
Chapter 4

Gradients.
In this chapter, we assume a linear-space bundle (B, τ,M) of class Cs, s ≥ 2,

is given. We also assume that bothM and B have constant dimensions, and put
n := dimM and m := dimB−dimM. Then we have, as in (32.1), m = dim Bx

for all x ∈M.

41. Shift Gradients
Let x ∈M be fixed.
Let Φ be an analytic tensor functor and let H : M → Φ(B) be a cross

section of Φ(B) that is differentiable at x. We define the mapping

Ĥ : TlisxB → Φ(Bx) (41.1)

by
Ĥ(T) := Φ(T)−1H(πx(T)) for all T ∈ TlisxB, (41.2)

where πx is defined by (32.3). Since Φ is analytic, it is clear that Ĥ is differen-
tiable at 1Bx

.

Difinition: The shift-gradient of H at x is the linear mapping

xH ∈ Lin
(
SxB,Φ(Bx)

)
defined by

xH := ∇1Bx
Ĥ, (41.3)

where Ĥ is given by (41.2).

For every bundle chart φ ∈ Chx(B,M), the spaces Rng Ix and Rng Aφ
x

are supplymentary in SxB. Hence, for every s ∈ SxB there is exactly one pair
(M, t) ∈ LinBx × TxM such that s = IxM + Aφ

xt and thus

( xH)s = ( xH)IxM + ( xH)Aφ
xt.

Proposition 1: We have

( xH)IxM = −(Φ
•

xM)H(x) for all M ∈ LinBx, (41.4)

where Φ
•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined to be the gradient of the mapping
(L 7→ Φ(L)) : LisBx → Lis (Φ(Bx)) at 1Bx

.
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Proof: In view of (32.4) and (41.2) we have Ĥ ◦ ιx : LisBx → Φ(Bx) and

(Ĥ ◦ ιx)(L) = Φ(L)−1H(x) for all L ∈ LisBx.

Taking the gradient of (Ĥx ◦ ιx) at 1Bx
and using (32.11) and (41.3), we obtain

the desired result (41.4).

Example 1: Let B∗ := Dl (B), where Dl is the duality functor.
Let h be a cross section of B, let ω be a cross section of B∗, let L be a cross

section of LinB, let G be a cross section of Lin (B,B∗) ∼= Lin2(B2, ) and
let T be a cross section of Lin (B,LinB) ∼= Lin2(B2,B). Assume that all of

these cross sections are differentiable at x. Then

( xh)IxM = −Mh(x); (41.5)

( xω)IxM = ω(x)M; (41.6)

( xL)IxM = L(x)M−ML(x); (41.7)

( xG)IxM = G(x) ◦ (M× 1Bx
) + G(x) ◦ (1Bx

×M) (41.8)

and

( xT)IxM = T(x) ◦ (M× 1Bx
) + T(x) ◦ (1Bx

×M)−MT(x) (41.9)

for all M ∈ LinBx.

Let a bundle chart φ ∈ Chx(B,M) be given. We define the mapping

Hφ : Oφ → Φ(Vφ)

by
Hφ(y) := Φ(φ

⌋
y
)H(y), for all y ∈ Oφ. (41.10)

Proposition 2: We have

( xH)Aφ
x = ∇–φ

x H = Λ
(
AΦ(φ)

H(x)

)
∇xH (41.11)

where Φ(φ) is defined by (24.5), ∇–φ
x H is described in (24.9) and AΦ(φ)

H(x) is defined
in terms of (31.19).

Proof: Let y ∈ Oφ be given. Substituting T := (φ
⌋

y
)−1φ

⌋
x

in (41.2) gives

Ĥ((φ
⌋

y
)−1φ

⌋
x
) = Φ((φ

⌋
y
)−1φ

⌋
x
)−1H(y)

= Φ(φ
⌋

x
)−1Φ(φ

⌋
y
)H(y) = Φ(φ

⌋
x
)−1Hφ(y).
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Since tlisφ
x

←
(y, φ

⌋
x
) = (φ

⌋
y
)−1φ

⌋
x

by (32.7), we obtain

(Ĥ ◦ tlisφ
x

←
)(y, φ

⌋
x
) = Φ(φ

⌋
x
)−1Hφ(y) for all y ∈ Oφ.

Taking the gradient with respect to y at x and observing (51.2) gives

(∇1Bx
Ĥ)(∇1Bx

tlisφ
x)−1(t,0) = Φ(φ

⌋
x
)−1(∇xHφ) t

for all t ∈ TxM. In view of definition (32.19) and (24.9) we obtain the first
equality of the desired result (41.11).

It follows from (41.2), (41.3) and (31.29) with φ replaced by Φ(φ) that

( xH)Aφ
x = (∇1Bx

Ĥ)∇x(φ
⌋−1

φ
⌋

x
)

= ∇x

(
y 7→ Φ(φ

⌋−1

x
φ
⌋

y
)H(y)

)
=

(
Φ(φ)

)⌋−1

x

(
ev2 ◦ ∇H(x)Φ(φ)

)
∇xH

= Λ
(
AΦ(φ)

H(x)

)
∇xH.

Since φ ∈ Chx(B,M) was arbitrary, the second part of (41.11) follows.

