Chapter 5

Geometric Structures.

We assume in this chapter that numbers $r, s \in^{\sim}$, with $r \geq 3$ and $s \in 0 . . r$, a C^{r} manifold \mathcal{M} and a C^{s} linear-space bundle \mathcal{B} over the manifold \mathcal{M} are given. We also assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and put $n:=\operatorname{dim} \mathcal{M}$ and $m:=\operatorname{dim} \mathcal{B}-\operatorname{dim} \mathcal{M}$. Then we have $n=\operatorname{dim} \mathrm{T}_{x} \mathcal{M}$ and $m=\operatorname{dim} \mathcal{B}_{x}$ for all $x \in \mathcal{M}$.

51. Compatible Connections

Let $x \in \mathcal{M}$ be fixed. Let $\boldsymbol{\Phi}$ be an analytic tensor functor and let $\mathbf{E} \in \mathbf{\Phi}\left(\mathcal{B}_{x}\right)$ be given.

Notation: We define the mapping

$$
\begin{equation*}
\mathbf{E}^{\diamond}: \operatorname{Tlis}_{x} \mathcal{B} \rightarrow \mathbf{\Phi}(\mathcal{B}) \tag{51.1}
\end{equation*}
$$

by

$$
\begin{equation*}
\mathbf{E}^{\diamond}(\mathbf{T}):=\boldsymbol{\Phi}(\mathbf{T}) \mathbf{E} \quad \text { for all } \quad \mathbf{T} \in \operatorname{Tlis}_{x} \mathcal{B} \tag{51.2}
\end{equation*}
$$

Since $\boldsymbol{\Phi}$ is analytic, it is clear that \mathbf{E}^{\diamond} is differentiable at $\mathbf{1}_{\mathcal{B}_{x}}$.
Proposition 1: We have $\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond} \in \operatorname{Lin}\left(\mathrm{S}_{x} \mathcal{B}, \mathrm{~T}_{\mathbf{E}} \mathbf{\Phi}(\mathcal{B})\right)$ and, for every bundle chart $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$,

$$
\begin{equation*}
\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}\right) \mathbf{s}=\mathbf{A}_{\mathbf{E}}^{\boldsymbol{\Phi}(\phi)} \mathbf{P}_{x} \mathbf{s}+\mathbf{I}_{\mathbf{E}} \boldsymbol{\Phi}_{x}^{\dot{x}}\left(\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right) \mathbf{s}\right) \mathbf{E} \tag{51.3}
\end{equation*}
$$

for all $\mathbf{s} \in \mathrm{S}_{x} \mathcal{B}$.
Proof: By using (51.2) and the definition (23.21) of gradient, we obtain the desired result.

Taking the gradient of $\left.\mathbf{E}^{\diamond}\right|_{\operatorname{Lis}_{\mathcal{B}_{x}}} ^{\boldsymbol{\Phi}\left(\mathcal{B}_{x}\right)}$ at $\mathbf{1}_{\mathcal{B}_{x}}$, we have

$$
\begin{equation*}
\left(\left.\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}\right|_{\mathrm{Lis} \mathcal{B}_{x}} ^{\boldsymbol{\Phi}\left(\mathcal{B}_{x}\right)}\right) \mathbf{L}=\left(\boldsymbol{\Phi}_{x}^{\bullet}(\mathbf{L})\right) \mathbf{E} \tag{51.4}
\end{equation*}
$$

for all $\mathbf{L} \in \operatorname{Lin} \mathcal{B}_{x}$. For the sake of simplicity, we use the following notation

$$
\mathbf{E}^{\circ}:=\nabla_{\mathbf{1}_{\mathcal{B}_{x}}}\left(\mathbf{E}^{\diamond} \left\lvert\, \begin{array}{c}
\boldsymbol{\Phi}\left(\mathcal{B}_{x}\right) \tag{51.5}\\
\mathrm{Lis} \mathcal{B}_{x}
\end{array}\right.\right)
$$

Given $r \in \backslash\{0\}$, we observe from (51.5) that $(r \mathbf{E})^{\circ}=r \mathbf{E}^{\circ}$ and hence

$$
\begin{equation*}
\operatorname{Null} \mathbf{E}^{\circ}=\operatorname{Null}(r \mathbf{E})^{\circ} \tag{51.6}
\end{equation*}
$$

It is follows from (51.3) and (51.4) that

$$
\mathbf{P}_{x}=\mathbf{P}_{\mathbf{E}}\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}\right) \quad \text { and } \quad\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}\right) \mathbf{I}_{x}=\mathbf{I}_{\mathbf{E}} \mathbf{E}^{\circ}
$$

i.e. the diagram

$$
\begin{array}{llll}
\operatorname{Lin} \mathcal{B}_{x} & \xrightarrow{\mathbf{I}_{x}} \quad \mathrm{~S}_{x} \mathcal{B} & \xrightarrow{\mathbf{P}_{x}} & \mathrm{~T}_{x} \mathcal{M} \\
\mathbf{E}^{\circ} \mid & \nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\bullet} \downarrow & & \tag{51.7}\\
\boldsymbol{\Phi}\left(\mathcal{B}_{x}\right) & \xrightarrow{\mathbf{I}_{\mathbf{E}}} & & \\
\mathrm{T}_{\mathbf{E}} \mathbf{\Phi}(\mathcal{B}) & \xrightarrow{\mathbf{P}_{\mathbf{E}}} & \mathrm{T}_{x} \mathcal{M}
\end{array}
$$

commutes. And it also clear from (51.3) that

$$
\begin{equation*}
\mathbf{A}_{\mathbf{E}}^{\boldsymbol{\Phi}(\phi)}=\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}\right) \mathbf{A}_{x}^{\phi} \in \operatorname{Rcon}_{\mathbf{E}} \boldsymbol{\Phi}(\mathcal{B}) \tag{51.8}
\end{equation*}
$$

for all bundle chart $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$. More generally, we have

$$
\begin{equation*}
\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}\right) \mathbf{K} \in \operatorname{Rcon}_{\mathbf{E}} \boldsymbol{\Phi}(\mathcal{B}) \quad \text { for all } \quad \mathbf{K} \in \operatorname{Con}_{x} \mathcal{B} \tag{51.9}
\end{equation*}
$$

