Chapter 5 Geometric Structures.

We assume in this chapter that numbers $r, s \in \tilde{}$, with $r \geq 3$ and $s \in 0..r$, a C^r manifold \mathcal{M} and a C^s linear-space bundle \mathcal{B} over the manifold \mathcal{M} are given. We also assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and put $n := \dim \mathcal{M}$ and $m := \dim \mathcal{B} - \dim \mathcal{M}$. Then we have $n = \dim T_x \mathcal{M}$ and $m = \dim \mathcal{B}_x$ for all $x \in \mathcal{M}$.

51. Compatible Connections

Let $x \in \mathcal{M}$ be fixed. Let Φ be an analytic tensor functor and let $\mathbf{E} \in \Phi(\mathcal{B}_x)$ be given.

Notation: We define the mapping

$$\mathbf{E}^{\diamond} : \mathrm{Tlis}_{x} \mathcal{B} \to \mathbf{\Phi}(\mathcal{B})$$
 (51.1)

by

$$\mathbf{E}^{\diamond}(\mathbf{T}) := \mathbf{\Phi}(\mathbf{T})\mathbf{E} \text{ for all } \mathbf{T} \in \mathrm{Tlis}_{x}\mathcal{B}.$$
 (51.2)

Since Φ is analytic, it is clear that \mathbf{E}^{\diamond} is differentiable at $\mathbf{1}_{\mathcal{B}_{x}}$.

Proposition 1: We have $\nabla_{\mathbf{1}_{\mathcal{B}_x}} \mathbf{E}^{\diamond} \in \operatorname{Lin}(S_x \mathcal{B}, T_{\mathbf{E}} \Phi(\mathcal{B}))$ and, for every bundle chart $\phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$,

$$(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond})\mathbf{s} = \mathbf{A}_{\mathbf{E}}^{\Phi(\phi)} \mathbf{P}_{x}\mathbf{s} + \mathbf{I}_{\mathbf{E}} \Phi_{x}^{\bullet} (\mathbf{\Lambda}(\mathbf{A}_{x}^{\phi})\mathbf{s})\mathbf{E}$$
(51.3)

for all $\mathbf{s} \in S_x \mathcal{B}$.

Proof: By using (51.2) and the definition (23.21) of gradient, we obtain the desired result.

Taking the gradient of $\mathbf{E}^{\diamond}|_{\mathrm{Lis}\mathcal{B}_x}^{\mathbf{\Phi}(\mathcal{B}_x)}$ at $\mathbf{1}_{\mathcal{B}_x}$, we have

$$\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond} \Big|_{\mathrm{Lis}\mathcal{B}_{x}}^{\mathbf{\Phi}(\mathcal{B}_{x})}\right) \mathbf{L} = \left(\mathbf{\Phi}_{x}^{\bullet}(\mathbf{L})\right) \mathbf{E}$$
(51.4)

for all $\mathbf{L} \in \mathrm{Lin}\mathcal{B}_x$. For the sake of simplicity, we use the following notation

$$\mathbf{E}^{\circ} := \nabla_{\mathbf{1}_{\mathcal{B}_x}} \left(\mathbf{E}^{\diamond} \Big|_{\mathrm{Lis}_{\mathcal{B}_x}}^{\mathbf{\Phi}(\mathcal{B}_x)} \right).$$
(51.5)

Given $r \in \{0\}$, we observe from (51.5) that $(r\mathbf{E})^{\circ} = r\mathbf{E}^{\circ}$ and hence

$$\operatorname{Null} \mathbf{E}^{\circ} = \operatorname{Null} (r\mathbf{E})^{\circ}. \tag{51.6}$$

It is follows from (51.3) and (51.4) that

$$\mathbf{P}_{\!x} = \mathbf{P}_{\!\mathbf{E}}(\nabla_{\!\mathbf{1}_{\mathcal{B}_x}} \mathbf{E}^\diamond) \quad \text{and} \quad (\nabla_{\!\mathbf{1}_{\mathcal{B}_x}} \mathbf{E}^\diamond) \mathbf{I}_x = \mathbf{I}_{\mathbf{E}} \mathbf{E}^\diamond,$$

i.e. the diagram

commutes. And it also clear from (51.3) that

$$\mathbf{A}_{\mathbf{E}}^{\boldsymbol{\Phi}(\phi)} = (\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}) \mathbf{A}_{x}^{\phi} \in \operatorname{Rcon}_{\mathbf{E}} \boldsymbol{\Phi}(\mathcal{B})$$
(51.8)

for all bundle chart $\phi \in Ch_x(\mathcal{B}, \mathcal{M})$. More generally, we have

$$(\nabla_{\mathbf{1}_{\mathcal{B}_x}} \mathbf{E}^\diamond) \mathbf{K} \in \operatorname{Rcon}_{\mathbf{E}} \boldsymbol{\Phi}(\mathcal{B}) \quad \text{for all} \quad \mathbf{K} \in \operatorname{Con}_x \mathcal{B}.$$
 (51.9)

In view of (51.9), the mapping $\nabla_{\mathbf{1}_{\mathcal{B}_x}} \mathbf{E}^\diamond$ induces the following mapping.

Definition: We define the mapping

 $\mathbf{J}_{\mathbf{E}}: \mathrm{Con}_{x}\mathcal{B} \to \mathrm{Rcon}_{\mathbf{E}}\mathbf{\Phi}(\mathcal{B})$

by

$$\mathbf{J}_{\mathbf{E}}(\mathbf{K}) := (\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{E}^{\diamond}) \mathbf{K} \quad \text{for all} \quad \mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}.$$
(51.10)

Proposition 2: The mapping $\mathbf{J}_{\mathbf{E}}$, defined in (51.10), is flat. Hence, for every $\mathbf{D} \in \operatorname{Rng} \mathbf{J}_{\mathbf{E}}, \mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\})$ is a flat in $\operatorname{Con}_{x} \mathcal{B}$ with

 $\dim \mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\}) = ????.$

Let a cross section $\mathbf{H} : \mathcal{M} \to \mathbf{\Phi}(\mathcal{B})$, that is differentiable at $x \in \mathcal{M}$, be given. The gradient of \mathbf{H} at x is a tangent connector of $\mathbf{\Phi}(\mathcal{B})$; i.e. $\nabla_{x} \mathbf{H} \in \operatorname{Rcon}_{\mathbf{H}(x)} \mathbf{\Phi}(\mathcal{B})$.