The results of Props. 1 and 2 give the following commutative diagram

LinBx
Ix−−→ SxB

Aφ
x←−− TxM

−
(
Φ
•
x

)˜H(x)

y (1)
..........................................................................................................

..
...........

xH (2)

∥∥∥∥∥
Φ(Bx) ←−−

Λ
(
A

Φ(φ)
H(x)

) TH(x)Φ(B) ←−−
∇xH

TxM

. (41.12)

Prop. 1 and Prop. 2 are illustrated by (1) and (2) in the diagram, respectively.

Let tensor functors Φ1, Φ2 and Ψ and a natural bilinear assignment
B : (Φ1,Φ2)→ Ψ be given. Also, let H1 : M → Φ1(B) be a cross section
of Φ1(B) and let H2 : M → Φ2(B) be a cross section of Φ2(B). Then the
mapping B(H1,H2) :M→ Ψ defined by

B(H1,H2)(x) := BBx
(H1(x),H2(x)) for all x ∈M (41.13)

is a cross section of Ψ(B).

General Product Rule
If H1 and H2 are differentiable at x, then B(H1,H2) is also differentiable

at x and we have(
xB(H1,H2)

)
s = BBx

(
( xH1)s,H2(x)

)
+ BBx

(
H1(x), ( xH2)s

)
(41.14)

for all s ∈ SxB.
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Proof: Put H := B(H1,H2) in (41.2), we have

Ĥ(T) = BBx

(
Φ1(T−1)H1(πx(T)),Φ2(T−1)H2(πx(T))

)
= BBx

(
Ĥ1(T), Ĥ2(T)

)
for all T ∈ TlisxB. Since B is bilinear, the desired result (41.14) follows from
(41.3) together with the General Product Rule in flat spaces [FDS].

Example 2:
Let f be a scalar field, and let h : M → B be a cross section of B and

H : M → LinB be a cross section of LinB that are differentiable at x. Then
fH and Hh defined value-wise are also differentiable at x, and we have

( xfH)s = (( xf)s)H(x) + f(x) ( xH)s (41.15)

and
x(Hh)s = (( xH)s)h(x) + H(x)( xh)s (41.16)

for all s ∈ SxB.

Example 3:
Let ω :M→ Skwp(B p, ) be a skew-p-form field and τ :M→ Skwq(B q, ) a

skew-q-form field that are differentiable at x. Then ω ∧ τ is a skew-(p + q)-form
field which is also differentiable at x and we have

( x(ω ∧ τ ))s = ( xω)s ∧ τ + ω ∧ ( xτ )s (41.17)

for all s ∈ SxB.

Let L, and L′ be linear-space bundles overM. For every x ∈M, we denote
the fiber product bundle (see Sect.22) of (TlisxL, πx,M) and (TlisxL′, π′x,M)
by (

TlisxL×M TlisxL′ , πx×M π′x , M
)
. (41.18)

Taking the gradient of the mapping

πx×M π′x : TlisxL×M TlisxL′ −−→ M (41.19)

at 1Lx × 1L′x , we have

Px×TxMP′x : SxL×TxM SxL′ −−→ TxM (41.20)

where Px = ∇1Lx
πx and P′x = ∇1L′x

π′x. It follows from

πx×M π′x = πx ◦ ev1 = π′x ◦ ev2
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that
(Px×TxMP′x)(s, s′) = Pxs = P′x(s′) (41.21)

for all (s, s′) ∈ SxL×TxMSxL′.
Let Υ be a tensor bifunctor and let H be a cross section of Υ(L×ML′)

which is differentiable at x. We define a mapping

Ĥ : TlisxL×M TlisxL′ → Υ(Lx × L′x) (41.22)

by
Ĥ

(
T×T′

)
:= Υ(T×T′)−1 H(y)

where y := πx(T) = π′x(T′)
(41.23)

for all T × T′ ∈ TlisxL×M TlisxL′. The shift-gradient of H at x is the linear
mapping

xH : SxL×TxMSxL′ → Υ(Lx × L′x) (41.24)

defined in (41.3); i.e.
xH = ∇1Px

Ĥ, (41.25)

where 1Px
:= 1Lx

× 1L′x . We also use the following notations

Ix := ∇1Lx
inx and I′x := ∇1L′x

in′x

where inx := 1Lx⊂L and in′x := 1L′x⊂L′ are inclusion mappings.

Proposition 3: We have

( xH)(IxM, I′xM
′) = −Υ

•

x(M×M′)H(x) (41.26)

for all M ∈ LinLx and all M′ ∈ LinL′x, where Υ
•

x is the gradient of the mapping(
L× L′ 7→ Υ(L× L′)

)
at 1Lx

× 1L′x .

Example 4:
Let Φ be a analytic tensor functor and let L := TM and L′ := B. If

L : M → Lin (TM,Φ(B)) and T : M → Lin2 (TM2,Φ(B)) are cross sections
that are differentiable at x, we have

xL : SxTM×TxMSxB → Lin (TxM,Φ(Bx))

xT : SxTM×TxMSxB → Lin2 (TxM2,Φ(Bx))

and

( xL)(IxM, I′xM
′) = L(x)M−Φ

•

x(M′)L(x)

( xT)(IxM, I′xM
′) = T(x)M + T(x)˜M−Φ

•

x(M′)T(x)
(41.27)
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for all M ∈ LinTxM and M′ ∈ LinBx.