In view of (51.9), the mapping $\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}$ induces the following mapping.
Definition: We define the mapping

$$
\mathbf{J}_{\mathbf{E}}: \operatorname{Con}_{x} \mathcal{B} \rightarrow \operatorname{Rcon}_{\mathbf{E}} \boldsymbol{\Phi}(\mathcal{B})
$$

$b y$

$$
\begin{equation*}
\mathbf{J}_{\mathbf{E}}(\mathbf{K}):=\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}\right) \mathbf{K} \quad \text { for all } \quad \mathbf{K} \in \operatorname{Con}_{x} \mathcal{B} \tag{51.10}
\end{equation*}
$$

Proposition 2: The mapping $\mathbf{J}_{\mathbf{E}}$, defined in (51.10), is flat. Hence, for every $\mathbf{D} \in \operatorname{Rng} \mathbf{J}_{\mathbf{E}}, \mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\})$ is a flat in $\operatorname{Con}_{x} \mathcal{B}$ with

$$
\operatorname{dim} \mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\})=? ? ? ?
$$

Let a cross section $\mathbf{H}: \mathcal{M} \rightarrow \boldsymbol{\Phi}(\mathcal{B})$, that is differentiable at $x \in \mathcal{M}$, be given. The gradient of \mathbf{H} at x is a tangent connector of $\boldsymbol{\Phi}(\mathcal{B})$; i.e. $\nabla_{x} \mathbf{H} \in \operatorname{Rcon}_{\mathbf{H}(x)} \Phi(\mathcal{B})$.

Proposition 3: We have

$$
\begin{equation*}
\nabla_{\mathbf{K}} \mathbf{H}=\boldsymbol{\Lambda}\left(\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{H}(x)^{\diamond}\right) \mathbf{K}\right) \nabla_{x} \mathbf{H} \tag{51.11}
\end{equation*}
$$

for all $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}$ and hence $\nabla_{\mathbf{K}} \mathbf{H}=\mathbf{0}$ if and only if $\mathbf{J}_{\mathbf{H}(x)}(\mathbf{K})=\nabla_{x} \mathbf{H}$, i.e. $\mathbf{K} \in \mathbf{J}_{\mathbf{H}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{H}\right\}\right)$.

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1) and Remark 1 of Sect. 32.

If $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}$ be such that $\nabla_{\mathbf{K}} \mathbf{H}=\mathbf{0}$, then it follows from (51.11) that $\boldsymbol{\Lambda}\left(\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{H}(x)^{\diamond}\right) \mathbf{K}\right) \nabla_{x} \mathbf{H}=\mathbf{0}$. Applyiny Prop. 1 of Sect.14, we see that this can happen if and only if $\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{H}(x)^{\diamond}\right) \mathbf{K}=\nabla_{x} \mathbf{H}$. Since $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}$ was arbitrary, the assertion follows.

Now, let a differentiable cross section $\mathbf{H}: \mathcal{M} \rightarrow \boldsymbol{\Phi}(\mathcal{B})$ be given.

Definition: A connection $\mathbf{C M} \rightarrow$ Con \mathcal{B} is called $a \mathbf{H}$-compatible connection if $\nabla_{\mathbf{C}(x)} \mathbf{H}=\mathbf{0}$ for all $x \in \mathcal{M}$, i.e.

$$
\begin{equation*}
\nabla_{\mathbf{C}} \mathbf{H}=\mathbf{0} \tag{51.12}
\end{equation*}
$$

It clear from Prop. 3 that a connection \mathbf{C} is \mathbf{H}-compatiable if and only if

$$
\begin{equation*}
\mathbf{J}_{\mathbf{H}(x)}(\mathbf{C}(x))=\nabla_{x} \mathbf{H} \quad \text { for all } \quad x \in \mathcal{M} \tag{51.13}
\end{equation*}
$$

Proposition 4: Let connectors $\mathbf{K}_{1}, \mathbf{K}_{2} \in \mathbf{J}_{\mathbf{H}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{H}\right\}\right)$ be given and determine $\mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)$ such that $\mathbf{K}_{1}-\mathbf{K}_{2}=\mathbf{I}_{x} \mathbf{L}$; then we have

$$
\begin{equation*}
\mathbf{H}(x)^{\circ}(\mathbf{L} \mathbf{t})=\mathbf{0} \quad \text { for all } \quad \mathbf{t} \in \mathrm{T}_{x} \mathcal{M} \tag{51.14}
\end{equation*}
$$

52. Riemannian and Symplectic Bundles

We apply Sect. 51 to the case when $\mathbf{\Phi}=\operatorname{Smf}_{2}$ or Skf_{2} (see example (4) of Sect.13).

Let $x \in \mathcal{M}$ be fixed and $\mathbf{E} \in \boldsymbol{\Phi}\left(\mathcal{B}_{x}\right), \boldsymbol{\Phi}=\operatorname{Smf}_{2}$ or Skf_{2}, be given. We have

$$
\begin{equation*}
\mathbf{E}^{\circ}(\mathbf{M})=\mathbf{E} \circ\left(\mathbf{M} \times \mathbf{1}_{\mathcal{B}_{x}}\right)+\mathbf{E} \circ\left(\mathbf{1}_{\mathcal{B}_{x}} \times \mathbf{M}\right), \tag{52.1}
\end{equation*}
$$

where \mathbf{E}° is given in (51.5), for every $\mathbf{M} \in \operatorname{Lin} \mathcal{B}_{x}$.
Proposition 1: If \mathbf{E} is invertiable, then \mathbf{E}° is surjective; i.e.

$$
\begin{equation*}
\operatorname{Rng} \mathbf{E}^{\circ}=\operatorname{Sym}_{2}\left(\mathcal{B}_{x}^{2},\right) \quad \text { when } \quad \boldsymbol{\Phi}=\operatorname{Smf}_{2} \tag{52.2}
\end{equation*}
$$

i.e., $\mathbf{E} \in \operatorname{Sym}_{2}\left(\mathcal{B}_{x}^{2},\right)$ and

$$
\begin{equation*}
\operatorname{Rng} \mathbf{E}^{\circ}=\operatorname{Skw}_{2}\left(\mathcal{B}_{x}^{2},\right) \quad \text { when } \quad \boldsymbol{\Phi}=\operatorname{Skf}_{2} \tag{52.3}
\end{equation*}
$$

i.e., $\mathbf{E} \in \operatorname{Skw}_{2}\left(\mathcal{B}_{x}^{2},\right)$.

