Chapter 4

Gradients.

In this chapter, we assume a linear-space bundle (B, 7, M) of class C*, s > 2,
is given. We also assume that both M and B have constant dimensions, and put
n = dim M and m := dim B — dim M. Then we have, as in (32.1), m = dim B,
for all z € M.

41. Shift Gradients

Let x € M be fixed.
Let ® be an analytic tensor functor and let H : M — ®(B) be a cross
section of ®(B) that is differentiable at . We define the mapping

H : Tlis, B — ®(B,) (41.1)

by
H(T) := ®(T) 'H(7,(T)) forall T & Tlis,B, (41.2)

where 7, is defined by (32.3). Since ® is analytic, it is clear that H is differen-
tiable at 15, .

Difinition: The shift-gradient of H at z is the linear mapping

O,H € Lin (S, B, ®(B,))

defined by R
O0.H := Vy, H, (41.3)

where H is given by (41.2).

For every bundle chart ¢ € Ch,(B, M), the spaces RngI, and Rng A%
are supplymentary in S, B. Hence, for every s € S, B there is exactly one pair
(M, t) € Lin B, x T, M such that s = I, M + A%t and thus

(0.H)s = (O, H)I,M + (O0,H)A%.

Proposition 1: We have
(O, H)I,M = —(&_M)H(z) forall M € LinB,, (41.4)

where ®,, € Lin (Lin B,, Lin ®(B,.)) is defined to be the gradient of the mapping
(L— ®(L)) : Lis B, — Lis (®(B,)) at 15, .




Proof: In view of (32.4) and (41.2) we have Ho, : LisB, — ®(B,) and
(Ho,)(L) = ®(L) 'H(z) forall L € LisB,.

Taking the gradient of (H, o ¢,) at 1z, and using (32.11) and (41.3), we obtain
the desired result (41.4). I

Example 1: Let B* := DI (B), where DI is the duality functor.

Let h be a cross section of B, let w be a cross section of B*, let L be a cross
section of Lin B, let G be a cross section of Lin (B, B*) = Liny(B?,) and

let T be a cross section of Lin (B, Lin B) 2 Liny (B2, B). Assume that all of
these cross sections are differentiable at . Then

(O,h)I,M = —Mh(z); (41.5)

(Opw)I.M = w(z)M; (41.6)

(0,L)I,M = L(z)M — ML(x); (41.7)
(0,G)I,M=G(z)o (M x 15 ) + G(z) o (15, x M) (41.8)

and

(O, T)I,M=T(x)o (M x 15,) + T(x) o (15, x M) — MT(x) (41.9)
for all M € Lin B,.

Let a bundle chart ¢ € Ch,(B, M) be given. We define the mapping

H(’b . O¢ — (I)(V¢)

H?(y) := ®(¢| JH(y), foral ye O,. (41.10)

Y

Proposition 2: We have

(O.H)A? = V/H = A(A5Y) V. H (41.11)

where ®(p) is defined by (24.5), VPH is described in (24.9) and Az((g is defined
in terms of (31.19).

Proof: Let y € Oy4 be given. Substituting T := (qﬁjy)_lgbj in (41.2) gives

1
x

H((¢],)7'¢],) = ®((¢] ) "0],) " H(y)
= ®(0],) 7 ®(¢] JH(y) = B(0],) TH(y).
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Since tlis? (y,¢] ) = (¢],)7"¢], by (32.7), we obtain

(Hotlis? )(y.0|,) = ®(¢] ) "H(y) forall ye O,
Taking the gradient with respect to y at z and observing (51.2) gives
(Vag, H)(Vi, tlis?) 7 (£,0) = ®(¢] ) (H?) ¢

for all t € T, M. In view of definition (32.19) and (24.9) we obtain the first
equality of the desired result (41.11).
It follows from (41.2), (41.3) and (31.29) with ¢ replaced by ®(¢) that

(O.H)AS = (Vi H)V, (0] 6] )
=Va(y — ®(¢], ¢ JH(y))
= (®())] " (ev2 0 Vian)®(¢)) V. H

= A(Ag() VH.

-1

1

Since ¢ € Ch, (B, M) was arbitrary, the second part of (41.11) follows. I

The results of Props. 1 and 2 give the following commutative diagram

. I A?
Lin B, — S.B — T, M

—(‘P;)Nﬂwl (1) /DxH (2) H : (41.12)

®(B,) —— Tum®B) —— T.M

M) =

Prop. 1 and Prop. 2 are illustrated by (1) and (2) in the diagram, respectively.

Let tensor functors ®;, ®5 and ¥ and a natural bilinear assignment
B:(®,,P3) —» ¥ be given. Also, let Hy : M — ®;(B) be a cross section
of ®1(B) and let Hy : M — ®5(B) be a cross section of ®(5). Then the
mapping B(H;,Hy) : M — ¥ defined by

B(Hy,Hy)(z) := B; (Hi(z),Ha(x)) forall ze M (41.13)

is a cross section of ¥(B).

General Product Rule
If Hy and Hy are differentiable at x, then B(Hy,Hs) is also differentiable
at x and we have

(0.B(Hy,Hy))s = By, (O,Hy)s, Ha(2)) + By, (Hi(z), (O,Hy)s) (41.14)

for all s € S,.B.




