equation in (4) of
Thm. 5401 that

o = p(x—vt)
t = p(t—vr).

This is the form which Thm. 5401 usually takes in the literature. The
transformation by which 2/ and t' are expressed in terms of z and ¢ is
often called a Lorentz transformation.

5.5 Some Applications

As promised in the previous section, we offer a few examples as applications
of Thm. 5401. Let a Minkowskian spacetime £ be given.

——“Addition” of relative speeds

Consider the following scenario: we have a moving train, and a person
running on the train in the direction in which the train is moving. We
assume, for simplicity, that the worldpaths of the Earth, train, and person
are all straight (and thus each moves with constant relative speed with
respect to each of the others). We also assume that the directions of motion
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are such that we are able to confine our discussion to a two-dimensional

| /\% —
///////

Figure 55(a

If the world-direction of the person, train, and Earth are d,, d¢, and d,
respectively, and v is the speed of the person relative to the train, vy is the
speed of the the train relative to the Earth, and v is the speed of the person
relative to the Earth, how may we relate 14 and vy to v?

In a classical world, we would have v = v; +1»; that is, relative speeds would
add. But this cannot be the case in a relativistic world, for if 1y > % and
vy > 3, we would have v > 1; but recall from Thm. 5401(2) that a relative
speed greater than 1 is impossible. So something is awry with regard to our
classical intuitions. We proceed to investigate this matter in greater detail
using the tools of the previous section.

We may draw a spacetime diagram of the situation as follows,

Figure 55b
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where e,, e;, and e, take on the obvious interpretation. That e, e;, and e,
are all on the “same side” of the diagram is a consequence of the fact that the
person, train, and Earth are all moving, roughly, in the same “direction”.

From Thm. 5401 (with subscripts “1” and “2” replaced with “p” and “t”,
respectively), we must have

di =pi(dp +11€p) and e = pi(ep + 11dp),
where p1 and v are related as in Thm. 5401(2). We must also have
de = po(dt + vo€y),
where u9o and v, are related in the same way as pq and vy.

We now substitute in the previous equation the expressions for d; and e,
resulting in

de = u?(,ul(dp + Vlep) + V2/111(ep + Vldp))
= pipa((1+vip)dp + (11 + v2)ep)

S %)
= 1 d - .
pp2(1l + vive) ( p T+ 1T V1U26p>

Thus, we see that the relative speed between the person and the Earth is

given by

v+ 1o

1 + Vg '
The reader may verify that in defining
pi= papz(l 4+ v11s),

we have that v and p are related as in Thm. 5401(2).

Thus, the relative speed v is not simply the sum of 14, and v, but a “scaled
version” of this. One may easily verify that if 11,19 €]0,1[, then we also
have v €10, 1[.

We illustrate the previous results with a few calculations. If the speed of
the train is v9 = 100 kmn/h = 0.0000000927 relative to the Earth, and the
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speed of the person relative to the train is vy = 8 km/h = 0.00000000741,
one finds that the speed of the person relative to the Earth is given by

v =~ 0.1000692285594455 ~ 107.999999999999926 km /h.

Thus, we see that for ordinary calculations, the usual classical formula; i.e.,
v =wv] + 1, is a good approximation.

Now suppose (rather unrealistically) that our train is travelling at vy =
0.2 = 216, 000,000 km/h relative to the Earth, and that the person is mov-
ing at v1 = 0.1 = 108,000,000 km/h relative to the train. In this case, our
analysis gives us that the person is travelling at a speed of v = 0.29412 =
317,647,059 km/h relative to the Earth, which is a bit less than 0.3. Thus,
we see that very great relative speeds are necessary for the relativistic for-
mula to differ even slightly from the classical formula.

One may also analyze cases where the direction of motion of the person is
opposite that of the train. Such variations are treated in the Exercises.

—Lorentz-Fitzgerald contraction

We now consider the path of a rigid rod; that is, an object whose ends may
be described by paths which are parallel straight worldlines.

So let £ and L' be two distinct parallel straight worldlines with world-
direction u. Tt easily follows that we may determine w € {u}* with |w| =1
and a € P* such that £' = £+ aw. We say that « is the length of the
rigid rod whose ends are described by £ and L.

Figure 55¢
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Remark: We have a = dy(£, £'), where dy is the distance function for
the frame F, in which £ and £’ can be considered as “locations” (see
§5.4 and (54.1)).

How does such an object appear to an “observer” with a world-direction
other than u? Let d € F; be given such that d # u, and let e € {d}* and
o' € P* be determined such that |e| = 1 and £’ = £ + o’e. One may easily
show that if a given ¢ € £ and a given ¢' € £’ are such that ¢ ~q ¢/, then
dsta(q,q') = . Hence we call o the length of the rod relative to d.

Figure 55d

From Thm. 5401 (with d;, do, €1, and ey replaced by d, u, e, and w,
respectively), we may find p € 1 +P* and v €]0, 1] such that

d=pu(u—vw) and u=pu(d+ve).

Now for every = € L, we have that z + aw,z + o’e € L', and so it follows
that
de —aw = (r+d'e) — (r + aw) € Ru.