Proposition 3: We have

$$\nabla_{\mathbf{K}} \mathbf{H} = \mathbf{\Lambda} \left((\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \mathbf{H}(x)^{\diamond}) \mathbf{K} \right) \nabla_{x} \mathbf{H}$$
(51.11)

for all $\mathbf{K} \in \operatorname{Con}_x \mathcal{B}$ and hence $\nabla_{\mathbf{K}} \mathbf{H} = \mathbf{0}$ if and only if $\mathbf{J}_{\mathbf{H}(x)}(\mathbf{K}) = \nabla_x \mathbf{H}$, i.e. $\mathbf{K} \in \mathbf{J}_{\mathbf{H}(x)}^{<}(\{\nabla_x \mathbf{H}\})$.

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1) and Remark 1 of Sect. 32.

If $\mathbf{K} \in \operatorname{Con}_x \mathcal{B}$ be such that $\nabla_{\mathbf{K}} \mathbf{H} = \mathbf{0}$, then it follows from (51.11) that $\Lambda((\nabla_{\mathbf{1}_{\mathcal{B}_x}} \mathbf{H}(x)^\diamond)\mathbf{K})\nabla_x \mathbf{H} = \mathbf{0}$. Applying Prop.1 of Sect.14, we see that this can happen if and only if $(\nabla_{\mathbf{1}_{\mathcal{B}_x}} \mathbf{H}(x)^\diamond)\mathbf{K} = \nabla_x \mathbf{H}$. Since $\mathbf{K} \in \operatorname{Con}_x \mathcal{B}$ was arbitrary, the assertion follows.

Now, let a differentiable cross section $\mathbf{H}: \mathcal{M} \to \mathbf{\Phi}(\mathcal{B})$ be given.

Definition: A connection $\mathbb{C}\mathcal{M} \to \operatorname{Con}\mathcal{B}$ is called a **H**-compatible connection if $\nabla_{\mathbb{C}(x)}\mathbf{H} = \mathbf{0}$ for all $x \in \mathcal{M}$, *i.e.*

$$\nabla_{\mathbf{C}}\mathbf{H} = \mathbf{0}.\tag{51.12}$$

It clear from Prop.3 that a connection \mathbf{C} is \mathbf{H} -compatiable if and only if

$$\mathbf{J}_{\mathbf{H}(x)}(\mathbf{C}(x)) = \nabla_{\!\!x} \mathbf{H} \quad \text{for all} \quad x \in \mathcal{M}.$$
 (51.13)

Proposition 4: Let connectors $\mathbf{K}_1, \mathbf{K}_2 \in \mathbf{J}_{\mathbf{H}(x)}^{<}(\{\nabla_x \mathbf{H}\})$ be given and determine $\mathbf{L} \in \operatorname{Lin}(T_x \mathcal{M}, \operatorname{Lin} \mathcal{B}_x)$ such that $\mathbf{K}_1 - \mathbf{K}_2 = \mathbf{I}_x \mathbf{L}$; then we have

$$\mathbf{H}(x)^{\circ}(\mathbf{Lt}) = \mathbf{0} \qquad \text{for all} \quad \mathbf{t} \in \mathbf{T}_x \mathcal{M}.$$
 (51.14)

52. Riemannian and Symplectic Bundles

We apply Sect.51 to the case when $\Phi = \text{Smf}_2$ or Skf_2 (see example (4) of Sect.13).

Let $x \in \mathcal{M}$ be fixed and $\mathbf{E} \in \mathbf{\Phi}(\mathcal{B}_x)$, $\mathbf{\Phi} = \text{Smf}_2$ or Skf₂, be given. We have

$$\mathbf{E}^{\circ}(\mathbf{M}) = \mathbf{E} \circ (\mathbf{M} \times \mathbf{1}_{\mathcal{B}_x}) + \mathbf{E} \circ (\mathbf{1}_{\mathcal{B}_x} \times \mathbf{M}), \tag{52.1}$$

where \mathbf{E}° is given in (51.5), for every $\mathbf{M} \in \mathrm{Lin}\mathcal{B}_x$.

Proposition 1: If \mathbf{E} is invertiable, then \mathbf{E}° is surjective; i.e.			
$\operatorname{Rng} \mathbf{E}^{\circ} = \operatorname{Sym}_2(\mathcal{B}^2_x,)$	when	$\mathbf{\Phi} = \mathrm{Smf}_2$	(52.2)
i.e., $\mathbf{E} \in \operatorname{Sym}_2(\mathcal{B}^2_x,)$ and			
$\operatorname{Rng} \mathbf{E}^{\circ} = \operatorname{Skw}_2(\mathcal{B}^2_x,)$	when	$\mathbf{\Phi}=\mathrm{Skf}_2$	(52.3)
$i.e., \mathbf{E} \in \mathrm{Skw}_2(\mathcal{B}^2_x,).$			

Proof: By using (52.1).

Proposition 2: If **E** is invertiable, then the flat mapping $\mathbf{J}_{\mathbf{E}}$ defined in (51.10) is surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and the surjectivity of \mathbf{E}° .