Proof: Put H := B(H;,H>) in (41.2), we have

H(T) = By, (®1(T ™ )Hy (. (T)), ®2(T ") Ha(r,(T)))
= By, (H,(T), Hy(T))

for all T € Tlis,B. Since B is bilinear, the desired result (41.14) follows from
(41.3) together with the General Product Rule in flat spaces [FDS]. I

Example 2:

Let f be a scalar field, and let h : M — B be a cross section of B and
H : M — LinB be a cross section of Lin B that are differentiable at . Then
fH and Hh defined value-wise are also differentiable at x, and we have

(Hz/H)s = (0 f)s)H(x) + f(z) (O.H)s (41.15)
and

O.(Hh)s = ((d,H)s)h(x) + H(z)(d,h)s (41.16)
for all s € S, B. 1
Example 3:

Let w : M — Skw,(B?,) be a skew-p-form field and 7 : M — Skw,(B9,) a
skew-g-form field that are differentiable at . Then w A T is a skew-(p + ¢)-form
field which is also differentiable at x and we have

Oz (wAT))s=([w)s N7+ wA (O,7)s (41.17)
for all s € S, B. |
Let £, and £’ be linear-space bundles over M. For every x € M, we denote

the fiber product bundle (see Sect.22) of (Tlis, L, m,, M) and (Tlis, L, 7, M)
by

x

(Tlismﬁ X, Tlis, £, 7w X, 70! M). (41.18)
Taking the gradient of the mapping

e X 1 ¢ Tlis, £ X, Tlis, £/ —— M (41.19)

at 1z, X 12/, we have

P, Xo P!t SoL Xy Sol! —— TyM (41.20)

where P, = V1, 7, and P; = V; , /.. It follows from

/ /
Ty Xpy My = Ty O €V] = T, O €V
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that
(B, X, uP))(s,8') =PBs =P, (s') (41.21)

for all (s,s’) € Sz LX ¢, Sz L.
Let YT be a tensor bifunctor and let H be a cross section of Y (LX,,L')
which is differentiable at z. We define a mapping

H : Tlis, £ X,, Tlis, £’ — Y (L, x L) (41.22)

ﬁ(T X T’) = Y(T x T')"L H(y)
where y:= m,(T) = 7, (T')

(41.23)

for all T x T/ € Tlis, £ X,, Tlis,£'. The shift-gradient of H at x is the linear

mapping
O.H: S, LX S L — X (L, x L) (41.24)

defined in (41.3); i.e.
O0.H =V, H, (41.25)

where 1p, := 1., X 12,. We also use the following notations
I, :=Vi, in, and I, := Vlﬁ/,.in;

where in, := 1, . and ingC := 1z, are inclusion mappings.

Proposition 3: We have
(O,H)(I,M,I.M’) = =Y. (M x M')H(z) (41.26)

for allM € Lin L, and all M" € Lin L, where T; is the gradient of the mapping
(LxL' —YLxL)) atly, x1z.

Example 4:

Let ® be a analytic tensor functor and let £ := TM and £’ := B. If
L: M — Lin(TM,®(B)) and T : M — Liny (TM? ®(B)) are cross sections
that are differentiable at x, we have

O,L: S, TM X, ,S.B — Lin (T, M, ®(B,))
0,T : S, TM X, S, B — Liny (T, M? ®(B,))

and

L(z)M — &, (M')L(x)
T(z)M + T(z) "M — & (M')T(x)

(0,L) (LM, I,M)

(41.27)
(0, T)(I,M,T.M)
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for all M € Lin T, M and M’ € LinB,.

Proposition 4: We have
(O.H)(AZ,AS) = V"2 H, (41.28)

where V1?2 H is described in (24.12), for all bundle charts 6 € Chy (£, M) and
¢ € Chy (L', M).

42. Covariant Gradients

Let z € M and a connector K € Con B be given.
Let ® be a tensor functor and H : M — ®(B) be a cross section of ®(B5)
that is differentiable at x.

Definition : We define the covariant gradient of H relative to K by
VkH := (O,H)K € Lin (T, M, ®(B,)), (42.1)

where O, H s the shift-gradient of H at x as defined by (41.3).

Given a bundle chart ¢ € Ch, (B, M). It follows from (41.11) and (42.1)
that
VaeH = V/H.

If f: M — is a scalar field differentiable at x, then we have O, f = V. f B,
and hence
Vf=VNf for all K € Con . B. (42.2)

Proposition 1: For every bundle chart ¢ € Ch, (B, M) we have

(VkH)t = (VPH)t + @, (LY (K)t)H(z) forall t e T, M, (42.3)

where ®, € Lin (Lin B, Lin ®(B,)) is defined as in Prop. 1 of Sect.41.

Proof: By (32.27), we have

(O, H)Kt = (O, H)A%t + O, H(K — A2)t

xT

= (O, H)A%t — O, H(L,L? (K)t)
for all t € T, M. Using (32.4), we obtain
(O,H)Kt = (O,H)A% + & (L (K)t)H(x).
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The result (42.3) follows from the definition (42.1). 1

Example 1:

Let h be a cross section of B, let w be a cross section of B*, let L be a cross
section of Lin B, let G be a cross section of Lin (B, B*) 2 Liny(B?,), and

let T be a cross section of Lin (B,LinB) = Liny(B?, B). If these cross
sections are differentiable at z, we have

(Vich)t = (V/h)t + L (K)(t, h(z); (42.4)
(Viw)t = (Vew)t — w(@)L? (K)t; (42.5)
(VL)t = (VIL)t — L(2) (T (K)t) + (LK)H)L(x);  (426)

T

VG (t,b) = (V/G)(t,b) — (G(z)b) (L (K)t) — G(z) (L (K)(t,b)) (42.7)

and
(42.8)

forallt € T,M and all b € B,.

