
Chapter 5

Geometric Structures.

We assume in this chapter that numbers r, s ∈ ,̃ with r ≥ 3 and s ∈ 0..r,
a Cr manifold M and a Cs linear-space bundle B over the manifold M are
given. We also assume that both M and B have constant dimensions, and put
n := dimM and m := dimB − dimM. Then we have n = dim TxM and
m = dim Bx for all x ∈M.

51. Compatible Connections

Let x ∈M be fixed. Let Φ be an analytic tensor functor and let E ∈ Φ(Bx)
be given.

Notation: We define the mapping

E� : TlisxB → Φ(B) (51.1)

by
E�(T) := Φ(T)E for all T ∈ TlisxB. (51.2)

Since Φ is analytic, it is clear that E� is differentiable at 1Bx
.

Proposition 1: We have ∇1Bx
E� ∈ Lin (SxB,TEΦ(B)) and, for every bundle

chart φ ∈ Chx(B,M),

(∇1Bx
E�)s = AΦ(φ)

E Pxs + IEΦ
•

x

(
Λ(Aφ

x)s
)
E (51.3)

for all s ∈ SxB.

Proof: By using (51.2) and the definition (23.21) of gradient, we obtain the
desired result.

Taking the gradient of E�
∣∣Φ(Bx)

LisBx
at 1Bx

, we have(
∇1Bx

E�∣∣Φ(Bx)

LisBx

)
L =

(
Φ

•

x(L)
)
E (51.4)

for all L ∈ LinBx. For the sake of simplicity, we use the following notation

E◦ := ∇1Bx

(
E�∣∣Φ(Bx)

LisBx

)
. (51.5)
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Given r ∈ \{0}, we observe from (51.5) that (rE)◦ = rE◦ and hence

Null E◦ = Null (rE)◦. (51.6)

It is follows from (51.3) and (51.4) that

Px = PE(∇1Bx
E�) and (∇1Bx

E�)Ix = IEE◦,

i.e. the diagram

LinBx
Ix−−→ SxB

Px−−→ TxM

E◦

y ∇1Bx
E�

y
∥∥∥∥∥

Φ(Bx) IE−−→ TEΦ(B) PE−−→ TxM

(51.7)

commutes. And it also clear from (51.3) that

AΦ(φ)
E = (∇1Bx

E�)Aφ
x ∈ RconEΦ(B) (51.8)

for all bundle chart φ ∈ Chx(B,M). More generally, we have

(∇1Bx
E�)K ∈ RconEΦ(B) for all K ∈ ConxB. (51.9)

In view of (51.9), the mapping ∇1Bx
E� induces the following mapping.

Definition: We define the mapping

JE : ConxB → RconEΦ(B)

by
JE(K) := (∇1Bx

E�)K for all K ∈ ConxB. (51.10)

Proposition 2: The mapping JE, defined in (51.10), is flat. Hence, for every
D ∈ Rng JE, J<

E ({D}) is a flat in ConxB with

dimJ<
E ({D}) =????.

Let a cross section H : M→ Φ(B), that is differentiable at x ∈M, be given.
The gradient of H at x is a tangent connector of Φ(B); i.e. ∇xH ∈ RconH(x)Φ(B).
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Proposition 3: We have

∇–KH = Λ
(
(∇1Bx

H(x)�)K
)
∇xH (51.11)

for all K ∈ ConxB and hence ∇–KH = 0 if and only if JH(x)(K) = ∇xH, i.e.
K ∈ J<

H(x)({∇xH}).

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1) and Re-
mark 1 of Sect. 32.

If K ∈ ConxB be such that ∇–KH = 0, then it follows from (51.11) that
Λ

(
(∇1Bx

H(x)�)K
)
∇xH = 0. Applyiny Prop.1 of Sect.14, we see that this can

happen if and only if (∇1Bx
H(x)�)K = ∇xH. Since K ∈ ConxB was arbitrary,

the assertion follows.

Now, let a differentiable cross section H : M→ Φ(B) be given.

Definition: A connection CM→ ConB is called a H-compatible connection
if ∇–C(x)H = 0 for all x ∈M, i.e.

∇–CH = 0. (51.12)

It clear from Prop.3 that a connection C is H-compatiable if and only if

JH(x)(C(x)) = ∇xH for all x ∈M. (51.13)

Proposition 4: Let connectors K1,K2 ∈ J<
H(x)({∇xH}) be given and determine

L ∈ Lin (TxM,LinBx) such that K1 −K2 = IxL; then we have

H(x)◦(Lt) = 0 for all t ∈ TxM. (51.14)
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52. Riemannian and Symplectic Bundles

We apply Sect.51 to the case when Φ = Smf2 or Skf2 (see example (4) of
Sect.13).