In view of Prop.2 we see taht, for every $\mathbf{D} \in \operatorname{Rcon}_{\mathbf{E}} \Phi(\mathcal{B})$, the preimage $\mathbf{J}_{\mathbf{E}}^{<}({\mathbf{D}})$ is a flat in $\operatorname{Con}_{x}\mathcal{B}$. Let $\mathbf{K}_{1}, \mathbf{K}_{2} \in \mathbf{J}_{\mathbf{E}}^{<}({\mathbf{D}})$ be given and determine $\mathbf{L} \in \operatorname{Lin}(\operatorname{T}_{x}\mathcal{M}, \operatorname{Lin}\mathcal{B}_{x})$ such that $\mathbf{K}_{2} - \mathbf{K}_{2} = \mathbf{I}_{x}\mathbf{L}$. Applying (51.3), we have $\mathbf{0} = \mathbf{J}_{\mathbf{E}}(\mathbf{K}_{2}) - \mathbf{J}_{\mathbf{E}}(\mathbf{K}_{1}) = \mathbf{E}^{\circ}(\mathbf{L})$, that is $\mathbf{L} \in \operatorname{Lin}(\operatorname{T}_{x}\mathcal{M}, \operatorname{Null} \mathbf{E}^{\circ})$. Since $\mathbf{K}_{1}, \mathbf{K}_{2} \in \mathbf{J}_{\mathbf{E}}^{<}({\mathbf{D}})$ were arbitrary, we conclude that

$$\dim \mathbf{J}_{\mathbf{E}}^{<}(\{\mathbf{D}\}) = \dim \operatorname{Lin}(\mathbf{T}_{x}\mathcal{M}, \operatorname{Null} \mathbf{E}^{\circ}).$$
(52.4)

Definition: A cross section $\mathbf{G} : \mathcal{M} \to \mathrm{Smf}_2(\mathcal{B})$ is called a **Riemannian field** if, for every $x \in \mathcal{M}$, $\mathbf{G}(x)$ is invertiable when regard as element of $\mathrm{Sym}(\mathcal{B}_x, \mathcal{B}_x^*)$.

A cross section $\mathbf{S} : \mathcal{M} \to \operatorname{Skf}_2(\mathcal{B})$ is called a symplectic field of \mathcal{B} if, for every $x \in \mathcal{M}$, $\mathbf{S}(x)$ is invertiable when regard as element of $\operatorname{Skw}(\mathcal{B}_x, \mathcal{B}_x^*)$.

We say that \mathcal{B} is a C^s Riemannian linear space bundle if it is endowed with additional structure by the prescription of a C^s Riemannian field.

We say that \mathcal{B} is a C^s symplectic linear space bundle if it is endowed with additional structure by the prescription of a C^s symplectic field.

Remark 1: A symplectic field of \mathcal{B} exist if and only if, for every $x \in \mathcal{M}$, $m := \dim \mathcal{B}_x$ is even (see Sect.11). If m is odd, then

$$\operatorname{Skw}(\mathcal{B}_x, \mathcal{B}_x^*) \cap \operatorname{Lis}(\mathcal{B}_x, \mathcal{B}_x^*) = \emptyset.$$

Proposition 3: If $\mathbf{G} : \mathcal{M} \to \mathrm{Smf}_2(\mathcal{B})$ is a Riemannian field, then $\dim \mathbf{J}_{\mathbf{G}(x)}^<(\{\nabla_x \mathbf{G}\}) = n \binom{m}{2} \quad \text{for all} \quad x \in \mathcal{M}. \tag{52.5}$

If $\mathbf{S}: \mathcal{M} \to \mathrm{Skf}_2(\mathcal{B})$ is a symplectic field, then

dim
$$\mathbf{J}_{\mathbf{s}(x)}^{<}(\{\nabla_{x}\mathbf{S}\}) = n\binom{m+1}{2}$$
 for all $x \in \mathcal{M}$. (52.6)

Proof: It following easily from (52.4), (52.2) and (52.3).

Remark 2: Let **G** be a Riemannian field and **C** : $\mathcal{M} \to \operatorname{Con}\mathcal{B}$ be a **G**-compatible connection. Let $\mathbf{L} : \mathcal{M} \to \operatorname{Lis}\mathcal{B}$ be a cross section with $\nabla_{\mathbf{C}}\mathbf{L} = \mathbf{0}$ be given. Then, it follows from $\nabla_{\mathbf{C}}\mathbf{G} = \mathbf{0}$ and $\nabla_{\mathbf{C}}\mathbf{L} = \mathbf{0}$ that $\nabla_{\mathbf{C}}(\mathbf{G} \circ (\mathbf{L} \times \mathbf{L})) = \mathbf{0}$. Hence, the Riemannian field $\mathbf{H} := \mathbf{G} \circ (\mathbf{L} \times \mathbf{L})$ satisfies $\nabla_{\mathbf{C}}\mathbf{H} = \mathbf{0}$.

5

53. Riemannian and Symplectic Manifolds.

Definition: We say that \mathcal{M} is a **Riemannian manifold** if the tangent bundle $T\mathcal{M}$ is endowed with additional structure by the prescription of a C^{r-1} Riemannian field.

We say that \mathcal{M} is a symplectic manifold if the tangent bundle $T\mathcal{M}$ is endowed with additional structure by the prescription of a C^{r-1} symplectic field.

Let a Riemannian field $\mathbf{G} : \mathcal{M} \to \operatorname{Sym}^{\operatorname{inv}}(T\mathcal{M}, T\mathcal{M}^*)$ of class C^{r-1} be given.

Proposition 1: For every $x \in \mathcal{M}$, the restriction $\mathbf{T}_{x}|_{\mathbf{J}_{\mathbf{G}(x)}^{\leq}(\{\nabla_{x}\mathbf{G}\})} : \mathbf{J}_{\mathbf{G}(x)}^{\leq}(\{\nabla_{x}\mathbf{G}\}) \to \mathrm{Skw}_{2}(\mathrm{T}_{x}\mathcal{M}^{2},\mathrm{T}_{x}\mathcal{M})$ (53.1)

of the torsion mapping \mathbf{T}_x is bijective.