Proposition 4: We have

( xH)(Aθ
x,Aφ

x) = ∇–φ1,φ2
x H, (41.28)

where ∇–φ1,φ2
x H is described in (24.12), for all bundle charts θ ∈ Chx(L,M) and

φ ∈ Chx(L′,M).

42. Covariant Gradients

Let x ∈M and a connector K ∈ Con xB be given.
Let Φ be a tensor functor and H :M→ Φ(B) be a cross section of Φ(B)

that is differentiable at x.

Definition : We define the covariant gradient of H relative to K by

∇–KH := ( xH)K ∈ Lin
(
TxM,Φ(Bx)

)
, (42.1)

where xH is the shift-gradient of H at x as defined by (41.3).

Given a bundle chart φ ∈ Chx(B,M). It follows from (41.11) and (42.1)
that

∇–Aφ
x
H = ∇–φ

x H.

If f :M→ is a scalar field differentiable at x, then we have xf = ∇xf Px

and hence
∇–Kf = ∇xf for all K ∈ Con xB. (42.2)

Proposition 1: For every bundle chart φ ∈ Chx(B,M) we have

(∇–KH)t = (∇–φ
x H)t + Φ

•

x

(
Γφ
x (K)t

)
H(x) for all t ∈ TxM, (42.3)

where Φ
•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined as in Prop. 1 of Sect.41.

Proof: By (32.27), we have

( xH)Kt = ( xH)Aφ
xt + xH(K−Aφ

x)t

= ( xH)Aφ
xt− xH

(
IxΓφ

x (K)t
)

for all t ∈ TxM. Using (32.4), we obtain

( xH)Kt = ( xH)Aφ
xt + Φ

•

x

(
Γφ
x (K)t

)
H(x).
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The result (42.3) follows from the definition (42.1).

Example 1:
Let h be a cross section of B, let ω be a cross section of B∗, let L be a cross

section of LinB, let G be a cross section of Lin (B,B∗) ∼= Lin2(B2, ), and
let T be a cross section of Lin (B,LinB) ∼= Lin2(B2,B). If these cross

sections are differentiable at x, we have

(∇–Kh)t = (∇–φ
x h)t + Γφ

x (K)(t,h(x)); (42.4)

(∇–Kω)t = (∇–φ
x ω)t− ω(x)Γφ

x (K)t; (42.5)

(∇–KL)t = (∇–φ
x L)t− L(x)

(
Γφ
x (K)t

)
+

(
Γφ
x (K)t

)
L(x); (42.6)

∇–KG(t,b) = (∇–φ
x G)(t,b)−

(
G(x)b

)(
Γφ
x (K)t

)
−G(x)

(
Γφ
x (K)(t,b)

)
(42.7)

and

∇–KT(t,b) = (∇–φ
x T)(t,b)−

(
T(x)b

)(
Γφ
x (K)t

)
−T(x)

(
Γφ
x (K)(t,b)

)
+

(
Γφ
x (K)t

)(
T(x)b

) (42.8)

for all t ∈ TxM and all b ∈ Bx.

General Product Rule
Let H1,H2 be cross sections as given in the General Product Rule of

Sect. 41, then we have

∇–KB(H1,H2)t = BBx

(
(∇–KH1)t,H2(x)

)
+ BBx

(
H1(x), (∇–KH2)t

)
(42.9)

for all t ∈ TxM.

Proof: Substituting s := Kt in (41.14) and observing (42.1), we obtain (42.9).

The formulas (41.15), (41.16) and (41.17) remain valid if the shift gradient
x there is replaced by the covariant gradient ∇–K and s ∈ SxB by t ∈ TxM.

Let L and L′ be linear-space bundles over M. Let Υ be a tensor bifunc-
tor and let H : M → Υ(L×ML′) be a cross section of Υ(L×ML′) which is
differentiable at x. Let a pair of connectors (K,K′) ∈ Con xL × Con xL′ be
given.

Definition: The covariant-gradient of H at x relative to (K,K′) is defined
by

∇–(K,K′)H := ( xH)(K,K′) (42.10)

which is in Lin
(
TxM,Υ(Lx × L′x)

)
.
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Proposition 2: For every (K,K′) ∈ Con xL × Con xL′ and all bundle charts
φ ∈ Chx(L,M) and φ′ ∈ Chx(L′,M) we have

(∇–(K,K′)H)t = (∇–φ,φ′

x H)t + Υ
•

x

(
Γφ
x (K)t× Γφ′

x (K′)t
)
H(x) (42.11)

for all t ∈ TxM, where Υ
•

x is described in Prop. 3 of Sect. 41.

Proof: Equation (42.11) follows from K = Aφ
x − IxΓφ

x (K), K′ = Aφ′

x −
IxΓφ′

x (K′), (42.10) and (41.28).

43. Alternating Covariant Gradients

Let a number p ∈ , with p ≥ 1, connections C : M → ConTM and
D :M→ ConB of class C1 be given.