Proof: By using (52.1).

Proposition 2: If \mathbf{E} is invertiable, then the flat mapping $\mathbf{J}_{\mathbf{E}}$ defined in (51.10) is surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and the surjectivity of \mathbf{E}°.

In view of Prop. 2 we see taht, for every $\mathbf{D} \in \operatorname{Rcon}_{\mathbf{E}} \boldsymbol{\Phi}(\mathcal{B})$, the preimage $\mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\})$ is a flat in $\operatorname{Con}_{x} \mathcal{B}$. Let $\mathbf{K}_{1}, \mathbf{K}_{2} \in \mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\})$ be given and determine $\mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)$ such that $\mathbf{K}_{2}-\mathbf{K}_{2}=\mathbf{I}_{x} \mathbf{L}$. Applying (51.3), we have $\mathbf{0}=\mathbf{J}_{\mathbf{E}}\left(\mathbf{K}_{2}\right)-\mathbf{J}_{\mathbf{E}}\left(\mathbf{K}_{1}\right)=\mathbf{E}^{\circ}(\mathbf{L})$, that is $\mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}\right.$, Null $\left.\mathbf{E}^{\circ}\right)$. Since $\mathbf{K}_{1}, \mathbf{K}_{2} \in$ $\mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\})$ were arbitrary, we conclude that

$$
\begin{equation*}
\operatorname{dim} \mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\})=\operatorname{dim} \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Null} \mathbf{E}^{\circ}\right) . \tag{52.4}
\end{equation*}
$$

Definition: A cross section $\mathbf{G}: \mathcal{M} \rightarrow \operatorname{Smf}_{2}(\mathcal{B})$ is called a Riemannian field if, for every $x \in \mathcal{M}, \mathbf{G}(x)$ is invertiable when regard as element of $\operatorname{Sym}\left(\mathcal{B}_{x}, \mathcal{B}_{x}^{*}\right)$.
A cross section $\mathbf{S}: \mathcal{M} \rightarrow \operatorname{Skf}_{2}(\mathcal{B})$ is called a symplectic field of \mathcal{B} if, for every $x \in \mathcal{M}, \mathbf{S}(x)$ is invertiable when regard as element of $\operatorname{Skw}\left(\mathcal{B}_{x}, \mathcal{B}_{x}^{*}\right)$.

We say that \mathcal{B} is a C^{s} Riemannian linear space bundle if it is endowed with additional structure by the prescription of a C^{s} Riemannian field.

We say that \mathcal{B} is a C^{s} symplectic linear space bundle if it is endowed with additional structure by the prescription of a C^{s} symplectic field.

Remark 1: A symplectic field of \mathcal{B} exist if and only if, for every $x \in \mathcal{M}$, $m:=\operatorname{dim} \mathcal{B}_{x}$ is even (see Sect.11). If m is odd, then

$$
\operatorname{Skw}\left(\mathcal{B}_{x}, \mathcal{B}_{x}^{*}\right) \cap \operatorname{Lis}\left(\mathcal{B}_{x}, \mathcal{B}_{x}^{*}\right)=\emptyset
$$

Proposition 3: If $\mathbf{G}: \mathcal{M} \rightarrow \operatorname{Smf}_{2}(\mathcal{B})$ is a Riemannian field, then

$$
\begin{equation*}
\operatorname{dim} \mathbf{J}_{\mathbf{G}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{G}\right\}\right)=n\binom{m}{2} \quad \text { for all } \quad x \in \mathcal{M} \tag{52.5}
\end{equation*}
$$

If $\mathbf{S}: \mathcal{M} \rightarrow \operatorname{Skf}_{2}(\mathcal{B})$ is a symplectic field, then

$$
\begin{equation*}
\operatorname{dim} \mathbf{J}_{\mathbf{S}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{S}\right\}\right)=n\binom{m+1}{2} \quad \text { for all } \quad x \in \mathcal{M} \tag{52.6}
\end{equation*}
$$

Proof: It following easily from (52.4), (52.2) and (52.3).

Remark 2: Let \mathbf{G} be a Riemannian field and $\mathbf{C}: \mathcal{M} \rightarrow \operatorname{ConB}$ be a \mathbf{G} compatible connection. Let $\mathbf{L}: \mathcal{M} \rightarrow$ Lis \mathcal{B} be a cross section with $\nabla_{\mathbf{C}} \mathbf{L}=\mathbf{0}$ be given. Then, it follows from $\nabla_{\mathbf{C}} \mathbf{G}=\mathbf{0}$ and $\nabla_{\mathbf{C}} \mathbf{L}=\mathbf{0}$ that $\nabla_{\mathbf{C}}(\mathbf{G} \circ(\mathbf{L} \times \mathbf{L}))=\mathbf{0}$. Hence, the Riemannian field $\mathbf{H}:=\mathbf{G} \circ(\mathbf{L} \times \mathbf{L})$ satisfies $\nabla_{\mathbf{C}} \mathbf{H}=\mathbf{0}$.

53. Riemannian and Symplectic Manifolds.

Definition: We say that \mathcal{M} is a Riemannian manifold if the tangent bundle $\mathrm{T} \mathcal{M}$ is endowed with additional structure by the prescription of a C^{r-1} Riemannian field.

We say that \mathcal{M} is a symplectic manifold if the tangent bundle $\mathrm{T} \mathcal{M}$ is endowed with additional structure by the prescription of a C^{r-1} symplectic field.

Let a Riemannian field $\mathbf{G}: \mathcal{M} \rightarrow \operatorname{Sym}^{\text {inv }}\left(\mathrm{T} \mathcal{M}, \mathrm{T} \mathcal{M}^{*}\right)$ of class C^{r-1} be given.