Proof: Given $x \in \mathcal{M}$. If $\mathbf{K}_1, \mathbf{K}_2 \in \operatorname{Con}_x(\mathrm{T}\mathcal{M}, \mathcal{M})$, then we have $\mathbf{T}_x(\mathbf{K}_1) = \mathbf{T}_x(\mathbf{K}_2)$ if and only if $\mathbf{K}_1 - \mathbf{K}_2 = \mathbf{I}_x \mathbf{L}$ for some $\mathbf{L} \in \operatorname{Sym}_2((\mathrm{T}_x \mathcal{M})^2, \mathrm{T}_x \mathcal{M})$ and hence

$$(\mathbf{G}(x)\mathbf{L})(\mathbf{t}, \mathbf{b}, \mathbf{d}) = (\mathbf{G}(x)\mathbf{L})(\mathbf{b}, \mathbf{t}, \mathbf{d})$$
(53.2)

for all $\mathbf{t}, \mathbf{b}, \mathbf{d} \in T_x \mathcal{M}$.

Let $\mathbf{K}_1, \mathbf{K}_2 \in \mathbf{J}_{\mathbf{G}(x)}^{<}(\{\nabla_x \mathbf{G}\})$ with $\mathbf{T}_x(\mathbf{K}_1) = \mathbf{T}_x(\mathbf{K}_2)$ be given and determining $\mathbf{L} \in \mathrm{Lin}_2((\mathbf{T}_x \mathcal{M})^2, \mathbf{T}_x \mathcal{M})$ such that $\mathbf{K}_1 - \mathbf{K}_2 = \mathbf{I}_x \mathbf{L}$. Applying (52.1), (51.14) and (53.2), we have

$$(\mathbf{G}(x)\mathbf{L})(\mathbf{t}, \mathbf{b}, \mathbf{d}) = -(\mathbf{G}(x)\mathbf{L})(\mathbf{t}, \mathbf{d}, \mathbf{b}) = -(\mathbf{G}(x)\mathbf{L})(\mathbf{d}, \mathbf{t}, \mathbf{b}) =$$
$$= (\mathbf{G}(x)\mathbf{L})(\mathbf{d}, \mathbf{b}, \mathbf{t}) = (\mathbf{G}(x)\mathbf{L})(\mathbf{b}, \mathbf{d}, \mathbf{t}) =$$
$$= -(\mathbf{G}(x)\mathbf{L})(\mathbf{b}, \mathbf{t}, \mathbf{d}) = -(\mathbf{G}(x)\mathbf{L})(\mathbf{t}, \mathbf{b}, \mathbf{d})$$

for all $\mathbf{t}, \mathbf{b}, \mathbf{d} \in T_x \mathcal{M}$. This shown that $\mathbf{G}(x)\mathbf{L} = \mathbf{0}$. Since $\mathbf{G}(x)$ is invertible, we observe that $\mathbf{L} = \mathbf{0}$ and hence $\mathbf{K}_1 = \mathbf{K}_2$. In other words, the restriction

$$\mathbf{T}_{x}\big|_{\mathbf{J}_{\mathbf{G}(x)}^{<}(\{\nabla_{x}\mathbf{G}\})}:\mathbf{J}_{\mathbf{G}(x)}^{<}(\{\nabla_{x}\mathbf{G}\})\to \mathrm{Skw}_{2}(\mathrm{T}_{x}\mathcal{M}^{2},\mathrm{T}_{x}\mathcal{M})$$
(53.3)

of the flat mapping \mathbf{T}_x is injective and hence bijective. Since $x \in \mathcal{M}$ was arbitrary, the assertion follows.

Proposition 2: For every $x \in \mathcal{M}$, we have

$$\mathbf{J}_{\mathbf{G}(x)}^{<}(\{\nabla_{x}\mathbf{G}\}) = \left\{ \mathbf{K} - \frac{1}{2}\mathbf{I}_{x}\mathbf{G}(x)^{-1}\left(\mathbf{S}\left(\nabla_{\mathbf{K}}\mathbf{G}\right)\right) \middle| \mathbf{K} \in \operatorname{Con}_{x}(\mathcal{TM}, \mathcal{M}) \right\}$$
(53.4)

where

$$\left(\mathbf{S}\left(\nabla_{\mathbf{K}}\mathbf{G}\right)\right) = \nabla_{\mathbf{K}}\mathbf{G} + \nabla_{\mathbf{K}}\mathbf{G}^{\sim(1,2)} - \nabla_{\mathbf{K}}\mathbf{G}^{\sim(1,3)}.$$

Moreover, if $\mathbf{K}_1, \mathbf{K}_2 \in \operatorname{Con}_x(\mathcal{TM}, \mathcal{M})$ with $\mathbf{T}_x(\mathbf{K}_1) = \mathbf{T}_x(\mathbf{K}_2)$, i.e.

$$\mathbf{K}_1 - \mathbf{K}_2 \in {\{\mathbf{I}_x\}} \operatorname{Sym}_2(\mathcal{T}_x \mathcal{M}^2, \mathcal{T}_x \mathcal{M})),$$

then we have

$$\mathbf{K}_{1} - \frac{1}{2} \mathbf{I}_{x} \mathbf{G}(x)^{-1} \left(\nabla_{\mathbf{K}_{1}} \mathbf{G} + \nabla_{\mathbf{K}_{1}} \mathbf{G}^{\sim(1,2)} - \nabla_{\mathbf{K}_{1}} \mathbf{G}^{\sim(1,3)} \right)$$

$$= \mathbf{K}_{2} - \frac{1}{2} \mathbf{I}_{x} \mathbf{G}(x)^{-1} \left(\nabla_{\mathbf{K}_{2}} \mathbf{G} + \nabla_{\mathbf{K}_{2}} \mathbf{G}^{\sim(1,2)} - \nabla_{\mathbf{K}_{2}} \mathbf{G}^{\sim(1,3)} \right).$$
 (53.5)