General Product Rule
Let Hi,Hy be cross sections as given in the General Product Rule of
Sect. 41, then we have

VKB(Hl, Hg)t = BBZ ((VKHl)t, HQ ({IJ)) -+ BBZ (H1 (l’), (VKHg)t) (429)

for allt € T, M.

Proof: Substituting s := Kt in (41.14) and observing (42.1), we obtain (42.9).

The formulas (41.15), (41.16) and (41.17) remain valid if the shift gradient
O, there is replaced by the covariant gradient Vi and s € S,B by t € T, M.

Let £ and £’ be linear-space bundles over M. Let Y be a tensor bifunc-
tor and let H : M — Y(LX, L") be a cross section of Y (L X, L") which is
differentiable at z. Let a pair of connectors (K,K’) € Con,L x Con, L’ be
given.

Definition: The covariant-gradient of H at z relative to (K, K') is defined
by
Vik xHH = (0,H)(K,K') (42.10)

which is in Lin(T, M, X (L, x L])).




Proposition 2: For every (K,K’) € Con,L x Con,L" and all bundle charts
¢ € Chy (L, M) and ¢' € Ch, (L', M) we have

(Vik.xH)t = (V2O H)t + Y, (L2 (K)t x TP (K')t)H(x) (42.11)

for all t € T, M, where T; is described in Prop. 8 of Sect. 41.

’

Proof: Equation (42.11) follows from K = A? — I,T?(K), K' = A? —
I.LY (K'), (42.10) and (41.28). I

43. Alternating Covariant Gradients

Let a number p € , with p > 1, connections C : M — ConTM and
D : M — Con B of class C! be given.

Let ® be an analytic tensor functor. For every differentiable ®(B)-valued
skew-p-linear field S : M — Skw,(TMP, ®(B)), the covariant gradient of S at
x € M relative to (C,D) is the mapping

V(C(a:),D(a:))S : M — Lin(T,M, Skw,, (T, MP, &(B,)).
Taking the alternating part of V¢ (»),p(x))S, we obtain the skew (p + 1)-linear

mapping
Alt (V(C(x),D(a:))S) € SkWp+1(TmMp+1, (I)(Bx)) (43.1)

Proposition 1: Let x € M be given. For every manifold chart x € Ch, M and
every bundle chart ¢ € Ch, (M, B), we have

(P + DAL (Vic@)p() S)(V)
— (p+ 1)Alt <V§’¢S + (<I>;(F§(D(w)))~s(x>)) (v) (43.2)
= > (FD)TTS(@)(Tu(C(@)) (v, v;), deli jyv)

1<i<j<p+1

where del; ;) : yr+l  yr=1 s defined by del(; jy := delj odel;, ¢ < j, for all
v € T,MPHL,

Proof: Let x € Ch, M and ¢ € Ch,(B, M) be given. We have
C(r) = AY ~LTX(C(x)) and D(x) = A? — L,T¢(D(x)
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For every i € (p+ 1)), (42.11) gives

V() D()S(Vi, del;v) = VX?S(vi, del;v) + @, (T2 (D(z)v;)S(z)(del,v)

— > S(@)(del( V) H)TX(C()) (vi, V)
jE€(p+1)\ {3}

(43.2)
for all v € (T, M)*®*+1 . Sum up and rearrange all the terms, we obtain the
desired formula by observing that T, = I'X — T'X™ ]

Prop.1 has several applications. The first application is given in the follow-
ing Prop.2. The second kind of applications are Bianchi identities in Sect.44 and
the third application leads to the definition of exterior differential in Sect.45.

For every cross section H : M — ®(B) of class CP, p > 2, we define the
covariant gradient-mapping of H relative to D
VpH : M — Lin(TM, ®(B))
by
VpH(y) := VpyH forall ye M. (43.3)

The second covariant gradient-mapping of H relative to (C, D) is defined
by

Voo H = Vi) (VoH) : M — Ling (TM?, &(B)). (43.4)

The second covarient gradient-mapping V((é)D)H is not necessarily symmetric.
Indeed, we have the following:

Proposition 2: We have

Vo H ~ (Vo)p H)™ = & (R(D)(,-))H — (VoH)T(C) (43.5)

where, for each x € M, ® (z) := ®, € Lin (Lin B, Lin ®(B,)) is defined as in
Prop. 1 of Sect. /2.

Proof: Let x € M be given. Choose x € Ch, M and ¢ € Ch, (B, M). Applying
Prop. 1 with H replaced by Vp(;)H and ® replaced by Lin o (Id, @) (see [N2]),
we have

(2) (2)
V&(a) D)y B V) = Vg, pe)yHVu) + (Vb () H) T, (C(z))(u,v)

= (May,as WH)(1,v) = (Va3 a0 VD H)(v, 1)

+ @, (T (D(2))u) (Vb @ H)v — &, (T (D(2))v) (Vb @ H)u
(43.6)



for all u,v € T, M. Observing VpH = Vo H + @, (I'?(D)), we have

Viax.ag) Vo H(u v) = V)

a1, V) + Vax.a) . (T?(D)) H(u, v).

(43.7)

for all u,v € T, M. Since (I>; is a natural linear assignment, the second term on
the right handside of the equality in (43.7) is

(V(Agg,Ag)q);(Fd)(D))NH) (u,v)

. . (43.8)
= ®,(Vax oy T?(D)(w, v))H(z) + P, (L7 (D(2))v) (Ve H)u.