Proposition 1: For every $x \in \mathcal{M}$, the restriction

$$
\begin{equation*}
\left.\mathbf{T}_{x}\right|_{\mathbf{J}_{\mathbf{G}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{G}\right\}\right)}: \mathbf{J}_{\mathbf{G}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{G}\right\}\right) \rightarrow \operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right) \tag{53.1}
\end{equation*}
$$

of the torsion mapping \mathbf{T}_{x} is bijective.
Proof: Given $x \in \mathcal{M}$. If $\mathbf{K}_{1}, \mathbf{K}_{2} \in \operatorname{Con}_{x}(\mathrm{~T} \mathcal{M}, \mathcal{M})$, then we have $\mathbf{T}_{x}\left(\mathbf{K}_{1}\right)=$ $\mathbf{T}_{x}\left(\mathbf{K}_{2}\right)$ if and only if $\mathbf{K}_{1}-\mathbf{K}_{2}=\mathbf{I}_{x} \mathbf{L}$ for some $\mathbf{L} \in \operatorname{Sym}_{2}\left(\left(\mathrm{~T}_{x} \mathcal{M}\right)^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$ and hence

$$
\begin{equation*}
(\mathbf{G}(x) \mathbf{L})(\mathbf{t}, \mathbf{b}, \mathbf{d})=(\mathbf{G}(x) \mathbf{L})(\mathbf{b}, \mathbf{t}, \mathbf{d}) \tag{53.2}
\end{equation*}
$$

for all $\mathbf{t}, \mathbf{b}, \mathbf{d} \in \mathrm{T}_{x} \mathcal{M}$.
Let $\mathbf{K}_{1}, \mathbf{K}_{2} \in \mathbf{J}_{\mathbf{G}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{G}\right\}\right)$ with $\mathrm{T}_{x}\left(\mathbf{K}_{1}\right)=\mathrm{T}_{x}\left(\mathbf{K}_{2}\right)$ be given and determining $\mathbf{L} \in \operatorname{Lin}_{2}\left(\left(\mathrm{~T}_{x} \mathcal{M}\right)^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$ such that $\mathbf{K}_{1}-\mathbf{K}_{2}=\mathbf{I}_{x} \mathbf{L}$. Applying (52.1), (51.14) and (53.2), we have

$$
\begin{aligned}
(\mathbf{G}(x) \mathbf{L})(\mathbf{t}, \mathbf{b}, \mathbf{d}) & =-(\mathbf{G}(x) \mathbf{L})(\mathbf{t}, \mathbf{d}, \mathbf{b})=-(\mathbf{G}(x) \mathbf{L})(\mathbf{d}, \mathbf{t}, \mathbf{b})= \\
& =(\mathbf{G}(x) \mathbf{L})(\mathbf{d}, \mathbf{b}, \mathbf{t})=(\mathbf{G}(x) \mathbf{L})(\mathbf{b}, \mathbf{d}, \mathbf{t})= \\
& =-(\mathbf{G}(x) \mathbf{L})(\mathbf{b}, \mathbf{t}, \mathbf{d})=-(\mathbf{G}(x) \mathbf{L})(\mathbf{t}, \mathbf{b}, \mathbf{d})
\end{aligned}
$$

for all $\mathbf{t}, \mathbf{b}, \mathbf{d} \in \mathrm{T}_{x} \mathcal{M}$. This shown that $\mathbf{G}(x) \mathbf{L}=\mathbf{0}$. Since $\mathbf{G}(x)$ is invertible, we observe that $\mathbf{L}=\mathbf{0}$ and hence $\mathbf{K}_{1}=\mathbf{K}_{2}$. In other words, the restriction

$$
\begin{equation*}
\left.\mathbf{T}_{x}\right|_{\mathbf{J}_{\mathbf{G}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{G}\right\}\right)}: \mathbf{J}_{\mathbf{G}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{G}\right\}\right) \rightarrow \operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right) \tag{53.3}
\end{equation*}
$$

of the flat mapping \mathbf{T}_{x} is injective and hence bijective. Since $x \in \mathcal{M}$ was arbitrary, the assertion follows.

Proposition 2: For every $x \in \mathcal{M}$, we have

$$
\begin{equation*}
\mathbf{J}_{\mathbf{G}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{G}\right\}\right)=\left\{\left.\mathbf{K}-\frac{1}{2} \mathbf{I}_{x} \mathbf{G}(x)^{-1}\left(\mathrm{~S}\left(\nabla_{\mathbf{K}} \mathbf{G}\right)\right) \right\rvert\, \mathbf{K} \in \operatorname{Con}_{x}(\mathcal{T} \mathcal{M}, \mathcal{M})\right\} \tag{53.4}
\end{equation*}
$$

where

$$
\left(\mathrm{S}\left(\nabla_{\mathbf{K}} \mathbf{G}\right)\right)=\nabla_{\mathbf{K}} \mathbf{G}+\nabla_{\mathbf{K}} \mathbf{G}^{\sim(1,2)}-\nabla_{\mathbf{K}} \mathbf{G}^{\sim(1,3)}
$$

Moreover, if $\mathbf{K}_{1}, \mathbf{K}_{2} \in \operatorname{Con}_{x}(\mathcal{T} \mathcal{M}, \mathcal{M})$ with $\mathbf{T}_{x}\left(\mathbf{K}_{1}\right)=\mathbf{T}_{x}\left(\mathbf{K}_{2}\right)$, i.e.

$$
\left.\mathbf{K}_{1}-\mathbf{K}_{2} \in\left\{\mathbf{I}_{x}\right\} \operatorname{Sym}_{2}\left(\mathcal{T}_{x} \mathcal{M}^{2}, \mathcal{T}_{x} \mathcal{M}\right)\right)
$$

then we have

$$
\begin{align*}
\mathbf{K}_{1}- & \frac{1}{2} \mathbf{I}_{x} \mathbf{G}(x)^{-1}\left(\nabla_{\mathbf{K}_{1}} \mathbf{G}+\nabla_{\mathbf{K}_{1}} \mathbf{G}^{\sim(1,2)}-\nabla_{\mathbf{K}_{1}} \mathbf{G}^{\sim(1,3)}\right) \\
& =\mathbf{K}_{2}-\frac{1}{2} \mathbf{I}_{x} \mathbf{G}(x)^{-1}\left(\nabla_{\mathbf{K}_{2}} \mathbf{G}+\nabla_{\mathbf{K}_{2}} \mathbf{G}^{\sim(1,2)}-\nabla_{\mathbf{K}_{2}} \mathbf{G}^{\sim(1,3)}\right) . \tag{53.5}
\end{align*}
$$