Let x ∈M be fixed and E ∈ Φ(Bx), Φ = Smf2 or Skf2, be given. We have

E◦(M) = E ◦ (M× 1Bx) + E ◦ (1Bx ×M), (52.1)

where E◦ is given in (51.5), for every M ∈ LinBx.

Proposition 1: If E is invertiable, then E◦ is surjective; i.e.

Rng E◦ = Sym2(B2
x, ) when Φ = Smf2 (52.2)

i.e., E ∈ Sym2(B2
x, ) and

Rng E◦ = Skw2(B2
x, ) when Φ = Skf2 (52.3)

i.e., E ∈ Skw2(B2
x, ).

Proof: By using (52.1).

Proposition 2: If E is invertiable, then the flat mapping JE defined in (51.10)
is surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and the sur-
jectivity of E◦.

In view of Prop.2 we see taht, for every D ∈ RconEΦ(B), the preimage
J<
E({D}) is a flat in ConxB. Let K1,K2 ∈ J<

E({D}) be given and determine
L ∈ Lin(TxM,LinBx) such that K2 − K2 = IxL. Applying (51.3), we have
0 = JE(K2)−JE(K1) = E◦(L), that is L ∈ Lin(TxM,NullE◦). Since K1,K2 ∈
J<
E({D}) were arbitrary, we conclude that

dimJ<
E({D}) = dim Lin(TxM,NullE◦). (52.4)

Definition: A cross section G : M→ Smf2(B) is called a Riemannian field
if, for every x ∈M, G(x) is invertiable when regard as element of Sym(Bx,Bx

∗).
A cross section S : M→ Skf2(B) is called a symplectic field of B if, for

every x ∈M, S(x) is invertiable when regard as element of Skw(Bx,Bx
∗).

We say that B is a Cs Riemannian linear space bundle if it is endowed
with additional structure by the prescription of a Cs Riemannian field.

We say that B is a Cs symplectic linear space bundle if it is endowed
with additional structure by the prescription of a Cs symplectic field.
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Remark 1: A symplectic field of B exist if and only if, for every x ∈ M,
m := dimBx is even (see Sect.11). If m is odd, then

Skw(Bx,Bx
∗) ∩ Lis(Bx,Bx

∗) = ∅.

Proposition 3: If G : M→ Smf2(B) is a Riemannian field, then

dim J<
G(x)({∇xG}) = n

(
m

2

)
for all x ∈M. (52.5)

If S : M→ Skf2(B) is a symplectic field, then

dim J<
S(x)({∇xS}) = n

(
m + 1

2

)
for all x ∈M. (52.6)

Proof: It following easily from (52.4), (52.2) and (52.3).

Remark 2: Let G be a Riemannian field and C : M → ConB be a G-
compatible connection. Let L : M→ LisB be a cross section with ∇–CL = 0 be
given. Then, it follows from ∇–CG = 0 and ∇–CL = 0 that ∇–C(G ◦ (L×L)) = 0.
Hence, the Riemannian field H := G ◦ (L× L) satisfies ∇–CH = 0.
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53. Riemannian and Symplectic Manifolds.

Definition: We say that M is a Riemannian manifold if the tangent bundle
TM is endowed with additional structure by the prescription of a Cr−1 Rieman-
nian field.

We say that M is a symplectic manifold if the tangent bundle TM is
endowed with additional structure by the prescription of a Cr−1 symplectic field.

Let a Riemannian field G : M → Syminv(TM,TM∗) of class Cr−1 be
given.

Proposition 1: For every x ∈M, the restriction

Tx

∣∣
J<
G(x)({∇xG}) : J<

G(x)({∇xG}) → Skw2(TxM2,TxM) (53.1)

of the torsion mapping Tx is bijective.

Proof: Given x ∈ M. If K1,K2 ∈ Conx(TM,M), then we have Tx(K1) =
Tx(K2) if and only if K1 −K2 = IxL for some L ∈ Sym2((TxM)2,TxM) and
hence

(G(x)L)(t,b,d) = (G(x)L)(b, t,d) (53.2)

for all t,b,d ∈ TxM.
Let K1,K2 ∈ J<

G(x)({∇xG}) with Tx(K1) = Tx(K2) be given and deter-
mining L ∈ Lin2((TxM)2,TxM) such that K1 −K2 = IxL. Applying (52.1),
(51.14) and (53.2), we have