We also have, the third term on the right hand side of the equality (43.6) satisfies

2))u) (Voo H)v

))u) (Vg H + 2} (02 (D () v o)
) ) Ve Y + @4 (02 (D ())) @ (L (D (x) )

) ) Vs HY + @ (T (D) ul (D())v).

x

/N —
e
/\/e —~
~—~ o~

Combining (43.6) to (43.9) with (43.2) and observing that

2 p—
Ve anH=2(],) 7 (WVH?) (Vx x Vix) (43.10)
is symmetric and x € M was arbitrary, we obtain (43.5). 1

Remark: When the given bundle B is the tangent bundle TM, then we only
need one connection say; the connection C. If this is the case, we have

WH - (YYH)” = " (R(C)(-,-))H — (VcH)T(C). (43.11)
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44. Bianchi Identities

Let connections C : M — ConTM and D : M — ConB of class C!
be given. Both of the torsion field T(C) : M — Skwy(TM? TM) of the
connection C and the curvature field R(D) : M — Skwy(TM?, LinB) of the
connection D are skew-2-linear fields. Applying Prop.1 of Sect.43, the alternat-
ing part of VoT(C) gives the first Bianchi idetity and the alternating part
of Vic,pyR(D) gives the second Bianchi idetity.

Proposition 1: (First Bianchi idetity) We have
Alt (VeT(C) + T(C)T(C)) = Alt (R(C)) (44.1)

where T(C)T(C) is regarded as a cross section of Skwo(TM?, LinTM).

Proof: Applying Prop.1 of Sect.43, we have
Alt (VeT(C) + T(C)T(C)) = Alt (Vex T(C) + IT'X(C)™ T(C)). (44.2)
Using (33.8) and (34.30), we see that
Alt (VexT(C) +I'Y(C)” T(C)) = Alt (R(C)). (44.3)
The desire result (44.1) follows from (44.2) and (44.3). 1

Remark 1: When C is curvature-free (but not necessary torsion free), Eq. (44.1)
reduces to

Alt (VeT(C) + T(C)T(C)) = 0. (44.4)
If in addition that Alt (VcT(C)) = 0, then

Alt (T(C)T(C)) = 0; (44.5)

that is T(C) satisfies Jacobi identity (cf. Lie Group, Prop.7 of Sect.44 ). 1

Proposition 2: (Second Bianchi idetity) We have

Alt (Vic.p)R(D) + R(D)T(C)) = 0. (44.6)

where R(D)T(C) is regarded as a cross section of Skwa(TM?, Lin(TM, LinB)).

Proof: Applying Prop.1 of Sect.43, we have

Alt (Vie.p) R + R (C)(T4(C)))
— Alt (Vj5s os)R+T%(D)”R,(C) — R,(C)(,)T%(D)).

x
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Applying Prop.5 of Sect.34, we obtain

Alt (Vax o4 R+ T2(D)” Ry (C) — Ry (C)(-,)T5(D))
44.8)
2) (D 2) I¢(D))~ (
= Ale (W2, T%(D) = (V2 ,, T%(D))").
In view of (44.5), we observe that
2) 2) ~
The desired result follows from (44.7), (44.8) and (44.9). 1

Remark 2: When the given linear-space bundle is the tangent bundle B := T M
of M, the Bianchi identities can be found in literatures (see [P]) as

(VcT( )(U,V,W) + (VcT(C))(V,W,U) + (VcT(C))(W,U,V)
( )(T(C )( V),W)+T(C)(T(C)(V,W),U)+T(C)(T(C)(W,U),V)
R(C)(U )+R(C)(V,W,U)+R(C)(W,U,V)
(44.10)
and

(VeR(C))(UV W) + (VcR(C))(VWU) + (VcR(C))(WUV)
+R(C)(T(C)(U,V),W)+R(C)(T(C)(V,W),U)+R(C)(T(C)(W,U),V)
=0
(44.11)
for all vector fields U, V, W € XTM.

Remark 3: Most of the literatures, especially in physics, only deal with the
special case : in the absence of torsion. Under this assumption, the Bianchi
identities becomes

Alt (R(C)) = 0 (44.12)

and

Alt (VeR(C)) = 0. (44.13)
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45. Differential Forms

Let p € and a differentiable W-valued skew p-linear field w be given.
In this section, we apply Prop.1 of Sect.43 with the tensor functor ® := Tr,,,
the trival functor for a linear space W (see Sect.13).

Proposition 1: For every x € M, we have

Alt (V¥w) = Alt (V)w) (45.1)

for all manifold charts x,vy € Ch, M.

Proof: The desire result (45.1) follows from Prop.1 of Sect.43 with (Tr,,), = 0
and T,(AX) = 0 = T,(A)) (see Theorem in Sect.33) for all manifold charts
X,7 € Ch, M.

Definition : The pt"-exterior differential at = € M
d? : X (Skw,(TMP,)) — Skwyy1 (T, MPTL)) (45.2)
1s defined by

x

diw = — At (VYw) forall w € X(Skw,(TM?,) (45.3)
p:

which is valid for all manifold chart x € Ch, M.
The p'"-exterior differential
d? : X°(Skw,(TMP,)) — X (Skwpoq (TMPFL))) (45.4)
1$ defined by
dP(z):=dl forall ze M. (45.5)

xT

Remark : If M be the underline manifold of a flat space £, then Vw = VXw for
all manifold chart x. The definition (45.3) of exterior differential at = becomes

1
dPw = HAlt (Vw). (45.6)
Equation (45.6) can be found in Sect.2.3 of [CH] and in Sect.51 of [B-W]. I

Proposition 2: Let W be a linear space and let w : M — Skw,(TMP, W) be a
differentiable YWW-valued skew p-linear field. For every x € M,we have

1
dLio(v) = (ALt (Venw))v

+ Z (1) () (Tx(C(x))(vi,vj),del(i,j)v)

1<i<j<p+1

(45.7)

for all connection C and all v € T,MPTL,
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Proposition 3: We have

dPtlodP = 0.