Thus, since w € {u}*, we must have
0=(de—aw) - w=de-w—a.

But we see from the selection of ;4 and v that e-w = p (see Thm. 5401(5),
with e; and e, replaced by e and w, respectively), and hence it follows that

1
o =Za=v1-12a<a

W
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Thus, the length of the rod relative to d is strictly less than the length
of the rod. This phenomenon is often referred to as “Lorentz-Fitzgerald
contraction”.

Remark: Although the rod “appears” shorter relative to d, this does not
imply that the rod actually shrinks. Indeed, the rod is “at rest” in the
frame F,; and the observer with world-direction d can be viewed as
running past the rod. The rod would not “shrink” merely as a result
of an observer running by!

5.6 Worldpaths of Particles

Let a Minkowskian spacetime £ be given.

It is an easy Exercise to see that the inner product on V is continuous; it
then follows that 7 is continuous. Thus, all results about smooth param-
eterizations in §3.4 are applicable in a Minkowskian spacetime. We freely
use this fact for the remainder of this chapter, and recall the notation

Fi :{ue}"|7'(u):1}
for the set of all world-directions.

Now let a material worldpath £, a genuine interval I in R, and a smooth
time-parameterization p : I — &£ of L be given. We wish to interpret £
as the worldpath of a “material particle” (which will be defined precisely in
Chapter 6).

Put d :=p*, and let s € I be given. Since d(s) € F; (see Prop. 3409), we
say that d(s) is the world-direction of the particle at s. It is inappro-
priate to think of d(s) as a “velocity”. We may, however, offer the following:
at s, the particle is “instantaneously” at rest with respect to the reference
frame Fq(,) (see §5.4).

Assume that p* is differentiable. Then differentiating p* - p* = —1 yields
p* - p** =0, and hence we see that

p>(s) € {p°(s)}+ c vt u{o}. (56.1)
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The relativistic version of “Newton’s law of motion” states that p** is the
force per unit mass (see §6.1 for a precise definition) exerted on the particle.
It follows that [p**(s)| is the “g-force” experienced by the particle. For
example, if we imagine £ to be the worldpath of a spaceship, then |p**(s)| is
the force per unit mass exerted on a person sitting in the spaceship. If, at
time s, a person’s experience on the spaceship was that of being in a room
on Earth; that is, the person walked about with no more or less difficulty
that he or she would walk about the surface of the Earth, then we would say
that the person experienced a g-force of one Earth gravity, or 1g, at time s.
Thus, we use “g” as a unit of force per unit mass. A unit of 1g is related to
the unit yr—! by

_9.8m 1s 3.16 x 107s

~ -1
1g = 2 X 30 % 17 X = ~ 1.031yr .

Remark: In classical mechanics, the force p**(s) is equal to the acceler-
ation at time s, which is a vector lying in a fixed three-dimensional
vector space. In special relativity, the three-dimensional space {d(s)}+
may vary along the worldpath. Thus, it is inappropriate to think of
p**(s) as an intrinsic acceleration. However, we may interpret p**(s)
as an acceleration relative to the reference frame Fq(,) at time s (see

§5.7).

If £ is the worldpath of a spaceship, then a g-force may be produced by firing
rockets. We consider this example in §6.3. If p describes the worldpath of
an electromagnetically charged particle, then the g-force is proportional to
F(p(s))d(s), where F is the electromagnetic field. This example will be
considered in §7.3.

5.7 Relative Parameterizations

Let a Minkowskian spacetime £ and a world-direction d € F; be given.

As an application of Thm. 5401, we consider the following question: How
do worldpaths with respect to < compare to worldpaths with respect to <47
Since a worldpath is defined using a specific precedence relation, what is a
worldpath with respect to one precedence relation may not be a worldpath
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with respect to another. For clarity and brevity, we call a worldpath with
respect to < a <-worldpath, and we call a worldpath with respect to <g
a <g-worldpath. It can be shown that if £ is a <-worldpath, then £
is also a <g-worldpath (the proof of this is left as an Exercise). But the
converse is not necessarily true — £ may be a <g-worldpath, but fail to
be a <-worldpath. We now proceed to investigate under which conditions
a <g-worldpath is a <-worldpath. To this end, let a <g-worldpath £ be
given.

Our first goal will be to determine a time-parameterization (with respect to
Fa) of L. We proceed as in the proof of Thm. 2306.

To this end, we fix ¢ € L. As a result of Thm. 2401 and Def. 5400, we see
that the mapping (t4)% : £ — R (see Not. 2302) is given by

(ta)z(z) = ta(g,2) = —(z —¢) - d

for all z € L. For brevity, we put t} := (ta)%, as this timelapse function
depends not on the particular events in £, but on the instants to which they
belong. As in the proof of Thm. 2306, we put J := Rng f?j, and define
pa : J — L to be such that t%(pa(s)) = s for all s € J. We see that pq is
the desired time-parameterization (with respect to Fq) of £, and we call it
the time-parameterization relative to the world-direction d.