Proof: By (41.8), we have

$$
\begin{align*}
\left(\left(\square_{x} \mathbf{G}\right) \mathbf{I}_{x} \mathbf{G}(x)^{-1} \nabla_{\mathbf{K}} \mathbf{G}\right)(\mathbf{s}, \mathbf{t}, \mathbf{u}) & =\nabla_{\mathbf{K}} \mathbf{G}(\mathbf{s}, \mathbf{t}, \mathbf{u})+\nabla_{\mathbf{K}} \mathbf{G}(\mathbf{s}, \mathbf{u}, \mathbf{t}) \\
\left(\left(\square_{x} \mathbf{G}\right) \mathbf{I}_{x} \mathbf{G}(x)^{-1} \nabla_{\mathbf{K}} \mathbf{G}^{\sim(1,2)}\right)(\mathbf{s}, \mathbf{t}, \mathbf{u}) & =\nabla_{\mathbf{K}} \mathbf{G}(\mathbf{t}, \mathbf{s}, \mathbf{u})+\nabla_{\mathbf{K}} \mathbf{G}(\mathbf{u}, \mathbf{s}, \mathbf{t}) \tag{53.6}\\
\left(\left(\square_{x} \mathbf{G}\right) \mathbf{I}_{x} \mathbf{G}(x)^{-1} \nabla_{\mathbf{K}} \mathbf{G}^{\sim(1,3)}\right)(\mathbf{s}, \mathbf{t}, \mathbf{u}) & =\nabla_{\mathbf{K}} \mathbf{G}(\mathbf{t}, \mathbf{u}, \mathbf{s})+\nabla_{\mathbf{K}} \mathbf{G}(\mathbf{u}, \mathbf{t}, \mathbf{s})
\end{align*}
$$

for all $\mathbf{s}, \mathbf{t}, \mathbf{u} \in \mathcal{T}_{x} \mathcal{M}$. Observing $\nabla_{\mathbf{K}} \mathbf{G} \in \operatorname{Lin}\left(\mathcal{T}_{x} \mathcal{M}, \operatorname{Sym}_{2}\left(\mathcal{T}_{x} \mathcal{M}^{2},\right)\right)$, we see that (53.4)) follows easily from (53.6).

The more general version of "the fundamental theorem of Riemannian geometry" follows immediately from Prop. 1:

```
Fundamental Theorem of Riemannian Geometry (with torsion):
    For every prescribed torsion field LL:\mathcal{M}->\mp@subsup{Skw}{2}{(}(\textrm{T}\mp@subsup{\mathcal{M}}{}{2},\textrm{TM})\mathrm{ of class C}\mp@subsup{C}{}{s},
s\in0..r-2, there is exactly one G}\mathbf{G}\mathrm{ -compatible connection }\mathbf{C}\mathrm{ , i.e. one satisfying
\mp@subsup{\nabla}{\mathbf{C}}{}\mathbf{G}=\mathbf{0}\mathrm{ , such that }\mathbf{T}(\mathbf{C})=\mathbf{L}.\mathbf{C}\mathrm{ is of class C}\mp@subsup{\textrm{C}}{}{s}.
```

Remark 1: When $\mathbf{L}=\mathbf{0}$, the corresponding connection is called the LeviCività connection.

Remark 2: It follows from Theorem 3 that for every connection $\mathbf{C}^{\prime}: \mathcal{M} \rightarrow$ Con $\mathcal{T} \mathcal{M}$ of class C^{s}, $s \in 0 . . r-2$, there is exactly one connection $\mathbf{C}: \mathcal{M} \rightarrow$ Con $\mathcal{T M}$ such that $\mathbf{T}(\mathbf{C})=\mathbf{T}\left(\mathbf{C}^{\prime}\right)$ and $\nabla_{\mathbf{C}} \mathbf{G}=\mathbf{0}$. Moreover, in view of Prop. 2, we have

$$
\begin{equation*}
\mathbf{C}=\mathbf{C}^{\prime}-\frac{1}{2} \mathbf{I} \mathbf{G}^{-1}\left(\nabla_{\mathbf{C}^{\prime}} \mathbf{G}-\nabla_{\mathbf{C}^{\prime}} \mathbf{G}^{\sim(1,2)}+\nabla_{\mathbf{C}^{\prime}} \mathbf{G}^{\sim(1,3)}\right) \tag{53.7}
\end{equation*}
$$

Now let a connection $\mathbf{C}: \rightarrow$ ConTM be given. We may define, for each $x \in \mathcal{M}$, a mapping

$$
\begin{equation*}
\mathbf{A}_{x}^{\mathbf{C}}: \operatorname{Con}_{x} \mathrm{TM} \rightarrow \operatorname{Sym}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right) \tag{53.8}
\end{equation*}
$$

by

$$
\begin{equation*}
\mathbf{A}_{x}^{\mathbf{C}}(\mathbf{K}):=\boldsymbol{\Lambda}(\mathbf{C}(x)) \mathbf{K}+(\boldsymbol{\Lambda}(\mathbf{C}(x)) \mathbf{K})^{\sim} \text { for all } \quad \mathbf{K} \in \operatorname{Con}_{x} \mathbf{T M} . \tag{53.9}
\end{equation*}
$$

Let a symplectic field $\mathbf{S}: \mathcal{M} \rightarrow \mathrm{Skw}^{\mathrm{inv}}\left(\mathrm{T} \mathcal{M}, \mathrm{T}^{*} \mathcal{M}\right)$ of class C^{r-1} be given.

Proposition 3: For every $x \in \mathcal{M}$, the restriction

$$
\begin{equation*}
\left.\mathbf{A}_{x}^{\mathbf{C}}\right|_{\mathbf{J}_{\mathbf{S}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{S}\right\}\right)}: \mathbf{J}_{\mathbf{S}(x)}^{<}\left(\left\{\nabla_{x} \mathbf{S}\right\}\right) \rightarrow \operatorname{Sym}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right) \tag{53.10}
\end{equation*}
$$

of the mapping $\mathbf{A}_{x}^{\mathbf{C}}$ is bijective.
Proof: Similar to the proof of Prop. 1.
Proposition 4: For every connection \mathbf{C} and each prescribed symmetric field $\mathbf{L}: \mathcal{M} \rightarrow \operatorname{Sym}_{2}\left(\mathrm{~T} \mathcal{M}^{2}, \mathrm{~T} \mathcal{M}\right)$ of class C^{s}, $s \in 0 . . r-2$, there is exactly one \mathbf{S} compatible connection \mathbf{K}, i.e. one satisfying $\nabla_{\mathbf{K}} \mathbf{S}=\mathbf{0}$, such that $\mathbf{A}^{\mathbf{C}}(\mathbf{K})=\mathbf{L}$. \mathbf{K} is of class C^{s}.