(45.7)
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46. Lie gradients, Lie brackets

In this section, we only deal with the tangent bundle of a given C*-manifold
M, where 2 < s €.

We assume that a vector-field h is given and that h is differentiable at x.

Proposition 1: There is exactly one shift, which is called the shift of h at x
and is denoted by >, h € S, TM, such that

B, (>, h) = O,h, (46.1)

where By, is given in (33.6) and O,h € Lin (S, TM, T, M) is the shift-gradient
of h as defined by (41.3). We have

P, (>, h) = h(z) (46.2)

Proof: The injectivity of B, (see Prop. 2 of Sect.15) shows that there is at most
one >, h € S, TM with the property (46.1).
We now choose y € Ch, M and define
> h =1, (@,h) AX) + AXh(z). (46.3)
By (15.6); and (32.23) we have

B, (>, h) = (0;h)(AXB,) + B, (AX h(x))

(46.4)
=,h (1s,7:m — L A(AY)) + B, (AXh(z)).

It follows from (41.4) and (15.6)5 that
O.h (T (A(AY)(5)) ) = —A(AY)(5) h(x)
— -B, (5)(A} h(x)) = (B. (AXh(2)))(5)

holds for all s € S, TM. Hence (46.4) reduces to (46.1). Applying P, to (46.3)
and observing P, I, = 0 and P, AX = 1p_a yields (46.2).

Proposition 2: Let x € Ch, M be given. The shift >, h of h at x satisfies

A(AX)(>,h) = V¥h (46.5)

Proof: The equality follows by operating on (44.3) with A(AYX) and observing
A(AOI, = 1rinT, m and A(AX)AX = 0.1
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For every manifold chart xy € Ch, M, we have
AXh(z) + I,O,hAX = (Y, tlisY) " (hX(z), V,hX). (46.6)
In view of (46.3), we have
> h = (Vip,  tlisY) " (h¥(z), VhX)
for every manifold chart xy € Ch, M.
Remark: By (46.1) and the injectivity of B, we have

> k=0 if and only if O,k=0 (46.7)

Proposition 3: If f : M — s differentiable at x, so is the vector-field fh and
we have

>(fh) = f(z) > h+ 1, (h(z) ® Vi f). (46.8)

Proof: It follows from (15.6); with M := h(z) ® V. f that
B, (I (h(z) ® Vi f)) = (h(2) © V; /) B, = h(z) @ B, V. f.
In view of (46.4) and (41.15), it follows that
B, (>(fh)) =0.(fh) = f(z)O,h + h(z) ® BV, f
=B, (f(z)>h+1, (h(z) ® V. f))

Since B, is injective, (46.8) follows.

Let @ be a functor as described in Sect.13 and let H : M — ®(TM) be
a tensor-field that is differentiable at x. Also, let k be a vector-field that is
differentiable at x.

Definition: The Lie-gradient of H with respect to k at x is defined by
(LiexH), := 0O, H(> k), (46.9)

where O, H is the shift-gradient of H at x as defined by (41.3) and where >, k
is the shift of k at x as determined by (46.1).

Proposition 4: Let f: M — and H be differentiable at x. We have

(Liekf H) "
(Lieka) "

(z) (LiekH)m + (V% f) k(z)) H(z);

(x)(LiekH)m + (Q;(k(x) 2 sz)> H(z), (46.9)

=f
=

where ®;, € Lin(LinT,, Lin®(T,)) is defined as in Prop.1 of Sect.41.

16




General Product Rule
Let Hy,Hs be cross sections as given in the General Product Rule of Sect.41,
then we have

(LiekB(Hl, Hz))m = BBE ((LiekHl)m, H2 (:U)) + BBI (Hl (a:), (Lleng)w) .
(46.10)

Remark: We have
(LiexH), = (Vg H)k(z) + & (T, (K)k(z) + Vik)H(z)
for all K € Com,(TM). |

We now assume that two vector-fields h and k, both are differentiable at x,
are given.

Definition: The Lie-bracket of h with k at x is defined by

[k, h] :=B.(>h>k). (46.11)

It follows from (46.1), (46.9) and (46.11) that

[k, h] = (Liexh), (46.12)

Proposition 5: We have
[k,h] =-[h, k] . (46.13)
If f: M — s differentiable at x, then

[fh, k], =f@)[h, k], —((%f)k(z))h(z). (46.14)

Proof: (46.13) follows from the skewness of B,. Substitution of fh for h in
(46.11) and use of (46.8) gives

[fh, k] =f(=)][h, k] —B;(L (h(z)® V;f), > k)
and hence, by (15.6);,
[fh, k], =f@)[h, k], - (h(z) ®V%f)(B > k)
The desired result (46.14) now follows from (46.2).
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Remark: Let r = oo, let h,k € X°° M and let h' and K be the mappings from
C>®(M) to C*°(M) defined by (24.6). One can easily show that the mapping
[h, k]v : C°°(M) — C°°(M) corresponding to [ h, k]]V is given by
[h,k] =h ok —K ol (46.15)
If f e C>®(M), we then have
[fh, k] =f[0 , K ]-K(Hn, (46.16)

which can be derived from (46.14) or directly from (46.15).