Proof: By (41.8), we have

$$((\Box_x \mathbf{G}) \mathbf{I}_x \mathbf{G}(x)^{-1} \nabla_{\mathbf{K}} \mathbf{G})(\mathbf{s}, \mathbf{t}, \mathbf{u}) = \nabla_{\mathbf{K}} \mathbf{G}(\mathbf{s}, \mathbf{t}, \mathbf{u}) + \nabla_{\mathbf{K}} \mathbf{G}(\mathbf{s}, \mathbf{u}, \mathbf{t}), ((\Box_x \mathbf{G}) \mathbf{I}_x \mathbf{G}(x)^{-1} \nabla_{\mathbf{K}} \mathbf{G}^{\sim (1,2)})(\mathbf{s}, \mathbf{t}, \mathbf{u}) = \nabla_{\mathbf{K}} \mathbf{G}(\mathbf{t}, \mathbf{s}, \mathbf{u}) + \nabla_{\mathbf{K}} \mathbf{G}(\mathbf{u}, \mathbf{s}, \mathbf{t}),$$
(53.6)
 $((\Box_x \mathbf{G}) \mathbf{I}_x \mathbf{G}(x)^{-1} \nabla_{\mathbf{K}} \mathbf{G}^{\sim (1,3)})(\mathbf{s}, \mathbf{t}, \mathbf{u}) = \nabla_{\mathbf{K}} \mathbf{G}(\mathbf{t}, \mathbf{u}, \mathbf{s}) + \nabla_{\mathbf{K}} \mathbf{G}(\mathbf{u}, \mathbf{t}, \mathbf{s});$

for all $\mathbf{s}, \mathbf{t}, \mathbf{u} \in \mathcal{T}_x \mathcal{M}$. Observing $\nabla_{\mathbf{K}} \mathbf{G} \in \operatorname{Lin} (\mathcal{T}_x \mathcal{M}, \operatorname{Sym}_2(\mathcal{T}_x \mathcal{M}^2,))$, we see that (53.4)) follows easily from (53.6).

The more general version of "the fundamental theorem of Riemannian geometry" follows immediately from Prop. 1:

Fundamental Theorem of Riemannian Geometry (with torsion): For every prescribed torsion field $\mathbf{L} : \mathcal{M} \to \operatorname{Skw}_2(\mathrm{T}\mathcal{M}^2, \mathrm{T}\mathcal{M})$ of class C^s , $s \in 0..r-2$, there is exactly one G-compatible connection \mathbf{C} , i.e. one satisfying $\nabla_{\mathbf{C}}\mathbf{G} = \mathbf{0}$, such that $\mathbf{T}(\mathbf{C}) = \mathbf{L}$. \mathbf{C} is of class C^s .

Remark 1: When L = 0, the corresponding connection is called the Levi-Cività connection.

Remark 2: It follows from Theorem 3 that for every connection $\mathbf{C}' : \mathcal{M} \to \operatorname{Con} \mathcal{TM}$ of class \mathbf{C}^s , $s \in 0..r - 2$, there is exactly one connection $\mathbf{C} : \mathcal{M} \to \operatorname{Con} \mathcal{TM}$ such that $\mathbf{T}(\mathbf{C}) = \mathbf{T}(\mathbf{C}')$ and $\nabla_{\mathbf{C}}\mathbf{G} = \mathbf{0}$. Moreover, in view of Prop. 2, we have

$$\mathbf{C} = \mathbf{C}' - \frac{1}{2} \mathbf{I} \mathbf{G}^{-1} \big(\nabla_{\mathbf{C}'} \mathbf{G} - \nabla_{\mathbf{C}'} \mathbf{G}^{\sim(1,2)} + \nabla_{\mathbf{C}'} \mathbf{G}^{\sim(1,3)} \big).$$
(53.7)

Now let a connection \mathbf{C} : \to ConT \mathcal{M} be given. We may define, for each $x \in \mathcal{M}$, a mapping

$$\mathbf{A}_{x}^{\mathbf{C}}: \operatorname{Con}_{x} \mathrm{T}\mathcal{M} \to \operatorname{Sym}_{2}(\mathrm{T}_{x}\mathcal{M}^{2}, \mathrm{T}_{x}\mathcal{M})$$
(53.8)

by

$$\mathbf{A}_{x}^{\mathbf{C}}(\mathbf{K}) := \mathbf{\Lambda}(\mathbf{C}(x))\mathbf{K} + (\mathbf{\Lambda}(\mathbf{C}(x))\mathbf{K})^{\sim} \text{ for all } \mathbf{K} \in \mathrm{Con}_{x}\mathrm{T}\mathcal{M}.$$
(53.9)

Let a symplectic field $\mathbf{S} : \mathcal{M} \to \operatorname{Skw}^{\operatorname{inv}}(\mathrm{T}\mathcal{M}, \mathrm{T}^*\mathcal{M})$ of class C^{r-1} be given.

Proposition 3: For every
$$x \in \mathcal{M}$$
, the restriction

$$\mathbf{A}_{x}^{\mathbf{C}}|_{\mathbf{J}_{\mathbf{S}(x)}^{\leq}(\{\nabla_{x}\mathbf{S}\})} : \mathbf{J}_{\mathbf{S}(x)}^{\leq}(\{\nabla_{x}\mathbf{S}\}) \to \operatorname{Sym}_{2}(\operatorname{T}_{x}\mathcal{M}^{2}, \operatorname{T}_{x}\mathcal{M})$$
(53.10)

of the mapping $\mathbf{A}_x^{\mathbf{C}}$ is bijective.

Proof: Similar to the proof of Prop. 1.