(G(x)L)(t,b,d) = −(G(x)L)(t,d,b) = −(G(x)L)(d, t,b) =
= (G(x)L)(d,b, t) = (G(x)L)(b,d, t) =
= −(G(x)L)(b, t,d) = −(G(x)L)(t,b,d)

for all t,b,d ∈ TxM. This shown that G(x)L = 0. Since G(x) is invertible, we
observe that L = 0 and hence K1 = K2. In other words, the restriction

Tx

∣∣
J<
G(x)({∇xG}) : J<

G(x)({∇xG}) → Skw2(TxM2,TxM) (53.3)

of the flat mapping Tx is injective and hence bijective. Since x ∈ M was
arbitrary, the assertion follows.
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Proposition 2: For every x ∈M, we have

J<
G(x)({∇xG}) =

{
K− 1

2
IxG(x)−1

(
S (∇–KG)

)∣∣K ∈ Conx(TM,M)
}

(53.4)

where (
S (∇–KG)

)
= ∇–KG +∇–KG˜(1,2) −∇–KG˜(1,3).

Moreover, if K1,K2 ∈ Conx(TM,M) with Tx(K1) = Tx(K2), i.e.

K1 −K2 ∈ {Ix}Sym2(TxM2, TxM)),

then we have

K1 −
1
2
IxG(x)−1

(
∇–K1G +∇–K1G˜(1,2) −∇–K1G˜(1,3)

)
= K2 −

1
2
IxG(x)−1

(
∇–K2G +∇–K2G˜(1,2) −∇–K2G˜(1,3)

)
.

(53.5)

Proof: By (41.8), we have(
( xG)IxG(x)−1∇–KG

)
(s, t,u) = ∇–KG(s, t,u) +∇–KG(s,u, t),(

( xG)IxG(x)−1∇–KG˜(1,2)
)
(s, t,u) = ∇–KG(t, s,u) +∇–KG(u, s, t),(

( xG)IxG(x)−1∇–KG˜(1,3)
)
(s, t,u) = ∇–KG(t,u, s) +∇–KG(u, t, s);

(53.6)

for all s, t,u ∈ TxM. Observing ∇–KG ∈ Lin
(
TxM,Sym2(TxM2, )

)
, we see that

(53.4)) follows easily from (53.6).

The more general version of “the fundamental theorem of Riemannian ge-
ometry” follows immediately from Prop. 1:

Fundamental Theorem of Riemannian Geometry (with torsion):
For every prescribed torsion field L : M → Skw2(TM2,TM) of class Cs,

s ∈ 0..r− 2, there is exactly one G-compatible connection C, i.e. one satisfying
∇–CG = 0, such that T(C) = L. C is of class Cs.

Remark 1: When L = 0, the corresponding connection is called the Levi-
Cività connection.

Remark 2: It follows from Theorem 3 that for every connection C′ : M →
Con TM of class Cs, s ∈ 0..r − 2, there is exactly one connection C : M →
Con TM such that T(C) = T(C′) and ∇–CG = 0. Moreover, in view of Prop. 2,
we have

C = C′ − 1
2
IG−1

(
∇–C′G−∇–C′G˜(1,2) +∇–C′G˜(1,3)

)
. (53.7)
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Now let a connection C : → ConTM be given. We may define, for each
x ∈M, a mapping

AC
x : ConxTM→ Sym2(TxM2,TxM) (53.8)

by

AC
x(K) := Λ(C(x))K +

(
Λ(C(x))K

)˜ for all K ∈ ConxTM. (53.9)

Let a symplectic field S : M→ Skwinv (TM,T∗M) of class Cr−1 be given.

Proposition 3: For every x ∈M, the restriction

AC
x

∣∣
J<
S(x)({∇xS}) : J<

S(x)({∇xS}) → Sym2(TxM2,TxM) (53.10)

of the mapping AC
x is bijective.

Proof: Similar to the proof of Prop. 1.

Proposition 4: For every connection C and each prescribed symmetric field
L : M → Sym2(TM2,TM) of class Cs, s ∈ 0..r − 2, there is exactly one S-
compatible connection K, i.e. one satisfying ∇–KS = 0, such that AC(K) = L.
K is of class Cs.

Proof: It follows immediately from Prop.3.

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Geometry given
here is modelled on the proof given by Noll in [N1].

(2) In [Sp], Spivak, M. stated: “Perhaps its only defect [of the fundamental
theorem of Riemannian geometry] is the restriction to symmetric connections.”
We show that this restriction is not needed.
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54. Identities

Let a Cr, r ≥ 2, Riemannian manifold M with the Riemannian-field G be
given. Assume that dim M≥ 2.