Proposition 6: If both h and k are vector-fields that are differentiable at x,
then have

[h, k] = (VXk)h(z)— (V)h) k(). (46.17)

for every manifold chart x € Ch, M where VXk and VXh be defined according
to (23.26). Moreover, we have

(Vkk)h(z) — (Vkh)k(z) = [h, k] + T.(K)(h,k) (46.18)

for all K € Con, TM.

Proof: If we substitute s := >, h and s’ := >, k in (33.6) and (12.5) we obtain
from (46.11) that

[h, k], =-DX(>,h)P, (>, k) + DX (>, k)P, (>, h)

The desired result (46.17) follows now from (46.5) and (46.2).
By (42.3) we have

(Vih)k(z) = (Vh)k(z) + TX(K) (k(z), h(z)).

Interchanging h and k and taking the difference, we obtain (46.18) from (46.17)
and (33.8). 1

Let s € 1..(r — 1) and h, k € X*TM be given. Then the vector-field
[[h , k] is defined by

[h,k](@):=[h,k]  forall zeM (46.19)

It is clear from Proposition 5 that [[h, k]] e X 'TM. Using (23.6), it
follows from (46.17) and the definition (23.35) that

[h, k]* = (Wk¥) hX — (hX) kX, (46.20)
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Proposition 7: (Jacobi identity): Let s € 2..(r — 1) and hy,hy, hz € X*TM
be given, then

[[hi,ho] . h3]+[[ho, h3], by [+ [[hs, hi],ha] =0 (46.21)

Proof: A straightforward but somewhat tedious calculation, using (46.20) and
the Symmetry Theorem for Second Gradients, yields the desired result (46.21).

|
If M is a C* manifold, then X°°TM together with the bilinear mapping
[[ , ] : XTM x XTM — XTM

given in (46.21) is a Lie algebra, as defined in Sect.11.

47. Transport Systems

We assume that » € =~ with » > 2 and a C"-manifold M are given. Let
(B, 7, M) be a C® linear-space bundle, s € 0. .r.

We define the bundle of transfer isomorphisms of B by

TlisB:= | ] Ths,B= | Lis(B.,B,). (47.1)
reEM T, yeM

It is endowed with the natural structure of a C*-fiber bundle over M x M whose
bundle projection 7 : Tlis B — M x M is

7(T) :€ { (z,y) e M x M | T € Lis(B,, By) }. (47.2)

Definition: A subset € of TlisB is called a C*° transport structure for B
if € is a C*-submanifold of Tlis B such that

(T1) forall Ae T, A~ e ¥,
(T2) for all A,B € T such that Cod A = DomB, BA € ¥,
(T3) for all z,y € M, T NLis(B,, By) # { }.

It can be shown that €, := € N Tlis, B is a C*-submanifold of Tlis, B.
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Theorem on Transport Structure and Parallelisms
Let C: M — ConB be a connection of class C*. Define

S ={AeTlisB | ----crvrvv-- b

Then § is a transport structure for B.

Proof:

A cross section F : M x M — % is called a (global) transport system
for B if
F(x,z) = F(y, 2)F(z,y) for all z,y,z € M (47.3)

and
F(z,z) =15, for all = e M. (47.4)

Recall that a cross section T : M — Tlis, B of the bundle Tlis, B, x € M,
with
T(x) =15, (47.5)

is called a transport from x. It follows from (47.3), (47.4) and (47.5) that, for
each r € M, the mapping F(z,-) : M — Tlis, B is a transport from x. Moreover,
we have

F(y,-) = F(z, )F(y,z) forall z,ye M. (47.6)

Conversely, let x € M and a transport F, : M — Tlis, B from z be given. For
each y € M, we obtain a transport F, : M — Tlis,B from y by

F,(2) == F.(2)F.(y)~" forall ze& M. (47.7)
and, a transport system F : M x M — Tlis B by
F(y,z2) := F(2)F.(y)~! forall y,z¢c M. (47.8)
We conclude that, for each © € M, there is one to one correspondent between
the set of all transports from z for B and the set of all transport systems for B.
Every transport system F : M x M — TlisB induces a connection
C: M — ConB by
C(y) == Vi, F(y,-) forall ye M. (47.9)
Let a transport system F : M x M — TlisB for B, a tensor functor ®
and a cross section H : M — ®(B) be given. We say that H is parallel with
respect to F if

H(y) = ®(F(z,y))H(z) forall z,y e M. (47.10)
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Proposition 1: Let C be the connection induced by a transport system F, as
given in (47.9). Let H : O — ®(B) be a cross section of class C'. If H is
parallel with respect to ¥, then VcH = 0. Conversely, if VeH = 0 and if M is
connected then H 1is parallel with respect to F.

Proof: Fix x € M and let T := F(z,:). Let y € M be given and define
H, : Tlis,B — B, in accord with (41.2). Then

ﬁy(T(z)T(y)_l) = ®(T(y)T(2) " HH(z) forall ze M.