Put V) := {d}* and &, := ¢+ V., which is a flat in £ with direction space
V.. Since V| is a positive-regular subspace of V, £ has the natural structure
of a genuine Euclidean space. Recall that there is a natural bijection between
Fa xT'q and & (see the remark following Thm. 4202). We wish to use this
bijection to “decompose” pg. For convenience, however, we identify the
reference frame Fyq with £, via the Euclidean isomorphism which assigns to
each event z € £, the location z + Rd in Fq. We also identify I'q with R
via t, where 1 is the instant to which ¢ belongs (see Def. 2405). Thus, we
may consider ® (see Thm. 4201) to be the mapping ® : £, xR — £ given
by
D(z,8) :=z+&d

for all (z,€) € €L xR
As a result, we may determine a mapping p; : J — £, which satisfies

pa(s) = @(pL(s),s) =pi(s)+sd (57.1)
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for all s € J. If pq is smooth, then so is p; in this case, we put v := p7.
We illustrate a two-dimensional example in Figure 57a.

Figure 57a

Armed with this time-parameterization of £, we are in a position to return
to our original question of when <4-worldpaths are <-worldpaths. We have
the following Theorem, where by a smooth worldpath we mean a worldpath
with a smooth time-parameterization.

5700 Theorem: Let d € F; and a smooth <4q-worldpath L be given. Let
pa :J =& andp, : J— & be as described above. Then L is a smooth
material <-worldpath if and only if [p% (s)| < 1 for all s € J.

Proof: Assume that £ is a smooth material <-worldpath, and let a genuine
interval I in R and a mapping p : I — & be such that p is a smooth
time-parameterization of £. Since Rng pg = Rng p = £, we may find
a smooth bijection o : I — J such that

p(t) = pa(a(t)),
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and hence (see (57.1) and recall that v = p")

p*(t) = pala(t))er (t)

o (#)(d + v(a(t))) (57.2)

for all £ € I. From Prop. 3409, we know that Rng p* C Fi, and hence
it follows from (57.2) and Cor. 5205 that

0>d-p(t) = —a" (),

and hence a*(t) > 0 for all ¢t € I. Using this fact and taking the inner
product of each side of (57.2) with itself yields that |v(a(t))| < 1 for
allt € I. Since « : I — J is a bijection, the first half of the Theorem
is proved.

The reverse implication is left as an Exercise. O

Remark: We note that with g : I - 1+Pand v : I — [0,1] given by

and

for all £ € I, we have

1
Y=\ e
and
p(t) = p(t)(d + v(a(t)) (57.3)

for all ¢ € I (compare this with Thm. 5401).

How may we interpret this result? p, describes a path in the genuine Eu-
clidean space £,. This gives the interpretation that, for ¢ € I, v(a(t)) is
the velocity of £ at p(t) with respect to Fq, and that v(t) is the speed of
L at p(t) with respect to Fq. Hence we may interpret the last statement
of the previous Theorem as follows: L is a smooth material <-worldpath if
and only if the speed of £ with respect to Fq is strictly less than 1. In the
literature on relativity, this result is often described by the phrase, “Mate-
rial particles must travel at a speed that is strictly less than the ‘speed of
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light’. ” In the framework used here, the “speed of light” is the same as the
number one (see the end of §5.3).

Now that we have an interpretation of the velocity of £ with respect to Fq,
it is natural to ask about the rate of timelapse along £ with respect to Fg.
Hence, we consider the mapping

(t = talg,p(t)) =thop : I >R
Note that for ¢ € I, we have
(t§ o p)(t) = talg,p(t) = —(p(t) — ¢) - d.
Hence, we see from (57.2) that
tlop)r=-p -d=a" =p.

Thus, u gives the rate at which time elapses along £ with respect to F4. In
the case that y is constant, the reader may verify that

Ed(xa y) =p E[, (.’II, y) (574)

for all z,y € L. In this case, p is called the time-dilation for £ with respect
to Fq (see the paragraph following the proof of Thm. 5401).

Finally, we return to the discussion about acceleration relative to the refer-
ence frame Fgq begun at the end of §5.6. To this end, let £ € I be given, and
put d := p*(t). It is left as an Exercise to verify that we have

p*(t) = v*(alt),

and hence p**(t) may be considered as the acceleration relative to the frame
Fq. That frame, of course, may vary with ¢.

5.8 Interstellar Travel

In this section, we present a detailed example which incorporates several
of the ideas discussed in this chapter. To this end, suppose that Dick and
Jane are twins. At the given event g, the event of their 20" birthday which
they celebrate together, Jane decides to take an interstellar journey, never
to return to Earth. She decides to travel so that the g-force v experienced
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by her spaceship is approximately one Earth gravity, so as to guarantee a
comfortable ride. A value of v = 1lyr~! ~ 0.97¢g would not be a bad choice.
She also decides to travel “on a straight path away” from Earth, so that the
worldpath of her journey, althought not straight, lies in a two-dimensional
flat in £.