Proposition 4: For every connection **C** and each prescribed symmetric field $\mathbf{L} : \mathcal{M} \to \operatorname{Sym}_2(T\mathcal{M}^2, T\mathcal{M})$ of class C^s , $s \in 0..r - 2$, there is exactly one **S**-compatible connection **K**, *i.e.* one satisfying $\nabla_{\mathbf{K}} \mathbf{S} = \mathbf{0}$, such that $\mathbf{A}^{\mathbf{C}}(\mathbf{K}) = \mathbf{L}$. **K** is of class C^s .

Proof: It follows immediately from Prop.3.

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Geometry given here is modelled on the proof given by Noll in [N1].

(2) In [Sp], Spivak, M. stated: "Perhaps its only defect [of the fundamental theorem of Riemannian geometry] is the restriction to symmetric connections." We show that this restriction is not needed.

54. Identities

Let a C^r, $r \geq 2$, Riemannian manifold \mathcal{M} with the Riemannian-field **G** be given. Assume that dim $\mathcal{M} \geq 2$.

For every $A, B \in \mathfrak{X}(T\mathcal{M})$ and a connection $\mathbf{C} : \mathcal{M} \to \operatorname{Con}(T\mathcal{M})$, we use the following notations

$$\langle A, B \rangle := \mathbf{G}(A, B) \text{ and } \nabla_{\!\!A} B := (\nabla_{\!\mathbf{C}} B) A.$$

Proposition 1: A connection \mathbf{C} on a Riemannian manifold \mathcal{M} is compatible with the Riemannian-field \mathbf{G} if and only if

$$A\langle B, D \rangle = \langle \nabla_{\!A} B, D \rangle + \langle B, \nabla_{\!A} D \rangle \tag{54.1}$$

for all $A, B, D \in \mathfrak{X}(T\mathcal{M})$.

Proof: Taking the covariant gradient of $\mathbf{G} \circ (B, D)$ with respect to \mathbf{C} , we obtain

$$(\nabla_{\mathbf{C}}(\mathbf{G} \circ (B, D)))A = \mathbf{G}((\nabla_{\mathbf{C}}B)A, D) + \mathbf{G}(B, (\nabla_{\mathbf{C}}D)A).$$
$$+ (\nabla_{\mathbf{C}}\mathbf{G})(A, B, D)$$

The equation (I.1) holds if and only if $\nabla_{\mathbf{C}} \mathbf{G} = \mathbf{0}$.

For the sake of simplification, we adapt the following notation

$$\langle\!\langle X, Y, Z, T \rangle\!\rangle := \langle \mathbf{R}(X, Y)Z, T \rangle$$
 for all $X, Y, Z, T \in \mathfrak{X}(T\mathcal{M}),$

where $\mathbf{R} := \mathbf{R}(\mathbf{C})$ is the curvature field for a given connection \mathbf{C} . Also recall that

 $\mathbf{R}(X,Y,Z) = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z$

for all $X, Y, Z \in \mathfrak{X}(T\mathcal{M})$.

Proposition 2: Let \mathbf{C} be a connection on a Riemannian manifold \mathcal{M} which is compatible with the Riemannian-field \mathbf{G} , then we have

$$\langle\!\langle X, Y, Z, T \rangle\!\rangle = -\langle\!\langle X, Y, T, Z \rangle\!\rangle \tag{54.2}$$

for all $X, Y, Z, T \in \mathfrak{X}(T\mathcal{M})$.

Proof: To prove (I.2) is equivalent to show

$$0 = \langle\!\langle X, Y, Z, Z \rangle\!\rangle = \langle \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z, Z \rangle.$$

Applying (I.1), we have

$$\langle \nabla_Y \nabla_X Z, Z \rangle = Y \langle \nabla_X Z, Z \rangle - \langle \nabla_X Z, \nabla_Y Z \rangle$$

and

$$\langle \nabla_X \nabla_Y Z, Z \rangle = X \langle \nabla_Y Z, Z \rangle - \langle \nabla_Y Z, \nabla_X Z \rangle.$$

Hence

$$\langle\!\langle X, Y, Z, Z \rangle\!\rangle = Y \langle \nabla_X Z, Z \rangle - X \langle \nabla_Y Z, Z \rangle + \langle \nabla_{[X,Y]} Z, Z \rangle.$$

It follows from (I.1) and the symmetry of the Riemannian-field G that

$$\frac{1}{2}A\langle D,D\rangle = \langle \nabla_{\!\!A}D,D\rangle \quad \text{for all} \quad A,D \in \mathfrak{X}(\mathcal{T}\mathcal{M}).$$
(54.3)

And hence

$$\begin{split} \langle\!\langle X, Y, Z, Z \rangle\!\rangle &= \frac{1}{2} Y(X \langle Z, Z \rangle) - \frac{1}{2} X(Y \langle Z, Z \rangle) + \frac{1}{2} [X, Y] \langle Z, Z \rangle \\ &= -\frac{1}{2} [X, Y] \langle Z, Z \rangle + \frac{1}{2} [X, Y] \langle Z, Z \rangle = 0. \end{split}$$

Since $X, Y, Z \in \mathfrak{X}(T\mathcal{M})$ were arbitrary, the equation (I.2) follows.

Let \mathbf{C} be a compatible connection with the Riemannian-field \mathbf{G} .

Given $x \in \mathcal{M}$. Since $\mathbf{R}_x(\mathbf{C}) \in \operatorname{Skw}_2(\operatorname{T}_x\mathcal{M}^2, \operatorname{Lin} \operatorname{T}_x\mathcal{M})$, we observe form Prop. 2 that $\langle\!\langle \cdot, \cdot, \cdot, \cdot \rangle\!\rangle \in \operatorname{Skw}_2(\operatorname{T}_x \mathcal{M}^2, \operatorname{Skw}_2(\operatorname{T}_x \mathcal{M}^2,)).$

Lemma : Let an inner-product space \mathcal{T} , with dim $\mathcal{T} \geq 2$, and a two-dimensional subspace S of T be given. If both $\{\mathbf{u}, \mathbf{v}\}$ and $\{\mathbf{s}, \mathbf{t}\}$ are bases for S, then we have

$$\frac{\mathbf{W}(\mathbf{u}, \mathbf{v}, \mathbf{u}, \mathbf{v})}{(\mathbf{u} \wedge \mathbf{v})(\mathbf{u}, \mathbf{v})} = \frac{\mathbf{W}(\mathbf{s}, \mathbf{t}, \mathbf{s}, \mathbf{t})}{(\mathbf{s} \wedge \mathbf{t})(\mathbf{s}, \mathbf{t})}$$
(54.4)

for all $\mathbf{W} \in \operatorname{Skw}_2(\mathcal{T}^2, \operatorname{Skw}_2(\mathcal{T}^2,))$.