Differentiation with respect to z at y gives, using (42.1), (41.3), (47.9), and the
chain rule,

(YeH)(y) = (@,H)C(y) = ®(T(y))V,H, (47.11)

where H : M — ®(B,) is defined by H(z) := ®(T(z)"1)H(z) for all z € M.
Since y € M was arbitrary and since ®(T(y)) is invertible, we conclude from
(47.11) that VeH = 0, if and only if VH = 0. Now if H = &(T)v for
some v € ®(B,), then H is a constant and hence VH = 0. Conversely if M is
connected and VH = 0, then H is a constant and hence H = ®(T)v for some

v e PDB,). |

Remark : Let a connection C, not necessarily induced by a transport system,
be given. Then the condition VcH = 0 does not equivalent to to the condition
that H is parallel with respective to a transport system. ]

Proposition 2: Let T : [0,d] — Tlis, B be a differentiable transfer process from
x, and put p := m, o T : [0,d] — M. For every differentiable cross section

H: M — ®(B), we have
(@pH) (s T) = 9 (s — (T ()T "(s))H(p(s)) ) (47.12)

for all t € [0,d], the derivative (47.12) may be interpreted, roughly, as the rate
of change of H at p(t) relative to the transfer process T.

Let C : M — ConB be a continuous connection and p : [0,d] — M be a
process of class C!, with = p(0). Let T be the parallelism along p for the
connection C. It follows from (35.23), sdT = (C o p)p°®, that

(e )y H)p* (t) = Oy H)(sd: T). (47.13)

This result does not depend on the choice of the process p, and hence does not
depend on the parallelism T along p.
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Proposition 3: Let C : M — ConB be a continuous connection and let the
cross section H : M — ®(B) be differentiable. Then NcH = 0 if and only if,
for every differentiable process p : [0,d] — M,

(OH)op)(sdT) =0 (47.14)

where T s the parallelism along p for C.

Let x € M and a continuous vector field k : M — TM be given. By the
maximum local flow for k at x we mean a mapping

a:IxD—- M

where I is an open interval containing 0,and D containing x, and D is an open
subset of M containing x, such that for every y € D the mapping a(-,y) : I — M
is the maximum integral process (integral curve) of k with the initial condition

y; Le. a(0,y) =y and k(a(t,y)) = (a*(-,))(1).
Let z € M and a continuous vector field k : M — TM be given. It is a
well known theorem in O.D.E. (see Sect.1 of Ch.4, [L]) that there is a maximum

local flow

a:IxD—-M

for k at x. We may define a mapping Ly : I — Tlis, M by
Ly (t) :== Mea(t,-) forall tel.

It is clear that
L ()= |J Lis(T.,T,).
yea(z)> (1)
Since Lk (0) = 1p,, Lk is a transfer process from x. We shall call Ly the Lie
transfer process from z of the vector-field k.

Proposition 4: Let x € M and a vector field k : M — TM be given. Let Ly
be the Lie transfer process from x of k. We have sdoLyx = >, k and

(Lie H) (&) = 00t > ®(Lic(t) ™ H(p(1)). (47.15)

Proof: Define the processes H: I — LisV, and V : I — LisV, by

H(t) : = Vi i)xVeo, (Vx) ™ = Vo (o XL (£) (V) ™
V(t) : = Vo iyx(Dg 4y e k) (Vi (19x) ™
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Taking the gradient of H at 0 and observing Dféz (t) Dok =
(Va, HX) Va, (KX, we have

H' (t) = 0, (s = Vi (5)xVy, (VY )

= (Y, X (Vo (0207 Vo, k) (o, 20 ™) (Vo (X Ve, (Vo) ™)
= (Yo, XD, ) B2 ) (Ve (90) ™) (Vo (X V4 (%) ™)
— (VH)(¢).
This shows that Ly is the only transfer process from z such that sdLyx = (> k) o

o, . Since o, (0) = x, we have sdoLx = >, k. The assertion follows by applying
Prop.2. g

48. Lie Group

Definition: A Lie group is a set G endowed both with the structure of a group
and with the structure of a C*-manifold in such a way that the group-operation
and the group-inversion are analytic mappings.

We use multiplicative notation and terminology for the group ¢ and denote
its unity by u.

For every x € G, we define the left-multiplication le, : G — G by
le,(y) :== zy forall yeg. (48.1)
le, : G — @G, is invertible for all z € G; in fact,
(x—ley): G — Perm G (48.2)
is an injective group-homomorphism, i.e. we have
le, =1g , legy =leyole, , leg-1 =le (48.3)
for all z,y € G. Also, when = € G is given, le, is analytic and we have
V,le, € Lis(T, M, Ty M) C Tlis, G (48.4)
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for all y € G. We define the analytic mapping
G: G — Tlis, g (48.5)

by
G(z) := V,le, for all x€G. (48.6)

Taking the gradient of (48.18)2 at u gives
G(zy) = (Y ley)G(y) for all x,y €G. (48.7)
For every t € T, M, we define the analytic vector field Gt : G — T G by
(Gt)(y) = G(y)t for all yeqg. (48.8)
We have

G(u)=1r,m and (Gt)(u)=t foral teT, M. (48.9)

Proposition 5: For all t,s € T, M we have

[Gt,Gs]=G[Gt, Gs], (48.10)

Proof: Let t € T,M and =z € G be given and choose xy € Ch,G. Since le, is
analytic and invertible and le,(u) = x, we have x o le, € Ch,G. Using the
chain rule and (48.22), we obtain

V(¢ ° le) = (Vi) Gyles = (Vi )Glay)Gy) ™" forall yeG. (48.11)
Using the definitions (48.23) and (23.25), we see that
(G)* " () = V(x o lex) G(y)t = (V) Glay)t
for all y € G and hence
(Gt)X 7 1o = (Gt)X o le,. (48.12)
Using the chain rule again, we find
Vi(Gt)X 7 lee = v (Gt)XG(z) forall teT, (48.13)

Now let s,t € T, M be given and put h := Gt, k := Gs. Using (43.17)
with z replaced by w and x by x o le, we conclude from (48.28) that

[h, k], =%(x = le,) ' ((WKY)h(z) — (V;hY)k(z)).
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Using (48.26) with y := u and observing (48.23), we obtain
[h, k], = G(@) 'Vex ! (GKOh(z) — (GhOk()).