Thus, if py : P — &£ were a smooth time-parameterization of Jane’s world-
path, and we put d := p%, the above description of Jane’s worldpath would
be equivalent to:

L. ps(0) =g,
2. dim Rng p;y =2, and

3. d:

Py =7.

Our immediate goal is to find a worldpath whose time-parameterization p
satisfies these conditions.

In view of (56.1), we have d*(s) € {d(s)}* C V*U{0}, and hence
d*(s)| = v/d*(s) - d*(s) makes sense for all s € P.

Put dp :=d(0) and e := %d'(O). Thendg-dyp = —1,e-e=1,and dyp-e = 0.
Since dim Rng p = 2, (dg, e) must be a list-basis of Lsp Rng d, and hence
there are continuously differentiable functions a, 8 : P — R such that

p7(s)| =

d = ady + e,

and hence
d* =a'dy + Se.

By the definition of dg and e, we have
a(0) =1, p(0) =0, «*(0) =0, and B*(0) = 1. (58.1)
The condition d - d = —1 gives
ot —p%=1, (58.2)
and the condition d* - d* = 2 gives

B2 —at? =2 (58.3)
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Using elementary calculus, one finds that the relations (58.1)—(58.3) are
satisfied if and only if for all s € P, we have

a(s) = cosh(vys)

and
B(s) = sinh(ys),
so that
d(s) = cosh(ys)dg + sinh(ys)e (58.4)

for all s € P. By Cor. 3410, the mapping p; : P — &£ defined by
s 1
pi(s) =q+ / d=g+ ;(Sinh(’ys)do + (cosh(ys) —1)e) (58.5)
0

for each s € P is the time-parameterization of a material worldpath. The
range of this worldpath is in a two-dimensional flat in £; namely, the planar
flat P := g + Lsp {do, e}. Note that if we define y,z : P — R by

y(s) == %sinh(vs) and z(s) = %(cosh('ys) -1)

for all s € P, we see that  and y satisfy the equation

(1+7z)* = (v)* =1,

which shows that the worldpath parameterized by p; is a branch of a hy-
perbola in the planar flat P (see Figure 58a).

Figure 58a
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We also note that (58.4) may be rewritten as
d(s) = cosh(ys)(dg + tanh(vys)e) (58.6)

for all s € P, which the reader may compare with Thm.5401(1). A complete
discussion of this relationship is provided below.

Remark: In a two-dimensional genuine Euclidean space, the analogous
problem would yield an arc-length parameterization of a circle. The
details are left as an Exercise.

Hence, we see that Jane’s worldpath J may be parameterized by py : P —
& as given in (58.5). We assume that Dick’s worldpath is straight (we
ignore the gravitational effects of the Earth and the gravitational forces
between the Earth, Moon, and Sun — consideration of these effects lies in
the domain of general relativity). Hence, Dick’s worldpath D has the time
parameterization pp : P — &, given by

pp(t) :==q+1tdy forallteP. (58.7)

Now suppose that at his time t., Dick emits a signal (i.e., sends a message)
to Jane. When will Jane receive the message?

We begin by finding the worldpath of the signal that Dick is sending. It is
easy to see from our choices of dy and e that dy + e is a signal vector; i.e.,
(do+e)-(dg+e) = 0. Since the event of the message being sent is pp(t.), the
worldpath of the signal is included in the half-line M := pp(t.) + P(dy + €)
(see Figure 58b, where the worldpath of the signal is represented by the
dashed line). Hence, if Jane receives Dick’s message at her time s, then we
must have py(s) € M, and hence (ps(s) —pp(te)) - (do + €) =0; i.e.,

1 1
((; sinh(~ys) — te) do + ;(cosh(’ys) - 1)e> -(dg+e)=0.
Sincedg-e=0,dp-dyg = —1, and e - e = 1, this is equivalent to
" sinh(ys) — fe = - (cosh(ys) — 1)
—sinh(ys) — t¢ = —(cosh(vys) — 1),
g Y
from which we obtain by an easy calculation

1
to = —(1— ).
"
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Hence, if Dick sends his message at his time ¢, then Jane receives the mes-
sage at her time s = —y~1log(1 —7t.). Since the domain of our parameteri-
zation is P, we must have t, € [0,7~![ since s € P. In other words, Jane can
receive a message from Dick only if he sends it before his time y~!. Hence, if
we select v = 1yr~! (if Jane weighed 130 lbs.on Earth, she would weigh 126
Ibs. during her trip), then Jane can never know what happens to Dick after
his 21%¢ birthday (since she can receive no messages from Dick), even if she
lives forever! This is equivalent to the observation that g + dy + P(dg + €)
is an asymptote to Jane’s hyperbolic worldpath.