Proof: By calculations.

Applying the above Lemma, we arrive the following definition.

Definition : Let $\mathcal{V} \subset T_x \mathcal{M}$ be a two-dimensional subspace of $T_x \mathcal{M}$. Let $\{\mathbf{u}, \mathbf{v}\}$ be a basis for S. The sectional curvature of S at x is defined by

$$\mathbf{K}_{x}(\mathcal{S}) := \frac{\langle\!\langle \mathbf{u}, \mathbf{v}, \mathbf{u}, \mathbf{v} \rangle\!\rangle}{(\mathbf{u} \wedge \mathbf{v})(\mathbf{u}, \mathbf{v})}$$
(54.5)

which does not depend on the choice of $\{\mathbf{u}, \mathbf{v}\}$.

Remark : The definition of sectional curvature "*does not*" require the assuption of the compatible connection \mathbf{C} to be torsion-free.

Proposition 4: Let \mathbf{C} be a connection on a Riemannian manifold \mathcal{M} which is compatible with the Riemannian-field \mathbf{G} , then we have

$$\langle\!\langle X, Y, Z, W \rangle\!\rangle - \langle\!\langle Z, W, X, Y \rangle\!\rangle = \mathbf{V}(X, Y, Z, W)$$
 (54.6)

for all $X, Y, Z, W \in \mathfrak{X}(T\mathcal{M})$.

Proof:

$$\begin{split} \mathbf{R}(X,Y)Z\cdot W + \mathbf{R}(Y,Z)X\cdot W + \mathbf{R}(Z,X)Y\cdot W \\ &+ \mathbf{R}(Y,Z)W\cdot X + \mathbf{R}(Z,W)Y\cdot X + \mathbf{R}(W,Y)Z\cdot X \\ &+ \mathbf{R}(Z,W)X\cdot Y + \mathbf{R}(W,X)Z\cdot Y + \mathbf{R}(X,Z)W\cdot Y \\ &+ \mathbf{R}(W,X)Y\cdot Z + \mathbf{R}(X,Y)W\cdot Z + \mathbf{R}(Y,W)X\cdot Z \\ &= \nabla \mathbf{T}(X,Y,Z)\cdot W + \nabla \mathbf{T}(Y,Z,X)\cdot W + \nabla \mathbf{T}(Z,X,Y)\cdot W \\ &+ \nabla \mathbf{T}(Y,Z,W)\cdot X + \nabla \mathbf{T}(Z,W,Y)\cdot X + \nabla \mathbf{T}(W,Y,Z)\cdot X \\ &+ \nabla \mathbf{T}(Z,W,X)\cdot Y + \nabla \mathbf{T}(W,X,Z)\cdot Y + \nabla \mathbf{T}(X,W,Z)\cdot Y \\ &+ \nabla \mathbf{T}(W,X,Y)\cdot Z + \nabla \mathbf{T}(X,Y,W)\cdot Z + \nabla \mathbf{T}(Y,W,X)\cdot Z \\ &+ \mathbf{T}(\mathbf{T}(X,Y),Z)\cdot W + \mathbf{T}(\mathbf{T}(Y,Z),X)\cdot W + \mathbf{T}(\mathbf{T}(Z,X),Y)\cdot W \\ &+ \mathbf{T}(\mathbf{T}(Z,W),X)\cdot Y + \mathbf{T}(\mathbf{T}(W,X),Z)\cdot Y + \mathbf{T}(\mathbf{T}(X,Z),W)\cdot Y \\ &+ \mathbf{T}(\mathbf{T}(W,X),Y)\cdot Z + \mathbf{T}(\mathbf{T}(W,X),Z)\cdot Y + \mathbf{T}(\mathbf{T}(Y,Z),W)\cdot Y \\ &+ \mathbf{T}(\mathbf{T}(W,X),Y)\cdot Z + \mathbf{T}(\mathbf{T}(X,Y),W)\cdot Z + \mathbf{T}(\mathbf{T}(Y,Z),W)\cdot Y \\ &+ \mathbf{T}(\mathbf{T}(W,X),Y)\cdot Z + \mathbf{T}(\mathbf{T}(X,Y),W)\cdot Z + \mathbf{T}(\mathbf{T}(Y,W),X)\cdot Z \end{split}$$

Proposition 5: Let \mathbf{C} be a connection on a Riemannian manifold \mathcal{M} which is compatible with the Riemannian-field \mathbf{G} , then we have

$$\operatorname{tr}\left(\mathbf{R}(x)(\mathbf{s},\cdot)\,\mathbf{t} - \mathbf{R}(x)(\mathbf{t},\cdot)\,\mathbf{s} + \mathbf{R}(x)(\mathbf{t},\mathbf{s})\right) = ????$$
(54.7)

for all $\mathbf{s}, \mathbf{t} \in T_x \mathcal{M}$.