For every A,B ∈ X(TM) and a connection C : M → Con(TM), we use
the following notations

〈A,B〉 := G(A,B) and ∇AB := (∇–CB)A.

Proposition 1: A connection C on a Riemannian manifold M is compatible
with the Riemannian-field G if and only if

A〈B,D〉 = 〈∇AB,D〉+ 〈B,∇AD〉 (54.1)

for all A,B,D ∈ X(TM).

Proof: Taking the covariant gradient of G◦(B,D) with respect to C, we obtain

(∇–C(G ◦ (B,D)))A = G((∇–CB)A,D) + G(B, (∇–CD)A).
+ (∇–CG)(A,B, D)

The equation (I.1) holds if and only if ∇–CG = 0.

For the sake of simplification, we adapt the following notation

〈〈X, Y, Z, T 〉〉 := 〈R(X, Y )Z, T 〉 for all X, Y, Z, T ∈ X(TM),

where R := R(C) is the curvature field for a given connection C. Also recall
that

R(X, Y, Z) = ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z

for all X, Y, Z ∈ X(TM).

Proposition 2: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

〈〈X, Y, Z, T 〉〉 = −〈〈X, Y, T, Z〉〉 (54.2)

for all X, Y, Z, T ∈ X(TM).

Proof: To prove (I.2) is equivalent to show

0 = 〈〈X, Y, Z, Z〉〉 = 〈∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z,Z〉.

Applying (I.1), we have

〈∇Y ∇XZ,Z〉 = Y 〈∇XZ,Z〉 − 〈∇XZ,∇Y Z〉
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and
〈∇X∇Y Z,Z〉 = X〈∇Y Z,Z〉 − 〈∇Y Z,∇XZ〉.

Hence

〈〈X, Y, Z, Z〉〉 = Y 〈∇XZ,Z〉 −X〈∇Y Z,Z〉+ 〈∇[X,Y ]Z,Z〉.

It follows from (I.1) and the symmetry of the Riemannian-field G that

1
2
A〈D,D〉 = 〈∇AD,D〉 for all A,D ∈ X(TM). (54.3)

And hence

〈〈X, Y, Z, Z〉〉 =
1
2
Y (X〈Z,Z〉)− 1

2
X(Y 〈Z,Z〉) +

1
2
[X, Y ]〈Z,Z〉

= −1
2
[X, Y ]〈Z,Z〉+

1
2
[X, Y ]〈Z,Z〉 = 0.

Since X, Y, Z ∈ X(TM) were arbitrary, the equation (I.2) follows.

Let C be a compatible connection with the Riemannian-field G.

Given x ∈ M. Since Rx(C) ∈ Skw2(TxM2,LinTxM), we observe form
Prop. 2 that

〈〈 · , · , · , · 〉〉 ∈ Skw2(TxM2,Skw2(TxM2, )).

Lemma : Let an inner-product space T , with dim T ≥ 2, and a two-dimensional
subspace S of T be given. If both {u,v} and {s, t} are bases for S, then we have

W(u,v,u,v)
(u ∧ v)(u,v)

=
W(s, t, s, t)
(s ∧ t)(s, t)

(54.4)

for all W ∈ Skw2(T 2,Skw2(T 2, )).

Proof: By calculations.

Applying the above Lemma, we arrive the following definition.

Definition : Let V ⊂ TxM be a two-dimensional subspace of TxM. Let {u,v}
be a basis for S. The sectional curvature of S at x is defined by

Kx(S) :=
〈〈u,v,u,v〉〉
(u ∧ v)(u,v)

(54.5)
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which does not depend on the choice of {u,v}.

Remark : The definition of sectional curvature “does not ” require the assuption
of the compatible connection C to be torsion-free.

Proposition 4: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

〈〈X, Y, Z,W 〉〉 − 〈〈Z,W,X, Y 〉〉 = V(X, Y, Z,W ) (54.6)

for all X, Y, Z,W ∈ X(TM).