Let Φ be an analytic tensor functor. For every differentiable Φ(B)-valued
skew-p-linear field S : M → Skwp(TMp,Φ(B)), the covariant gradient of S at
x ∈M relative to (C,D) is the mapping

∇–(C(x),D(x))S :M→ Lin(TxM,Skwp(TxMp,Φ(Bx)).

Taking the alternating part of ∇–(C(x),D(x))S, we obtain the skew (p + 1)-linear
mapping

Alt (∇–(C(x),D(x))S) ∈ Skwp+1(TxMp+1,Φ(Bx)). (43.1)

Proposition 1: Let x ∈M be given. For every manifold chart χ ∈ ChxM and
every bundle chart φ ∈ Chx(M,B), we have

(p + 1)Alt (∇–(C(x),D(x))S)(v)

= (p + 1)Alt
(
∇–χ,φ

x S +
(
Φ
•

x(Γφ
x (D(x)))̃ S(x)

))
(v)

−
∑

1<i<j<p+1

(−1)i+j−1S(x)
(
Tx(C(x))(vi,vj),del(i,j)v

) (43.2)

where del(i,j) : Vp+1 → Vp−1 is defined by del(i,j) := delj ◦ deli, i < j, for all
v ∈ TxMp+1.

Proof: Let χ ∈ ChxM and φ ∈ Chx(B,M) be given. We have

C(x) = Aχ
x − IxΓχ

x (C(x)) and D(x) = Aφ
x − IxΓφ

x (D(x)).
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For every i ∈ (p + 1)], (42.11) gives

∇–(C(x),D(x))S(vi,deliv) = ∇–χ,φ
x S(vi,deliv) + Φ

•

x(Γφ
x (D(x)vi)S(x)(deliv)

−
∑

j∈(p+1)]\{i}

S(x)(del(i,j)v).j)Γχ
x (C(x))(vi,vj)

(43.2)
for all v ∈ (TxM)×(p+1). Sum up and rearrange all the terms, we obtain the
desired formula by observing that Tx = Γχ

x − Γχ
x .̃

Prop.1 has several applications. The first application is given in the follow-
ing Prop.2. The second kind of applications are Bianchi identities in Sect.44 and
the third application leads to the definition of exterior differential in Sect.45.

For every cross section H : M → Φ(B) of class Cp, p ≥ 2, we define the
covariant gradient-mapping of H relative to D

∇–DH :M→ Lin(TM,Φ(B))

by
∇–DH(y) := ∇–D(y)H for all y ∈M. (43.3)

The second covariant gradient-mapping of H relative to (C,D) is defined
by

∇– (2)
(C,D)H := ∇–(C,D)(∇–DH) :M→ Lin2

(
TM2 , Φ(B)

)
. (43.4)

The second covarient gradient-mapping ∇– (2)
(C,D)H is not necessarily symmetric.

Indeed, we have the following:

Proposition 2: We have

∇– (2)
(C,D)H− (∇– (2)

(C,D)H)˜ = Φ
•
(R(D)(·, ·))H−

(
∇–DH

)
T(C) (43.5)

where, for each x ∈ M, Φ
•
(x) := Φ

•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined as in
Prop. 1 of Sect. 42.

Proof: Let x ∈M be given. Choose χ ∈ ChxM and φ ∈ Chx(B,M). Applying
Prop. 1 with H replaced by ∇–D(x)H and Φ replaced by Lin ◦ (Id,Φ) (see [N2]),
we have

∇– (2)
(C(x),D(x))H(u,v)−∇– (2)

(C(x),D(x))H(v,u) +
(
∇–D(x)H

)
Tx(C(x))(u,v)

= (∇–(Aχ
x ,Aφ

x)∇–DH)(u,v)− (∇–(Aχ
x ,Aφ

x)∇–DH)(v,u)

+ Φ
•

x(Γφ
x (D(x))u)(∇–D(x)H)v − Φ

•

x(Γφ
x (D(x))v)(∇–D(x)H)u

(43.6)
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for all u,v ∈ TxM. Observing ∇–DH = ∇–CφH + Φ
•

x(Γφ(D)), we have

∇–(Aχ
x ,Aφ

x)∇–D(x)H(u,v) = ∇–(2)

(Aχ
x ,Aφ

x)
H(u,v) +∇–(Aχ

x ,Aφ
x)Φ

•

x(Γφ(D))̃ H(u,v).

(43.7)
for all u,v ∈ TxM. Since Φ

•

x is a natural linear assignment, the second term on
the right handside of the equality in (43.7) is

(∇–(Aχ
x ,Aφ

x)Φ
•

x(Γφ(D))̃ H)(u,v)

= Φ
•

x(∇–(Aχ
x ,Aφ

x)Γ
φ(D)(u,v))H(x) + Φ

•

x(Γφ
x (D(x))v)(∇–Aφ

x
H)u.

(43.8)

We also have, the third term on the right hand side of the equality (43.6) satisfies

Φ
•

x(Γφ
x (D(x))u)(∇–D(x)H)v

= Φ
•

x(Γφ
x (D(x))u)

(
∇–Aφ

x
H + Φ

•

x(Γφ
x (D(x))

)
v

= Φ
•

x(Γφ
x (D(x))u)∇–CφHv + Φ

•

x(Γφ
x (D(x))u)Φ

•

x(Γφ
x (D(x))v)

= Φ
•

x(Γφ
x (D(x))u)∇–CφHv + Φ

•

x(Γφ
x (D(x))uΓφ

x (D(x))v).