Second Proof of Pro. 2:

In view of (I.1) we have, for all $X, Y, Z, T \in \mathfrak{X}(T\mathcal{M})$,

$$\langle \nabla_Y \nabla_X Z, T \rangle = Y \langle \nabla_X Z, T \rangle - \langle \nabla_X Z, \nabla_Y T \rangle,$$

$$\langle \nabla_X \nabla_Y Z, T \rangle = X \langle \nabla_Y Z, T \rangle - \langle \nabla_Y Z, \nabla_X T \rangle$$

and

$$\langle \nabla_{[X,Y]}Z,T\rangle = [X,Y]\langle Z,T\rangle - \langle Z,\nabla_{[X,Y]}T\rangle.$$

Hence

$$\begin{split} \langle\!\langle X, Y, Z, T \rangle\!\rangle &= \langle \nabla_Y \nabla_X Z, T \rangle - \langle \nabla_X \nabla_Y Z, T \rangle + \langle \nabla_{[X,Y]} Z, T \rangle \\ &= Y \langle \nabla_X Z, T \rangle - \langle \nabla_X Z, \nabla_Y T \rangle - X \langle \nabla_Y Z, T \rangle + \langle \nabla_Y Z, \nabla_X T \rangle \\ &+ [X,Y] \langle Z, T \rangle - \langle Z, \nabla_{[X,Y]} T \rangle \\ &= Y (X \langle Z, T \rangle) - Y \langle Z, \nabla_X T \rangle - X (Y \langle Z, T \rangle) + X \langle Z, \nabla_Y T \rangle \\ &- \langle \nabla_X Z, \nabla_Y T \rangle + \langle \nabla_Y Z, \nabla_X T \rangle + [X,Y] \langle Z, T \rangle - \langle Z, \nabla_{[X,Y]} T \rangle \\ &= -Y \langle Z, \nabla_X T \rangle + X \langle Z, \nabla_Y T \rangle \\ &- \langle \nabla_X Z, \nabla_Y T \rangle + \langle \nabla_Y Z, \nabla_X T \rangle - \langle Z, \nabla_{[X,Y]} T \rangle \\ &= -\langle \nabla_Y \nabla_X T, Z \rangle + \langle \nabla_X \nabla_Y T, Z \rangle - \langle \nabla_{[X,Y]} T, Z \rangle \\ &= - \langle\!\langle X, Y, T, Z \rangle\!\rangle \,. \end{split}$$

Since $X, Y, Z, T \in \mathfrak{X}(T\mathcal{M})$ was arbitrary, the assertion of Prop. 2 follows.

55. Einstein-tensor field

Let a C^r manifold \mathcal{M} , with $r \geq 2$ and dim $\mathcal{M} \geq 2$, and a C^r connection $\mathbf{C} : \mathcal{M} \to \operatorname{Con}(\mathrm{T}\mathcal{M})$ be given. Assume that $\mathbf{G} : \mathcal{M} \to \operatorname{Sym}_2(\mathrm{T}\mathcal{M}^2,)$ be a Riemannian-field compatiable with the connection \mathbf{C} .

Let $x \in \mathcal{M}$ be given and assume that the following condition hold

$$\operatorname{tr}\left(\mathbf{R}(x)(\mathbf{s},\cdot)\mathbf{t} - \mathbf{R}(x)(\mathbf{t},\cdot)\mathbf{s} + \mathbf{R}(x)(\mathbf{t},\mathbf{s})\right) = 0, \qquad (55.1)$$

i.e. we have

$$\operatorname{tr} \left(\mathbf{R}(x)(\mathbf{s},\cdot) \mathbf{t} \right) - \operatorname{tr} \left(\mathbf{R}(x)(\mathbf{t},\cdot) \mathbf{s} \right) + \operatorname{tr} \left(\mathbf{R}(x)(\mathbf{t},\mathbf{s}) \right) = 0$$

Since $\mathbf{R}(x)(\mathbf{t}, \mathbf{s})$ is skew-symmetric with respect to \mathbf{G} , we obtain that

$$\operatorname{tr}(\mathbf{R}(x)(\mathbf{s},\cdot)\mathbf{t}) = \operatorname{tr}(\mathbf{R}(x)(\mathbf{t},\cdot)\mathbf{s}) \quad \text{for all} \quad \mathbf{s},\mathbf{t}\in \mathrm{T}_x\mathcal{M}.$$

<u>Definition</u> : The Ricci-tensor field $\operatorname{Ric} : \mathcal{M} \to \operatorname{Sym}_2(T\mathcal{M}^2,)$ is defined by

$$\operatorname{Ric}(x)(\mathbf{s}, \mathbf{t}) := \operatorname{tr}\left(\mathbf{R}(x)(\mathbf{s}, \cdot) \mathbf{t}\right)$$
(55.2)

for all $x \in \mathcal{M}$ and all $\mathbf{s}, \mathbf{t} \in T_x \mathcal{M}$.

<u>Definition</u> : The Einstein-tensor field $\operatorname{Ein} : \mathcal{M} \to \operatorname{Sym}_2(T\mathcal{M}^2,)$ is defined by1

$$\operatorname{Ein}(x) := \operatorname{Ric}(x) - \frac{1}{2} \operatorname{tr} \left(\mathbf{G}^{-1}(x) \operatorname{Ric}(x) \right) \mathbf{G}(x)$$
(55.3)

for all $x \in \mathcal{M}$. (The factor 1/2 is determined by the assumption dim $T_x \mathcal{M} = 4!$)

It follows from the 2nd Bianchi Identity (this condition should be weaken) that $\operatorname{div}_{\mathbf{C}} \operatorname{Ein} = 0$

$$\operatorname{div}_{\mathbf{C}}\operatorname{Ein} = 0. \tag{55.4}$$

Remark: The matter tensor field $Mat: \mathcal{M} \to Sym_2(T\mathcal{M}^2,)$ satisfying

$$\operatorname{Ein}(x) = \kappa \operatorname{Mat}(x) \tag{55.5}$$

where $\kappa \in$ is the **universal gravitational constant**. It follows from (Ein.4) and (Ein 5) that

$$\operatorname{div}_{\mathbf{C}} \operatorname{Mat} = 0 \tag{55.6}$$

(balance of world-momentum).