Proof:

R(X, Y )Z ·W + R(Y, Z)X ·W + R(Z,X)Y ·W
+ R(Y,Z)W ·X + R(Z,W )Y ·X + R(W,Y )Z ·X
+ R(Z,W )X · Y + R(W,X)Z · Y + R(X, Z)W · Y
+ R(W,X)Y · Z + R(X, Y )W · Z + R(Y, W )X · Z

= ∇– T(X, Y, Z) ·W +∇– T(Y, Z, X) ·W +∇– T(Z,X, Y ) ·W
+∇– T(Y, Z, W ) ·X +∇– T(Z,W, Y ) ·X +∇– T(W,Y, Z) ·X
+∇– T(Z,W,X) · Y +∇– T(W,X, Z) · Y +∇– T(X, W, Z) · Y
+∇– T(W,X, Y ) · Z +∇– T(X, Y,W ) · Z +∇– T(Y,W, X) · Z
+ T(T(X, Y ), Z) ·W + T(T(Y,Z), X) ·W + T(T(Z,X), Y ) ·W
+ T(T(Y,Z),W ) ·X + T(T(Z,W ), Y ) ·X + T(T(W,Y ), Z) ·X
+ T(T(Z,W ), X) · Y + T(T(W,X), Z) · Y + T(T(X, Z),W ) · Y
+ T(T(W,X), Y ) · Z + T(T(X, Y ),W ) · Z + T(T(Y, W ), X) · Z

Proposition 5: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

tr
(
R(x)(s, ·) t−R(x)(t, ·) s + R(x)(t, s)

)
=???? (54.7)

for all s, t ∈ TxM.

Second Proof of Pro. 2:
In view of (I.1) we have, for all X, Y, Z, T ∈ X(TM),

〈∇Y ∇XZ, T 〉 = Y 〈∇XZ, T 〉 − 〈∇XZ,∇Y T 〉,

〈∇X∇Y Z, T 〉 = X〈∇Y Z, T 〉 − 〈∇Y Z,∇XT 〉
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and
〈∇[X,Y ]Z, T 〉 = [X, Y ]〈Z, T 〉 − 〈Z,∇[X,Y ]T 〉.

Hence

〈〈X, Y, Z, T 〉〉 = 〈∇Y ∇XZ, T 〉 − 〈∇X∇Y Z, T 〉+ 〈∇[X,Y ]Z, T 〉
= Y 〈∇XZ, T 〉 − 〈∇XZ,∇Y T 〉 −X〈∇Y Z, T 〉+ 〈∇Y Z,∇XT 〉

+ [X, Y ]〈Z, T 〉 − 〈Z,∇[X,Y ]T 〉
= Y (X〈Z, T 〉)− Y 〈Z,∇XT 〉 −X(Y 〈Z, T 〉) + X〈Z,∇Y T 〉
− 〈∇XZ,∇Y T 〉+ 〈∇Y Z,∇XT 〉+ [X, Y ]〈Z, T 〉 − 〈Z,∇[X,Y ]T 〉

= −Y 〈Z,∇XT 〉+ X〈Z,∇Y T 〉
− 〈∇XZ,∇Y T 〉+ 〈∇Y Z,∇XT 〉 − 〈Z,∇[X,Y ]T 〉

= −〈∇Y ∇XT,Z〉+ 〈∇X∇Y T,Z〉 − 〈∇[X,Y ]T,Z〉
= −〈〈X, Y, T, Z〉〉 .

Since X, Y, Z, T ∈ X(TM) was arbitrary, the assertion of Prop. 2 follows.

55. Einstein-tensor field

Let a Cr manifold M, with r ≥ 2 and dim M ≥ 2, and a Cr connection
C : M → Con (TM) be given. Assume that G : M → Sym2(TM2, ) be a
Riemannian-field compatiable with the connection C.

Let x ∈M be given and assume that the following condition hold

tr
(
R(x)(s, ·) t−R(x)(t, ·) s + R(x)(t, s)

)
= 0, (55.1)

i.e. we have

tr (R(x)(s, ·) t)− tr (R(x)(t, ·) s) + tr (R(x)(t, s)) = 0.

Since R(x)(t, s) is skew-symmetric with respect to G, we obtain that

tr (R(x)(s, ·) t) = tr (R(x)(t, ·) s) for all s, t ∈ TxM.

Definition : The Ricci-tensor field Ric : M→ Sym2(TM2, ) is defined by

Ric(x)(s, t) := tr (R(x)(s, ·) t) (55.2)

for all x ∈M and all s, t ∈ TxM.
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Definition : The Einstein-tensor field Ein : M→ Sym2(TM2, ) is defined
by

Ein(x) := Ric(x)− 1
2
tr (G−1(x)Ric(x))G(x) (55.3)

for all x ∈M. (The factor 1/2 is determined by the assumption dim TxM = 4!)

It follows from the 2nd Bianchi Identity (this condition should be weaken)
that

divC Ein = 0. (55.4)

Remark: The matter tensor field Mat : M→ Sym2(TM2, ) satisfying

Ein(x) = κ Mat(x) (55.5)

where κ ∈ is the universal gravitational constant. It follows from (Ein.4)
and (Ein 5) that

divC Mat = 0 (55.6)

(balance of world-momentum).
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