(43.9)

Combining (43.6) to (43.9) with (43.2) and observing that

∇– (2)

(Aχ
x ,Aφ

x)
H = Φ(φ

⌋
x
)−1

(
∇(2)

χ Hφ
)
(∇xχ×∇xχ) (43.10)

is symmetric and x ∈M was arbitrary, we obtain (43.5).

Remark: When the given bundle B is the tangent bundle TM, then we only
need one connection say; the connection C. If this is the case, we have

∇– (2)
C H− (∇– (2)

C H)˜ = Φ
•
(R(C)(·, ·))H−

(
∇–CH

)
T(C). (43.11)
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44. Bianchi Identities

Let connections C : M → ConTM and D : M → ConB of class C1

be given. Both of the torsion field T(C) : M → Skw2(TM2,TM) of the
connection C and the curvature field R(D) : M → Skw2(TM2,LinB) of the
connection D are skew-2-linear fields. Applying Prop.1 of Sect.43, the alternat-
ing part of ∇–CT(C) gives the first Bianchi idetity and the alternating part
of ∇–(C,D)R(D) gives the second Bianchi idetity.

Proposition 1: (First Bianchi idetity) We have

Alt (∇–CT(C) + T(C)T(C)) = Alt (R(C)) (44.1)

where T(C)T(C) is regarded as a cross section of Skw2(TM2,LinTM).

Proof: Applying Prop.1 of Sect.43, we have

Alt (∇–CT(C) + T(C)T(C)) = Alt (∇–C
χ T(C) + Γχ(C)˜ T(C)). (44.2)

Using (33.8) and (34.30), we see that

Alt (∇–C
χ T(C) + Γχ(C)˜ T(C)) = Alt (R(C)). (44.3)

The desire result (44.1) follows from (44.2) and (44.3).

Remark 1: When C is curvature-free (but not necessary torsion free), Eq. (44.1)
reduces to

Alt (∇–CT(C) + T(C)T(C)) = 0. (44.4)

If in addition that Alt (∇–CT(C)) = 0, then

Alt (T(C)T(C)) = 0; (44.5)

that is T(C) satisfies Jacobi identity (cf. Lie Group, Prop.7 of Sect.44 ).

Proposition 2: (Second Bianchi idetity) We have

Alt (∇–(C,D)R(D) + R(D)T(C)) = 0. (44.6)

where R(D)T(C) is regarded as a cross section of Skw2(TM2,Lin(TM,LinB)).

Proof: Applying Prop.1 of Sect.43, we have

Alt (∇–(C,D)R + Rx(C)(Tx(C)))

= Alt (∇–(Aχ
x ,Aφ

x)R + Γφ
x(D)˜Rx(C)−Rx(C)(·, ·)Γφ

x(D)).
(44.7)
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Applying Prop.5 of Sect.34, we obtain

Alt (∇–(Aχ
x ,Aφ

x)R + Γφ
x(D)˜Rx(C)−Rx(C)(·, ·)Γφ

x(D))

= Alt
(
∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)−

(
∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)

)˜ )
.

(44.8)

In view of (44.5), we observe that

∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)−

(
∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)

)˜ = 0. (44.9)

The desired result follows from (44.7), (44.8) and (44.9).

Remark 2: When the given linear-space bundle is the tangent bundle B := TM
ofM, the Bianchi identities can be found in literatures (see [P]) as

(∇–CT(C))(U,V,W) + (∇–CT(C))(V,W,U) + (∇–CT(C))(W,U,V)
+T(C)(T(C)(U,V),W)+T(C)(T(C)(V,W),U)+T(C)(T(C)(W,U),V)
= R(C)(U,V,W) + R(C)(V,W,U) + R(C)(W,U,V)

(44.10)
and

(∇–CR(C))(U,V,W) + (∇–CR(C))(V,W,U) + (∇–CR(C))(W,U,V)
+R(C)(T(C)(U,V),W)+R(C)(T(C)(V,W),U)+R(C)(T(C)(W,U),V)
= 0

(44.11)
for all vector fields U,V,W ∈ XTM.

Remark 3: Most of the literatures, especially in physics, only deal with the
special case : in the absence of torsion. Under this assumption, the Bianchi
identities becomes

Alt (R(C)) = 0 (44.12)

and
Alt (∇–CR(C)) = 0. (44.13)
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45. Differential Forms

Let p ∈ and a differentiable W-valued skew p-linear field ω be given.
In this section, we apply Prop.1 of Sect.43 with the tensor functor Φ := TrW ,

the trival functor for a linear space W (see Sect.13).

Proposition 1: For every x ∈M, we have

Alt (∇–χ
x ω) = Alt (∇– γ

x ω) (45.1)

for all manifold charts χ, γ ∈ ChxM.

Proof: The desire result (45.1) follows from Prop.1 of Sect.43 with (TrW)
•

x = 0
and Tx(Aχ

x) = 0 = Tx(Aγ
x) (see Theorem in Sect.33) for all manifold charts

χ, γ ∈ ChxM.