Proof: It follows immediately from Prop.3.

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Geometry given here is modelled on the proof given by Noll in [N1].
(2) In [Sp], Spivak, M. stated: "Perhaps its only defect [of the fundamental theorem of Riemannian geometry] is the restriction to symmetric connections." We show that this restriction is not needed.

54. Identities

Let a $\mathrm{C}^{r}, r \geq 2$, Riemannian manifold \mathcal{M} with the Riemannian-field \mathbf{G} be given. Assume that $\operatorname{dim} \mathcal{M} \geq 2$.

For every $A, B \in \mathfrak{X}(\mathrm{~T} \mathcal{M})$ and a connection $\mathbf{C}: \mathcal{M} \rightarrow \operatorname{Con}(\mathrm{T} \mathcal{M})$, we use the following notations

$$
\langle A, B\rangle:=\mathbf{G}(A, B) \quad \text { and } \quad \nabla_{A} B:=\left(\nabla_{\mathbf{C}} B\right) A
$$

Proposition 1: A connection \mathbf{C} on a Riemannian manifold \mathcal{M} is compatible with the Riemannian-field \mathbf{G} if and only if

$$
\begin{equation*}
A\langle B, D\rangle=\left\langle\nabla_{A} B, D\right\rangle+\left\langle B, \nabla_{A} D\right\rangle \tag{54.1}
\end{equation*}
$$

for all $A, B, D \in \mathfrak{X}(\mathrm{TM})$.
Proof: Taking the covariant gradient of $\mathbf{G} \circ(B, D)$ with respect to \mathbf{C}, we obtain

$$
\begin{aligned}
\left(\nabla_{\mathbf{C}}(\mathbf{G} \circ(B, D))\right) A=\mathbf{G} & \left(\left(\nabla_{\mathbf{C}} B\right) A, D\right)+\mathbf{G}\left(B,\left(\nabla_{\mathbf{C}} D\right) A\right) \\
& +\left(\nabla_{\mathbf{C}} \mathbf{G}\right)(A, B, D)
\end{aligned}
$$

The equation (I.1) holds if and only if $\nabla_{\mathbf{C}} \mathbf{G}=\mathbf{0}$.
For the sake of simplification, we adapt the following notation

$$
\langle\langle X, Y, Z, T\rangle\rangle:=\langle\mathbf{R}(X, Y) Z, T\rangle \quad \text { for all } \quad X, Y, Z, T \in \mathfrak{X}(\mathrm{~T} \mathcal{M})
$$

where $\mathbf{R}:=\mathbf{R}(\mathbf{C})$ is the curvature field for a given connection \mathbf{C}. Also recall that

$$
\mathbf{R}(X, Y, Z)=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z
$$

for all $X, Y, Z \in \mathfrak{X}(\mathrm{TM})$.
Proposition 2: Let \mathbf{C} be a connection on a Riemannian manifold \mathcal{M} which is compatible with the Riemannian-field \mathbf{G}, then we have

$$
\begin{equation*}
\langle\langle X, Y, Z, T\rangle\rangle=-\langle\langle X, Y, T, Z\rangle\rangle \tag{54.2}
\end{equation*}
$$

for all $X, Y, Z, T \in \mathfrak{X}(\mathrm{TM})$.
Proof: To prove (I.2) is equivalent to show

$$
0=\langle\langle X, Y, Z, Z\rangle\rangle=\left\langle\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z, Z\right\rangle
$$

Applying (I.1), we have

$$
\left\langle\nabla_{Y} \nabla_{X} Z, Z\right\rangle=Y\left\langle\nabla_{X} Z, Z\right\rangle-\left\langle\nabla_{X} Z, \nabla_{Y} Z\right\rangle
$$

and

$$
\left\langle\nabla_{X} \nabla_{Y} Z, Z\right\rangle=X\left\langle\nabla_{Y} Z, Z\right\rangle-\left\langle\nabla_{Y} Z, \nabla_{X} Z\right\rangle
$$

Hence

$$
\langle\langle X, Y, Z, Z\rangle\rangle=Y\left\langle\nabla_{X} Z, Z\right\rangle-X\left\langle\nabla_{Y} Z, Z\right\rangle+\left\langle\nabla_{[X, Y]} Z, Z\right\rangle
$$

It follows from (I.1) and the symmetry of the Riemannian-field \mathbf{G} that

$$
\begin{equation*}
\frac{1}{2} A\langle D, D\rangle=\left\langle\nabla_{A} D, D\right\rangle \quad \text { for all } \quad A, D \in \mathfrak{X}(\mathrm{~T} \mathcal{M}) \tag{54.3}
\end{equation*}
$$

And hence

$$
\begin{aligned}
\langle\langle X, Y, Z, Z\rangle\rangle & =\frac{1}{2} Y(X\langle Z, Z\rangle)-\frac{1}{2} X(Y\langle Z, Z\rangle)+\frac{1}{2}[X, Y]\langle Z, Z\rangle \\
& =-\frac{1}{2}[X, Y]\langle Z, Z\rangle+\frac{1}{2}[X, Y]\langle Z, Z\rangle=0
\end{aligned}
$$

Since $X, Y, Z \in \mathfrak{X}(\mathrm{TM})$ were arbitrary, the equation (I.2) follows.

Let \mathbf{C} be a compatible connection with the Riemannian-field \mathbf{G}.