Since = € G was arbitrary, we obtain (48.25) by applying (43.17) again.

Proposition 6: Define
((t,s) — [t,8]) : T, M? - T, M (48.14)

by
[t,s]:=[Gt, Gs],, (48.15)

where G is defined by (48.21). Then (48.21) endows T, M with the structure of|
a Lie-algebra, i.e. it is bilinear, skew, and satisfies the “Jacobi-identity”

[[t1,t2], t5] + [[t2, ts], t1] + [[ts,t1],62] = O (48.16)

for all ti,te,t5 € Ty M. We use the notation LaG := T, M for this Lie-algebra
and call it the Lie-algebra of G.

Proof: It is clear from the definition (48.30) and from (43.13) that (t,s) —
[t,s] is bilinear and skew. The Jacobi-indendity (48.31) follows from Prop. 7 of
Sect. 43, applied to h; := Gt, , i € 3!, and Prop. 5.

For each y € G, define C(y) € Lin(T,M, S, T G) by
C(y) :== V(2 — G(2)G(y) ). (48.17)

Then (48.32) defines, as described in (48.9), a natural connection C : G — Con G
on G. This connection is analytic.

Let a vector fuield h € X'(TG) be given and let the lineon-field Yh
be defined according to (41.3). Then it follows from Prop.2 that Vch = 0 if
h = Gt for some t € T, M, where G is defined by (48.21). Conversely, if
Vch = 0 and if G is connected, then h = Gt for some t € T, M.

Proposition 7: The Lie-algebra-operation of T,,M 1is the opposite of the torsion
T.(C(u)), i.e.

[t,s] = T, (C(u))(t,s) for all t,s e T,. (48.18)

Proof: Let t,s € T, be given. Application of (43.18) to h := Gt, k := Gs,
x = u gives (48.33) if (48.30) is observed and Vch = 0 = Vck, as described in
above, is applied. |

Remark : The curvature field R(C) =0 777
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Proposition 8: Let d € X and p € [0,d] — G, of class C' and with p(0) = u,
be given. Then G o p:[0,d] — Tlis,G is the parallelism along p for C.

Proof: Put T := G o p. Then T(s)T(t)"! = G(p(s))G(p(t))~* for all s,t €
[0,d]. Hence, by (48.32), (35.10), and the chain rule,

sd;T = C(p(t))p(t) for all t €1[0,d],
i.e. sdT = (C c p)p . In view of (35.23) the assertion follows.

An non-constant homomorphism ¢ : — G from the additive group of to G
is called a one-parameter subgroup of G if it is of class C*.

Proposition 9: Let d € * and p € [0,d] — G, of class C' and with p(0) = u,
be given. Then p is geodesic if and only if p = q|j0,q) for some one-parameter
subgroup q of G.

Proof: By Prop. 6 and (35.28), p is geodesic if and only if p(0) # 0 and
G(p(t))p (0) = p(t) for all  t € ]0,d]. (48.19)

Let ¢ be a one-parameter subgroup of G and p = ¢|jo,q. Let ¢t € [0,d[ be
given. Then

le,)p(s) = q(t)q(s) = q(t +s) = p(t + )
for all s € [0,d]N([0,d] —1t)=1[0,d—t[.

Differentiating with respect to s at 0 and using (48.21), we get

G(p(t)p (0) = p (1)

Since t € [0.d[ was arbitrary and since p* is continuous at d, (48.34) follows.
Assume now that p is geodesic, i.e. that (48.34) holds. Let ¢ : I — G be
the (unique) solution of the differential equation

? qeClL,G) , (Gogp(0)=gq (48.20)

whose domain [ is the maximal interval that contains 0 € . Then [ is an
open interval, [0,d] C I, and p = q|[9,q) by the standard uniqueness theorem for
differential equations. Let ¢ € I be given and definew: I — Gandwv: (I—t) — G

by
u(s) == q(t)q(s) = legw (q(s)) for all sel (48.21)

and
v(s) :=q(t + s) for all sel—t (48.22)
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Using the chain rule and (48.24), it follows from (48.36) that
u'(8) = (Vg(s)leg(n))a' (s) = Gla(t)a(s))G(a(s) "' (s)
for all s € I and hence, by (71.23) and (71.24), that
w=(Goup(0) , u0)=q)
On the other hand, it follows (48.35) and (48.36) that
vi(s) = q (t+s) = Gg(t + 5))p(0)
for all s € I —t and hence that

v =(G o v)p(0) , v(0)=q(t)

(48.23)

(48.24)

Comparing (48.38) and (48.39), we see that u and v satisfiy the same dif-
ferential equation and initial condition. Since the domain of ¢ is the maximal
interval containng 0, it is clear that the domains of v and v must both be the
maximal interval containing 0. It follows that I —t = I, which can be valid for
allt € I only if I = . The standard uniqueness theorem for differential equations
shows that u = v and hence, by (48.36) and (48.37), that ¢(t + s) = q(t)q(s)
for all s €. Since t € was arbitrary, it follows that ¢ must be a one-parameter

subgroup of G.
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