Definition : The pth-exterior differential at x ∈M
dp

x : X(Skwp(TMp, ))→ Skwp+1(TxMp+1, ) (45.2)

is defined by

dp
xω :=

1
p!

Alt (∇–χ
x ω) for all ω ∈ X(Skwp(TMp, )) (45.3)

which is valid for all manifold chart χ ∈ ChxM.
The pth-exterior differential

dp : Xs(Skwp(TMp, ))→ Xs−1(Skwp+1(TMp+1, )) (45.4)

is defined by
dp(x) := dp

x for all x ∈M. (45.5)

Remark : IfM be the underline manifold of a flat space E , then ∇ω = ∇–χω for
all manifold chart χ. The definition (45.3) of exterior differential at x becomes

dpω =
1
p!

Alt (∇ω). (45.6)

Equation (45.6) can be found in Sect.2.3 of [CH] and in Sect.51 of [B-W].

Proposition 2: Let W be a linear space and let ω :M→ Skwp(TMp,W) be a
differentiable W-valued skew p-linear field. For every x ∈M,we have

dp
xω(v) = (

1
p!

Alt (∇–C(x)ω))v

+
∑

1≤i<j≤p+1

(−1)i+j−1ω(x)
(
Tx(C(x))(vi,vj),del(i,j)v

) (45.7)

for all connection C and all v ∈ TxMp+1.
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Proposition 3: We have
dp+1 ◦ dp = 0. (45.7)
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46. Lie gradients, Lie brackets

In this section, we only deal with the tangent bundle of a given Cs-manifold
M, where 2 ≤ s ∈ .̃

We assume that a vector-field h is given and that h is differentiable at x.

Proposition 1: There is exactly one shift, which is called the shift of h at x
and is denoted by �x h ∈ SxTM, such that

Bx (�x h) = xh, (46.1)

where Bx is given in (33.6) and xh ∈ Lin (SxTM,TxM) is the shift-gradient
of h as defined by (41.3). We have

Px (�x h) = h(x) (46.2)

Proof: The injectivity of Bx (see Prop. 2 of Sect.15) shows that there is at most
one �x h ∈ SxTM with the property (46.1).

We now choose χ ∈ ChxM and define

�x h := Ix

(
( xh)Aχ

x

)
+ Aχ

x h(x). (46.3)

By (15.6)1 and (32.23) we have

Bx (�x h) = ( xh)(Aχ
x Px) + Bx

(
Aχ

x h(x)
)

= xh (1SxTM − Ix Λ(Aχ
x)) + Bx

(
Aχ

x h(x)
)
.

(46.4)

It follows from (41.4) and (15.6)2 that

xh
(
Ix

(
Λ(Aχ

x)(s)
))

= −Λ(Aχ
x)(s)h(x)

= −Bx (s)
(
Aχ

x h(x)
)

=
(
Bx

(
Aχ

x h(x)
))

(s)

holds for all s ∈ SxTM. Hence (46.4) reduces to (46.1). Applying Px to (46.3)
and observing Px Ix = 0 and Px Aχ

x = 1TxM yields (46.2).

Proposition 2: Let χ ∈ ChxM be given. The shift �x h of h at x satisfies

Λ(Aχ
x)(�x h) = ∇–χ

x h (46.5)

Proof: The equality follows by operating on (44.3) with Λ(Aχ
x) and observing

Λ(Aχ
x)Ix = 1LinTxM and Λ(Aχ

x)Aχ
x = 0.
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For every manifold chart χ ∈ ChxM, we have

Aχ
xh(x) + Ix xhAχ

x =
(
∇1TxM

tlisχ
x

)−1(
hχ(x) , ∇xhχ

)
. (46.6)

In view of (46.3), we have

�x h =
(
∇1TxM

tlisχ
x

)−1(
hχ(x) , ∇xhχ

)
for every manifold chart χ ∈ ChxM.

Remark: By (46.1) and the injectivity of Bx, we have

�x k = 0 if and only if xk = 0 (46.7)

Proposition 3: If f :M→ is differentiable at x, so is the vector-field fh and
we have

�x(f h) = f(x)�x h + Ix (h(x)⊗∇xf). (46.8)

Proof: It follows from (15.6)1 with M := h(x)⊗∇xf that

Bx

(
Ix (h(x)⊗∇xf)

)
= (h(x)⊗∇xf)Px = h(x)⊗P>x ∇xf.

In view of (46.4) and (41.15), it follows that

Bx

(
�x(f h)

)
= x(f h) = f(x) xh + h(x)⊗P>x ∇xf

= Bx

(
f(x) �x h + Ix (h(x)⊗∇xf)

)
Since Bx is injective, (46.8) follows.

Let Φ be a functor as described in Sect.13 and let H : M → Φ(TM) be
a tensor-field that is differentiable at x. Also, let k be a vector-field that is
differentiable at x.

Definition: The Lie-gradient of H with respect to k at x is defined by

(LiekH)x := xH(�x k), (46.9)

where xH is the shift-gradient of H at x as defined by (41.3) and where �x k
is the shift of k at x as determined by (46.1).