Given $x \in \mathcal{M}$. Since $\mathbf{R}_{x}(\mathbf{C}) \in \operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \operatorname{Lin} \mathrm{~T}_{x} \mathcal{M}\right)$, we observe form Prop. 2 that

$$
\langle\langle\cdot, \cdot, \cdot, \cdot\rangle\rangle \in \operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2},\right)\right)
$$

Lemma : Let an inner-product space \mathcal{T}, with $\operatorname{dim} \mathcal{T} \geq 2$, and a two-dimensional subspace \mathcal{S} of \mathcal{T} be given. If both $\{\mathbf{u}, \mathbf{v}\}$ and $\{\mathbf{s}, \mathbf{t}\}$ are bases for \mathcal{S}, then we have

$$
\begin{equation*}
\frac{\mathbf{W}(\mathbf{u}, \mathbf{v}, \mathbf{u}, \mathbf{v})}{(\mathbf{u} \wedge \mathbf{v})(\mathbf{u}, \mathbf{v})}=\frac{\mathbf{W}(\mathbf{s}, \mathbf{t}, \mathbf{s}, \mathbf{t})}{(\mathbf{s} \wedge \mathbf{t})(\mathbf{s}, \mathbf{t})} \tag{54.4}
\end{equation*}
$$

for all $\mathbf{W} \in \operatorname{Skw}_{2}\left(\mathcal{T}^{2}, \operatorname{Skw}_{2}\left(\mathcal{T}^{2},\right)\right)$.
Proof: By calculations.
Applying the above Lemma, we arrive the following definition.
Definition : Let $\mathcal{V} \subset \mathrm{T}_{x} \mathcal{M}$ be a two-dimensional subspace of $\mathrm{T}_{x} \mathcal{M}$. Let $\{\mathbf{u}, \mathbf{v}\}$ be a basis for \mathcal{S}. The sectional curvature of \mathcal{S} at x is defined by

$$
\begin{equation*}
\mathbf{K}_{x}(\mathcal{S}):=\frac{\langle\langle\mathbf{u}, \mathbf{v}, \mathbf{u}, \mathbf{v}\rangle\rangle}{(\mathbf{u} \wedge \mathbf{v})(\mathbf{u}, \mathbf{v})} \tag{54.5}
\end{equation*}
$$

which does not depend on the choice of $\{\mathbf{u}, \mathbf{v}\}$.
Remark : The definition of sectional curvature "does not" require the assuption of the compatible connection \mathbf{C} to be torsion-free.

Proposition 4: Let \mathbf{C} be a connection on a Riemannian manifold \mathcal{M} which is compatible with the Riemannian-field \mathbf{G}, then we have

$$
\begin{equation*}
\langle\langle X, Y, Z, W\rangle\rangle-\langle\langle Z, W, X, Y\rangle\rangle=\mathbf{V}(X, Y, Z, W) \tag{54.6}
\end{equation*}
$$

for all $X, Y, Z, W \in \mathfrak{X}(\mathrm{TM})$.

Proof:

$$
\begin{aligned}
& \mathbf{R}(X,Y) Z \cdot W+\mathbf{R}(Y, Z) X \cdot W+\mathbf{R}(Z, X) Y \cdot W \\
&+\mathbf{R}(Y, Z) W \cdot X+\mathbf{R}(Z, W) Y \cdot X+\mathbf{R}(W, Y) Z \cdot X \\
& \quad+\mathbf{R}(Z, W) X \cdot Y+\mathbf{R}(W, X) Z \cdot Y+\mathbf{R}(X, Z) W \cdot Y \\
& \quad+\mathbf{R}(W, X) Y \cdot Z+\mathbf{R}(X, Y) W \cdot Z+\mathbf{R}(Y, W) X \cdot Z \\
&=\nabla \mathbf{T}(X, Y, Z) \cdot W+\nabla \mathbf{T}(Y, Z, X) \cdot W+\nabla \mathbf{T}(Z, X, Y) \cdot W \\
&+\nabla \mathbf{T}(Y, Z, W) \cdot X+\nabla \mathbf{T}(Z, W, Y) \cdot X+\nabla \mathbf{T}(W, Y, Z) \cdot X \\
&+\nabla \mathbf{T}(Z, W, X) \cdot Y+\nabla \mathbf{T}(W, X, Z) \cdot Y+\nabla \mathbf{T}(X, W, Z) \cdot Y \\
&+\nabla \mathbf{T}(W, X, Y) \cdot Z+\nabla \mathbf{T}(X, Y, W) \cdot Z+\nabla \mathbf{T}(Y, W, X) \cdot Z \\
&+\mathbf{T}(\mathbf{T}(X, Y), Z) \cdot W+\mathbf{T}(\mathbf{T}(Y, Z), X) \cdot W+\mathbf{T}(\mathbf{T}(Z, X), Y) \cdot W \\
&+\mathbf{T}(\mathbf{T}(Y, Z), W) \cdot X+\mathbf{T}(\mathbf{T}(Z, W), Y) \cdot X+\mathbf{T}(\mathbf{T}(W, Y), Z) \cdot X \\
&+\mathbf{T}(\mathbf{T}(Z, W), X) \cdot Y+\mathbf{T}(\mathbf{T}(W, X), Z) \cdot Y+\mathbf{T}(\mathbf{T}(X, Z), W) \cdot Y \\
&+\mathbf{T}(\mathbf{T}(W, X), Y) \cdot Z+\mathbf{T}(\mathbf{T}(X, Y), W) \cdot Z+\mathbf{T}(\mathbf{T}(Y, W), X) \cdot Z
\end{aligned}
$$

Proposition 5: Let \mathbf{C} be a connection on a Riemannian manifold \mathcal{M} which is compatible with the Riemannian-field \mathbf{G}, then we have

$$
\begin{equation*}
\operatorname{tr}(\mathbf{R}(x)(\mathbf{s}, \cdot) \mathbf{t}-\mathbf{R}(x)(\mathbf{t}, \cdot) \mathbf{s}+\mathbf{R}(x)(\mathbf{t}, \mathbf{s}))=? ? ? ? \tag{54.7}
\end{equation*}
$$

for all $\mathbf{s}, \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$.