Now suppose that at her time s, Jane receives Dick’s message and imme-
diately responds. When will Dick receive the response? Let t, be the time
that Dick receives the response. In order for Jane’s signal to reach Earth,
it must be sent in the direction dg — e, and hence the worldpath of such a
signal must be included in the half-line P := p;(s) + P(dy — e) (see Figure
58b). Hence, analogous to the previous situation, we must have pp(t,) € P,
and hence (pp(t,) — ps(s)) - (dg — e) = 0. This results in the relationship

1
tr = —(e7° —1).
Ty

Figure 58b

So, if Dick wanted to send Jane messages so that she would receive them on
her birthdays, he would do so according to the following chart (recall that
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Jane left Earth when she and Dick both turned 20): if Dick sent a birthday
greeting at his time ¢, after Jane left, Jane would receive it at her (20 + s)"
birthday, and Dick would receive a “Thank you” at age 20 + ¢, years. 7 is
taken to be 1yr~! in the calculations in the following chart. Any message
sent at time ¢, > 1 would never be received by Jane.

te

s | months | years t,

1.0 7.59 0.632 | 1.72

2.0 | 10.38 | 0.865 | 6.39

4.0 | 11.78 | 0.982 | 53.60

5.0 | 11.92 | 0.993 | 14741

Remark: We may consider the previous example (and Figure 58b) as an
illustration of Prop. 5304, with £ taken to be the worldline that
includes the halfline D and “e” replaced with “py(s)”. With this
interpretation, we have that “2” is given by pp(%£%). In addition, we

see that

tr — te

dst(ps(s), L) = 5

Consider now the scenario where Jane makes a journey to a distant star,
and then returns to Earth. She leaves, as before, on the occasion of her and
Dick’s 20" birthday. When she returns (say 15 years later, her time), she
finds that Dick has become a grandfather and has already retired! In fact,
she is not even half Dick’s age. How can this be?

Let ¢ be the event of Jane’s departure, and r be the event of Jane’s reunion
with Dick. Then the events of Jane’s voyage form a worldpath from ¢ to
r, as do the events in Dick’s life from the time his sister left to the time
she returned. We again assume that Dick’s worldpath is straight (we ignore
gravitational effects), and we also assume that Jane travels so as to maintain
a constant g-force v inside her spaceship. As we will see later on, it takes
Jane less time to get from ¢ to r than Dick, and thus Jane’s worldpath is not
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straight. In fact, the magnitude of the g-force is related to the “deviation”
of Jane’s worldpath from a straight worldpath.

Let D be the worldpath of Dick on Earth and S be the worldpath of the star
to which Jane travels. We assume that these worldpaths are parallel so as to
keep our discussion in two dimensions. We assume that Jane travels directly
towards the star on her journey out and directly towards the Earth on her
return in the following manner: she burns her rockets so that she travels
towards the star, then halfway along the way, she turns her ship around and
continues to thrust her rockets so as to maintain a constant g-force v inside
her spaceship. This has the effect of “slowing down” her ship so that Jane
does not crash into the star. She then makes her journey back to Earth in
an analogous way. Thus, Jane’s worldpath J can be modelled by piecing
together four hyperbolic sections of the worldpath described above, as shown
in Figure 58c.

Let hy be the event that is half-way in Jane’s travel to the distant star.
Then up to this point, we may parameterize Jane’s worldpath as in (58.5).
As before, we parameterize Dick’s worldpath as in (58.7). Then dj is the
world-direction of Dick’s worldpath; let hp be the event on D such that
hp — hy € {do}™*, let t; be the time that it takes Jane to get to hy, let tp
be the time that it takes Dick to get to hp, and let d be the distance from
Jane to the Earth when Jane is at hy (see Figure 58c).
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Figure 58¢

Given the parameterizations of Jane and Dick as in (58.5) and (58.7), we
find that

hy=pi(ts) =g+ ;ly(sinhm)do + (cosh(1t7) - 1)e)

and
hp =pp(tp) = g + tpdo.
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Since hy = hp + de, we have

1
tD = ; Sinh(’)’tj) (588)

and

d= %(cosh(’ytj) —1). (58.9)

We now assume that the distance from the Earth to the star to which Jane
travels; i.e., the distance between the parallel worldlines § and D, is D
light-years, and the duration of the trip is Ty years for Jane and Tp years
for Dick.

We use (58.8) and (58.9) to conclude that

1\? 1
tD:\/(d‘f‘—) - =5
Y Y
and, since D = 2d and Tp = 4tp, that
D 1\? 1
Tp=M&/({Z+>) - 2.
i \/(2+7) 72

From (58.8), we have t; = %arc sinh(ytp), and since Ty = 4ty and Tp =
4tD7

Ty = éar(: sinh (@) .
y 4

For v = lyr~! and some specific values of D, the corresponding values of
Ty and Tp are given in the chart below (all data are in years (or light-years)
and are approximate).
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Star system D Ty Tp
a Centauri 4.3 7.3 11.9
Sirius 8.7 9.4 21.0
Vega 26.5 | 134 | 58.9
Center of Milky | 30,000 | 41.2 | 60,000
Way

In order to give an interpretation of this chart, suppose that Dick and Jane’s
20" birthday takes place on 1 January 5000. If Jane took a trip to o
Centauri and back, she would be 27 upon her return, while Dick would be
almost 32. If she made a trip to Vega and back, she would be 33 when
she returned, but Dick would be almost 80! This phenomenon is sometimes
referred to as the twin paradoz.