Proposition 4: Let f :M→ and H be differentiable at x. We have(
Liekf H

)
x

= f(x)
(
LiekH

)
x

+
(
(∇xf)k(x)

)
H(x);(

LiefkH
)
x

= f(x)
(
LiekH

)
x

+
(
Φ
•

x

(
k(x)⊗∇xf

))
H(x),

(46.9)

where Φ
•

x ∈ Lin
(
LinTx,LinΦ(Tx)

)
is defined as in Prop.1 of Sect.41.
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General Product Rule
Let H1,H2 be cross sections as given in the General Product Rule of Sect.41,

then we have

(LiekB(H1,H2))x = BBx

(
(LiekH1)x,H2(x)

)
+ BBx

(
H1(x), (LiekH2)x

)
.

(46.10)

Remark: We have

(LiekH)x = (∇–KH)k(x) + Φ
•(

Tx(K)k(x) +∇–Kk
)
H(x)

for all K ∈ Comx(TM).

We now assume that two vector-fields h and k, both are differentiable at x,
are given.
Definition: The Lie-bracket of h with k at x is defined by[[

k , h
]]

x
:= Bx(�x h,�x k). (46.11)

It follows from (46.1), (46.9) and (46.11) that[[
k , h

]]
x

= (Liekh)x (46.12)

Proposition 5: We have [[
k , h

]]
x

= −
[[
h , k

]]
x
. (46.13)

If f :M→ is differentiable at x, then[[
f h , k

]]
x

= f(x)
[[
h , k

]]
x
−

(
(∇xf)k(x)

)
h(x). (46.14)

Proof: (46.13) follows from the skewness of Bx. Substitution of fh for h in
(46.11) and use of (46.8) gives[[

f h , k
]]

x
= f(x)

[[
h , k

]]
x
−Bx

(
Ix (h(x)⊗∇xf),�x k

)
and hence, by (15.6)1,[[

f h , k
]]

x
= f(x)

[[
h , k

]]
x
− (h(x)⊗∇xf)(Px �x k)

The desired result (46.14) now follows from (46.2).
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Remark: Let r =∞, let h,k ∈ X∞M and let h
∇

and k
∇

be the mappings from
C∞(M) to C∞(M) defined by (24.6). One can easily show that the mapping[[

h , k
]]∇

: C∞(M)→ C∞(M) corresponding to
[[

h , k
]]∇

is given by

[[
h , k

]]∇
= h

∇
◦ k
∇
− k

∇
◦ h

∇
(46.15)

If f ∈ C∞(M), we then have[[
fh , k

]]∇
= f

[[
h
∇

, k
∇ ]]
− k

∇
(f)h

∇
, (46.16)

which can be derived from (46.14) or directly from (46.15).

Proposition 6: If both h and k are vector-fields that are differentiable at x,
then have [[

h , k
]]

x
= (∇–χ

x k)h(x)− (∇–χ
x h)k(x). (46.17)

for every manifold chart χ ∈ ChxM where ∇–χ
x k and ∇–χ

x h be defined according
to (23.26). Moreover, we have

(∇–Kk)h(x)− (∇–Kh)k(x) =
[[
h , k

]]
x

+ Tx(K)(h,k) (46.18)

for all K ∈ ConxTM.

Proof: If we substitute s := �x h and s′ := �x k in (33.6) and (12.5) we obtain
from (46.11) that

[[ h , k ]]x = −Dχ
x (�x h)Px (�x k) + Dχ

x (�x k)Px (�x h)

The desired result (46.17) follows now from (46.5) and (46.2).
By (42.3) we have

(∇–Kh)k(x) = (∇–χ
x h)k(x) + Γχ

x (K)
(
k(x),h(x)

)
.

Interchanging h and k and taking the difference, we obtain (46.18) from (46.17)
and (33.8).

Let s ∈ 1..(r − 1) and h, k ∈ XsTM be given. Then the vector-field[[
h , k

]]
is defined by[[

h , k
]]
(x) :=

[[
h , k

]]
x

for all x ∈M (46.19)

It is clear from Proposition 5 that
[[

h , k
]]
∈ Xs−1TM. Using (23.6), it

follows from (46.17) and the definition (23.35) that[[
h , k

]]χ = (∇χkχ)hχ − (∇χhχ)kχ. (46.20)
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Proposition 7: (Jacobi identity): Let s ∈ 2..(r− 1) and h1,h2,h3 ∈ XsTM
be given, then[[ [[

h1 , h2

]]
, h3

]]
+

[[ [[
h2 , h3

]]
, h1

]]
+

[[ [[
h3 , h1

]]
, h2

]]
= 0 (46.21)

Proof: A straightforward but somewhat tedious calculation, using (46.20) and
the Symmetry Theorem for Second Gradients, yields the desired result (46.21).

IfM is a C∞ manifold, then X∞TM together with the bilinear mapping[[
,

]]
: X∞TM×X∞TM−→ X∞TM

given in (46.21) is a Lie algebra, as defined in Sect.11.

47. Transport Systems

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given. Let
(B, τ,M) be a Cs linear-space bundle, s ∈ 0. .r.