Second Proof of Pro. 2:

In view of (I.1) we have, for all $X, Y, Z, T \in \mathfrak{X}(T \mathcal{M})$,

$$
\begin{aligned}
& \left\langle\nabla_{Y} \nabla_{X} Z, T\right\rangle=Y\left\langle\nabla_{X} Z, T\right\rangle-\left\langle\nabla_{X} Z, \nabla_{Y} T\right\rangle \\
& \left\langle\nabla_{X} \nabla_{Y} Z, T\right\rangle=X\left\langle\nabla_{Y} Z, T\right\rangle-\left\langle\nabla_{Y} Z, \nabla_{X} T\right\rangle
\end{aligned}
$$

and

$$
\left\langle\nabla_{[X, Y]} Z, T\right\rangle=[X, Y]\langle Z, T\rangle-\left\langle Z, \nabla_{[X, Y]} T\right\rangle .
$$

Hence

$$
\begin{aligned}
\langle\langle X, Y, Z, T\rangle\rangle= & \left\langle\nabla_{Y} \nabla_{X} Z, T\right\rangle-\left\langle\nabla_{X} \nabla_{Y} Z, T\right\rangle+\left\langle\nabla_{[X, Y]} Z, T\right\rangle \\
= & Y\left\langle\nabla_{X} Z, T\right\rangle-\left\langle\nabla_{X} Z, \nabla_{Y} T\right\rangle-X\left\langle\nabla_{Y} Z, T\right\rangle+\left\langle\nabla_{Y} Z, \nabla_{X} T\right\rangle \\
& +[X, Y]\langle Z, T\rangle-\left\langle Z, \nabla_{[X, Y]} T\right\rangle \\
= & Y(X\langle Z, T\rangle)-Y\left\langle Z, \nabla_{X} T\right\rangle-X(Y\langle Z, T\rangle)+X\left\langle Z, \nabla_{Y} T\right\rangle \\
& -\left\langle\nabla_{X} Z, \nabla_{Y} T\right\rangle+\left\langle\nabla_{Y} Z, \nabla_{X} T\right\rangle+[X, Y]\langle Z, T\rangle-\left\langle Z, \nabla_{[X, Y]} T\right\rangle \\
= & -Y\left\langle Z, \nabla_{X} T\right\rangle+X\left\langle Z, \nabla_{Y} T\right\rangle \\
& -\left\langle\nabla_{X} Z, \nabla_{Y} T\right\rangle+\left\langle\nabla_{Y} Z, \nabla_{X} T\right\rangle-\left\langle Z, \nabla_{[X, Y]} T\right\rangle \\
= & -\left\langle\nabla_{Y} \nabla_{X} T, Z\right\rangle+\left\langle\nabla_{X} \nabla_{Y} T, Z\right\rangle-\left\langle\nabla_{[X, Y]} T, Z\right\rangle \\
= & -\langle\langle X, Y, T, Z\rangle\rangle .
\end{aligned}
$$

Since $X, Y, Z, T \in \mathfrak{X}(\mathrm{TM})$ was arbitrary, the assertion of Prop. 2 follows.

55. Einstein-tensor field

Let a C^{r} manifold \mathcal{M}, with $r \geq 2$ and $\operatorname{dim} \mathcal{M} \geq 2$, and a C^{r} connection $\mathbf{C}: \mathcal{M} \rightarrow \operatorname{Con}(\mathrm{T} \mathcal{M})$ be given. Assume that $\mathbf{G}: \mathcal{M} \rightarrow \operatorname{Sym}_{2}\left(\mathrm{~T} \mathcal{M}^{2},\right)$ be a Riemannian-field compatiable with the connection \mathbf{C}.

Let $x \in \mathcal{M}$ be given and assume that the following condition hold

$$
\begin{equation*}
\operatorname{tr}(\mathbf{R}(x)(\mathbf{s}, \cdot) \mathbf{t}-\mathbf{R}(x)(\mathbf{t}, \cdot) \mathbf{s}+\mathbf{R}(x)(\mathbf{t}, \mathbf{s}))=0 \tag{55.1}
\end{equation*}
$$

i.e. we have

$$
\operatorname{tr}(\mathbf{R}(x)(\mathbf{s}, \cdot) \mathbf{t})-\operatorname{tr}(\mathbf{R}(x)(\mathbf{t}, \cdot) \mathbf{s})+\operatorname{tr}(\mathbf{R}(x)(\mathbf{t}, \mathbf{s}))=0
$$

Since $\mathbf{R}(x)(\mathbf{t}, \mathbf{s})$ is skew-symmetric with respect to \mathbf{G}, we obtain that

$$
\operatorname{tr}(\mathbf{R}(x)(\mathbf{s}, \cdot) \mathbf{t})=\operatorname{tr}(\mathbf{R}(x)(\mathbf{t}, \cdot) \mathbf{s}) \quad \text { for all } \quad \mathbf{s}, \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}
$$

Definition : The Ricci-tensor field Ric: $\mathcal{M} \rightarrow \operatorname{Sym}_{2}\left(\mathrm{~T} \mathcal{M}^{2}\right.$, $)$ is defined by

$$
\begin{equation*}
\operatorname{Ric}(x)(\mathbf{s}, \mathbf{t}):=\operatorname{tr}(\mathbf{R}(x)(\mathbf{s}, \cdot) \mathbf{t}) \tag{55.2}
\end{equation*}
$$

for all $x \in \mathcal{M}$ and all $\mathbf{s}, \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$.

Definition : The Einstein-tensor field Ein : $\mathcal{M} \rightarrow \operatorname{Sym}_{2}\left(T \mathcal{M}^{2},\right)$ is defined by

$$
\begin{equation*}
\operatorname{Ein}(x):=\operatorname{Ric}(x)-\frac{1}{2} \operatorname{tr}\left(\mathbf{G}^{-1}(x) \operatorname{Ric}(x)\right) \mathbf{G}(x) \tag{55.3}
\end{equation*}
$$

for all $x \in \mathcal{M}$. (The factor $1 / 2$ is determined by the assumption $\operatorname{dim} \mathrm{T}_{x} \mathcal{M}=4!$)
It follows from the 2nd Bianchi Identity (this condition should be weaken) that

$$
\begin{equation*}
\operatorname{div}_{\mathbf{C}} \operatorname{Ein}=0 \tag{55.4}
\end{equation*}
$$

Remark: The matter tensor field Mat: $\mathcal{M} \rightarrow \operatorname{Sym}_{2}\left(\mathrm{TM}{ }^{2}\right.$, $)$ satisfying

$$
\begin{equation*}
\operatorname{Ein}(x)=\kappa \operatorname{Mat}(x) \tag{55.5}
\end{equation*}
$$

where $\kappa \in$ is the universal gravitational constant. It follows from (Ein.4) and (Ein 5) that

$$
\begin{equation*}
\operatorname{div}_{\mathbf{C}} \text { Mat }=0 \tag{55.6}
\end{equation*}
$$

(balance of world-momentum).