The next chart shows how the duration of Jane’s trip varies with different
values of y. (The various values of -y are for comparison only; Jane could not
survive a journey with v = 10yr~! because she would be crushed weighing
1260 1bs. all the time, while weighing only 130 Ibs. on Earth.) We tabulate
this data for a trip to a Centauri; hence D = 4.3 in all calculations.

vy | D | Ty | Tp

0.5 | 43109  14.5
1.0 | 43| 73 | 119
3.0 |43 36 | 9.8
10.0 | 43| 1.5 | 9.0

Finally, we apply some results from §5.7, and we use the notation developed
therein. Comparison of (58.6) with (57.3) (where we recall that d := p* in
(58.6)) yields

p(s) = cosh(ys)

for all s € P, and consequently

v(s) = tanh(vys)
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for all s € P. Thus, we may calculate the speed of Jane relative to Dick
for s € P. Note that as s gets large, v(s) approaches 1. Although p is
not constant (as in (57.4)), it follows from (58.8) and the fact that p; is a
time-parameterization that

ay (4,p5(5)) = S“f#ty(q,pj(s))

for all s € P*.

Exercises

EXERCISES, 1

1. Prove Prop. 5102.

2. Complete the proof of Prop. 5106.
3. Prove Cor. 5108.

4. Prove Prop. 5110.

5. Show that the proposed restatement of Thm. 5201 (as given in the
Pitfall following the proof of Prop. 5202) is false.

6. Complete the proof of Thm. 5204.
7. Complete the proof of Thm. 5300.
8. Complete the proof of Prop. 5304.
9. Verify that <4 (see Def. 5400) is reflexive, transitive, and total.

10. Given a Minkowskian spacetime £ and d € Fi, show that <4 and tq
(see Def. 5400) give £ the structure of a classical timed eventworld.

11. Given a Minkowskian spacetime £ and d € Fi, show that
Fa={¢+Rd[q e’}

is a reference frame (see Def. 4200).
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15.

16.
17.

18.
19.
20.

21.
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With Fg as in the previous Exercise, show that the distance function
dg for Fq (see Thm. 4202) satisfies (54.1).

Show that the precedence relation < in a Minkowskian spacetime is
relativistic and the future cone F is closed (see Thm. 5300).

Given a Minkowskian spacetime &£, show that for all z,y € £, © < y if
and only if we have z <q y for all d € F; (see Def. 5400).

Consider the scenario at the beginning of §5.5, but suppose now the
direction of motion of the person is opposite that of the train, so that
the diagram in Figure 55b is as follows.

Figure Ex5(a)

Find an expression for v in terms of vy and vs.
Show that the inner product on V is continuous.

Let £ be a Minkowskian spacetime. Show that if £ is a <-worldpath,
then £ is a <g-worldpath for all d € F.

Complete the proof of Thm. 5700.
Verify (57.4) in the event that p is constant.
Show that p**(t) = v*(a(t)) (see the end of §5.7).

State and solve the problem alluded to in the Remark following (58.6).

EXERCISES, 11

1.

Let V be a non-genuine inner-product space (with arbitrary signature).
Show that i is totally singular (see Def. 5104) if and only if U C U~.
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2. Let V be an inner-product space. Show that knowledge of u - u for all
u €V is sufficient to determine u - v for every u,v € V.
3. Let V be an inner-product space such that sig”V =1 and dim V > 2.
(a) Show that for all u,v,w € V', we have
(u-v)(v-w)(w-u) <0.

(Hint: Consider z := (v - w)u — (u- w)v and use Prop. 5200.)
(b) Define the relation ~ on V~ by

u~v <= u-v<yo0

for all u,v € V~. Show that ~ is an equivalence relation on V—,
and that the corresponding partition of V™ is given by

{F\V, (=F)\ V%,

where F is one of the linear cones in the decomposition described
in Thm. 5204.

(c) Define the relation ~ on (V= U V%)X by
u~v:<= u-v<y0

for all u,v € (V= UVY%)*. Decide whether or not ~ is an equiva-
lence relation.

4. Let £ be a Minkowskian spacetime. Show that knowledge of the world-
directions; i.e., members of F7, is sufficient to determine u-v for every
u,vev.

5. Let a basis {b1, bo} (which is not necessarily orthogonal) of R? be given.
Assume that an inner product (u,v) — u-v on R? is given. Show that
there are «, 8, € R such that

u-v = auivy + B(ui1ve + ugv1) + Yugvs

for all u,v € R?, and find expressions for a, 3, and «y in terms of b; and
by. In addition, show that the inner-product space R? has signature
(1,1) if and only if 82 > ay.

In the remaining Exercises for this section, let £ be a Minkowskian spacetime
with translation space V.
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Let di,ds € F; be given. Since p := —d; -dg > 1 (see Thm. 5401),
we may define
a := arc cosh y.

We call a the pseudo-angle between d; and ds. If v is the relative
speed between d; and do, show that v = tanh a.

Suppose that di,dy,d3 € F; all lie in the same plane, as in the fol-
lowing diagram.

Figure Ex5(b)

Further, suppose that « is the pseudo-angle between d; and dy and
B is the pseudo-angle between ds and ds. Show that a + 8 is the
pseudo-angle between d; and ds.

. Let £ and L5 be two straight material worldlines. Show that the

nonempty sets {dst(g,L2)|q € L1} and {dst(q,L1)|g € L2} have a
minimum, and that

indst(g, Lo) = min dst(qg, £1).
min (g, L2) min (g, L1)

If 1,92 € £ and di,d2 € F; are such that £; = g1 + Rd; and also
Lo = ¢go + Rds, find this common distance in terms of g1, g2, d1, and
ds.

. Suppose that p is a time-parameterization of a material worldpath, L.

Show that p + p° is a time-parameterization of a material worldpath
(say, M) if and only if p** = 0. If this is the case, show that £ and M
are straight and parallel, and determine d € F; such that M = £L+d.

Using the notation of §5.7, show that a(s) = s for all s € I if and only
if p, is constant; that is, p, (s) = p, (¢) for all s,¢ € I. Show also that
in this case, £ is a straight worldpath with world-direction d.
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11. Assume that dim £ = 2, and let p € £ be given. For each d € Fy,
define vq : F — P by requiring that for every v € F, v4(v) be the
g-force necessary to travel from p to p + v along a path of constant
g-force such that the initial world-direction is d. Let v € F be given.

(a) Show that

2uv
IYd(v) - T(V)’
where
v 1
=—_—.d d =4/1 - =.
I ™ an v 2

(b) Show that the timelapse along this path of constant g-force from
p to p+ v is given by

arc sinh m.

Ya(v)

(c) Suppose that e € V is such that e-d = 0 and e - e = 1. Define
e : V= Rby

0 ifv-e=0,
-1 ifv-e<0

1 ifv-e>0,
oe(V) ::{

for all v € V, and also define 74 : F — R by
Fa(v) := 0e(v)T(v)*7a(v)

for all v € F. Find w € V such that yq(v) =w-v for all v e F.

(d) Discuss in detail the analogous problem in a two-dimensional gen-
uine Euclidean space.
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EXERCISES, III

1. Consider the hyperbola in R? defined by the set of all pairs (z,7) € R?
which satisfy
22— K22 =1,

where k € P* is given. Show that if (z,y0) is any point on the
hyperbola (i.e., (wo,yo) satisfies 22 — k?y?2 = 1) and if the vector
(z1,v1) is tangent to the hyperbola at (zg,yo), then

zoz1 — k*yoy1 = 0.

Remark: Minkowski [3] used this idea as a geometric interpretation
of orthogonality in a non-genuine Euclidean space.

2. In a two-dimensional Euclidean plane £ with translation space V, let
a hyperbola H be given with center ¢. Let v,w € V and p € H be
given such that Rv and Rw are lines parallel to the asymptotes of
and such that p — ¢ = v + w. Show that v — w is tangent to # at p.

3. Let an inner product on R? be defined by
(u1,u2) - (v1,v9) := u1v1 — 4dugvs
for all (u1,us), (v1,v2) € R2.

(a) What is sigtR?? sig"R??

(b) Describe all positive-regular and negative-regular subspaces of
R

(c) Find all subspaces of R? such that U = U+, if any.

4. Let an inner product on R? be defined by
(ul,uz,u?,) . (’01, V2, ’03) = Uui1v1 — 4U2U2 + u3v3
for all (u1, ug, U,3), (’Ul, v2, U3) € R3.

(a) What is sigtR3? sig R3?

(b) Describe all positive-regular and negative-regular subspaces of
R3.
(c) Find all subspaces of R® such that ¢ = Y+, if any.
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5. Let £ be a two-dimensional Minkowskian spacetime, and suppose that
{b1, by} is a basis for V such that b; - b; =1 and by - be = —1. (Do
not assume that by - be = 0.) Let v € V be given, and suppose that
v1,V9 € R are such that v = v1by + vabs.

(a) Show that
(b1 . bg)(bg . V) + b1 A"
(b1 . b2)2 +1 ’

v =

and find an analogous expression for vs.
(b) Show that v-v =0 if and only if

U1=U2(—5+vﬁ2+1> or ’01202(—ﬁ—\/52+1);

where 3 := by - bo.

6. Consider the example given in Chapter 2, Exercise 11,2, with &k := 1,
and put R := P{(1,1)}. Show that if d € F; is given, then we may
choose e € {d}* (with |e| = 1) such that relative to the physical
spacetime diagram, e and d are of the same apparent length and make
the same apparent angle with R.

Remark: That the apparent lengths and angles of d and e are the
same has no physical significance. This is merely coincidental
and depends only on the choice of units (i.e., measuring “time”
in seconds and “distance” in light-seconds). A different choice of
units would have the effect of widening or narrowing the apparent
future cone in our spacetime diagram. We adopt the convention
of graphically depicting the future cone at an angle other than a
right angle so as to remind the reader of the intrinsic geometry
of spacetime diagrams; the extrinsic geometry of such diagrams
(i.e., apparent length and angle) offers little insight into the in-
trinsic geometry of spacetime.

For the remainder of the Exercises in this section, assume that £ is a
Minkowskian spacetime with translation space V.

7. Let g € £ and v € FNV~ be given. (Note: We do not assume that
v:v = —1.) Find a time-parameterization of the worldpath g + Pv.
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. Let £ be a straight material worldpath with world-direction u € Fy,

and let e € £ be given. Show that
(a) a:=(e—q)%2+ ((e — q) -u)? is independent of ¢q € L,
(b) @ >0, and

(c) dst(e, £) = /.

Let d; and ds be two distinct world-directions, and let pu,v € P* and
e; € {di}*, ey € {do}*, with |e;| = |es] = 1, be determined such
that

do = pu(di +ver) and di = p(ds + veq).

Let v € V be given.

(a) Show that there is exactly one combination of 71,79,01,d02 € R,
fi € {dl,el}L, and fy € {dg,eg}J‘ such that

v = 11d; + d1e1 + f1 = 7odg + dgeg + 5.
(b) Show that f; = f5.
(c) Find formulas that express 75 and d2 in terms of y, v, 71, and §;.

Let two different world-directions d;,ds € F; be given. Also, let two
events z,y € £ with x < y be given. Denote the timelapses between z
and y relative to d; and do, respectively, by

T = td1 (,’E,y) and T2 1= tdz (-’E,y)

Let e; € {d1}* and ey € {d2}* with |e;| = |e2| = 1, v €]0,1], and
i1 € 1 4+ P* be determined such that

do = p(di +ver) and di = p(d2 —ves).

Put
dp:=e;-(y—=x) and dr:=es-(y—x).
(a) Find a formula for 72 in terms of 71, d1, and v.

(b) Find a formula for d5 in terms of 71, é1, and v.

Calculate p; and « (as in §5.7) when p is the parameterization given
in (58.5).



EXERCISES 171

12.

13.

For every t € P, we denote by r(t) the event on Jane’s worldpath that
is simultaneous with pp(t) relative to dg. With the notations in §5.8,
find the “relative speed” between Dick and Jane at a time t along
Dick’s worldpath by the following two methods:

(a) Find the function ¢ : P — P defined by

d(t) :=dstq, (pp(t),7(t))

for all ¢t € P and determine the “relative speed” function d°.

(b) Given t € P, let u(t) be the world-direction of Jane’s worldpath
at the event r(¢). Using Thm. 5401, determine the relative speed
v(t) between the world-directions dy and u(¢).

Are v(t) and §°(t) equal for all ¢ € P? If not, explain why. Show that
these expressions tend to 1 as ¢ gets arbitrarily large.

Let two spaceships A and B having different straight worldpaths £ 4
and Lp, respectively, be given. Assume that £4 and Lp have some
event in common.

Now assume that spaceship A sends out a radar signal that is reflected
by B. When the reflected signal is received by A, a second signal is
sent out immediately by A which is again reflected by B. Let o1 [09]
be the timelapse between the emission of the first [second] signal by A
and the reception of the corresponding reflected signal by A. What is
the relative speed of A and B?

EXERCISES, IV

1.

Let V be an inner-product space, and define ind V := min{sig™V,sig"V}.
Consider the following Lemma.

5800 Lemma: For every totally singular subspace U of V such that
dim U < ind V, there is some totally singular subspace W of V different
from U such that U C W C U*.

(a) Define sig’V to be the maximum among the dimensions of all
totally singular subspaces of V. Using the Lemma, show that
sig’V = ind V.



172 CHAPTER 5. MINKOWSKIAN SPACETIMES

(b) Using the Lemma, show that if &/ = U+, then U is totally singular
and dim / = ind V. In addition, show that in this case we have
sigtV =sig V =ind V.

(c) Give an example in an inner-product space to show that the con-
verse of (b) is not necessarily true; i.e., exhibit a totally singular
subspace U of V such that dim & = ind V and U C U+, but
U+U+t.

(d) Use (a) to show that if sig7V = 1 and u,v € V° are such that
neither u nor v is a multiple of the other, then u - v # 0.

For the next two Exercises in this section, assume that £ is a Minkowskian
spacetime with translation space V.

2. Suppose that dim & = 2. Let e € £ and ¢ € Past(e) be given. Show
that there exists an event z € £ with the following property: There
exists u € F; such that e <, = and there exists v € F; such that
z <v ¢. You may show this geometrically (that is, graphically), but
be sure that your diagram is drawn accurately!

The <y-worldpath [e,z] and the <y-worldpath [z,q] would involve
speeds “faster than the speed of light” (see §5.7). Thus, motions
“faster than the speed of light” would enable one to reach events in
one’s past, which is absurd; one could, for example, kill one’s mother
before one was born!

3. Suppose that z,y € £ are given such that < y. Describe the set of
all z € £ such that x — z — y.

4. The results of Exercise 1,17 above might tempt us to conjecture that
for every precedence relation <’ on £ that is coarser than <, every
<-worldpath is also a <'-worldpath. Show that this is false with a
counterexample.