We define the bundle of transfer isomorphisms of B by

TlisB :=
⋃

x∈M
TlisxB =

⋃
x,y∈M

Lis(Bx,By). (47.1)

It is endowed with the natural structure of a Cs-fiber bundle overM×M whose
bundle projection π : TlisB →M×M is

π(T) :∈
{

(x, y) ∈M×M T ∈ Lis(Bx,By)
}
. (47.2)

Definition: A subset T of TlisB is called a Cs transport structure for B
if T is a Cs-submanifold of TlisB such that

(T1) for all A ∈ T, A−1 ∈ T,

(T2) for all A,B ∈ T such that CodA = DomB, BA ∈ T,

(T3) for all x, y ∈M, T ∩ Lis(Bx,By) 6= { }.

It can be shown that Tx := T ∩ Tlisx B is a Cs-submanifold of Tlisx B.
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Theorem on Transport Structure and Parallelisms

Let C :M→ ConB be a connection of class Cs. Define

F := {A ∈ TlisB | · · · · · · · · · · · ·}.

Then F is a transport structure for B.

Proof:

A cross section F : M×M → T is called a (global) transport system
for B if

F(x, z) = F(y, z)F(x, y) for all x, y, z ∈M (47.3)

and
F(x, x) = 1Bx for all x ∈M. (47.4)

Recall that a cross section T :M→ TlisxB of the bundle TlisxB, x ∈ M,
with

T(x) = 1Bx
(47.5)

is called a transport from x. It follows from (47.3), (47.4) and (47.5) that, for
each x ∈M, the mapping F(x, ·) :M→ TlisxB is a transport from x. Moreover,
we have

F(y, ·) = F(x, ·)F(y, x) for all x, y ∈M. (47.6)

Conversely, let x ∈ M and a transport Fx :M→ TlisxB from x be given. For
each y ∈M, we obtain a transport Fy :M→ TlisyB from y by

Fy(z) := Fx(z)Fx(y)−1 for all z ∈M. (47.7)

and, a transport system F :M×M→ TlisB by

F(y, z) := Fx(z)Fx(y)−1 for all y, z ∈M. (47.8)

We conclude that, for each x ∈ M, there is one to one correspondent between
the set of all transports from x for B and the set of all transport systems for B.

Every transport system F : M × M → TlisB induces a connection
C :M→ ConB by

C(y) := ∇1By
F(y, ·) for all y ∈M. (47.9)

Let a transport system F : M×M → TlisB for B, a tensor functor Φ
and a cross section H :M→ Φ(B) be given. We say that H is parallel with
respect to F if

H(y) = Φ(F(x, y))H(x) for all x, y ∈M. (47.10)
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Proposition 1: Let C be the connection induced by a transport system F, as
given in (47.9). Let H : O → Φ(B) be a cross section of class C1. If H is
parallel with respect to F, then ∇–CH = 0. Conversely, if ∇–CH = 0 and if M is
connected then H is parallel with respect to F.

Proof: Fix x ∈ M and let T := F(x, ·). Let y ∈ M be given and define
Ĥy : TlisyB → By in accord with (41.2). Then

Ĥy(T(z)T(y)−1) = Φ(T(y)T(z)−1)H(z) for all z ∈M.

Differentiation with respect to z at y gives, using (42.1), (41.3), (47.9), and the
chain rule,

(∇–CH)(y) = ( yH)C(y) = Φ(T(y))∇yH̃, (47.11)

where H̃ : M → Φ(Bx) is defined by H̃(z) := Φ(T(z)−1)H(z) for all z ∈ M.
Since y ∈ M was arbitrary and since Φ(T(y)) is invertible, we conclude from
(47.11) that ∇–CH = 0, if and only if ∇H̃ = 0. Now if H = Φ(T)v for
some v ∈ Φ(Bx), then H̃ is a constant and hence ∇H̃ = 0. Conversely if M is
connected and ∇H̃ = 0, then H̃ is a constant and hence H = Φ(T)v for some
v ∈ Φ(Bx).

Remark : Let a connection C, not necessarily induced by a transport system,
be given. Then the condition ∇–CH = 0 does not equivalent to to the condition
that H is parallel with respective to a transport system.

Proposition 2: Let T : [0, d]→ TlisxB be a differentiable transfer process from
x, and put p := πx ◦ T : [0, d] → M. For every differentiable cross section
H :M→ Φ(B), we have

( p(t)H)(sdtT) = ∂t

(
s 7→ Φ(T(t)T−1(s))H(p(s))

)
(47.12)

for all t ∈ [0, d], the derivative (47.12) may be interpreted, roughly, as the rate
of change of H at p(t) relative to the transfer process T.

Let C : M → ConB be a continuous connection and p : [0, d] → M be a
process of class C1, with x = p(0). Let T be the parallelism along p for the
connection C. It follows from (35.23), sdT = (C ◦ p)p•, that

(∇–C(p(t))H)p•(t) = ( p(t)H)(sdtT). (47.13)

This result does not depend on the choice of the process p, and hence does not
depend on the parallelism T along p.
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Proposition 3: Let C : M → ConB be a continuous connection and let the
cross section H : M → Φ(B) be differentiable. Then ∇–CH = 0 if and only if,
for every differentiable process p : [0, d]→M,

(( H) ◦ p)(sdT) = 0 (47.14)

where T is the parallelism along p for C.

Let x ∈ M and a continuous vector field k : M → TM be given. By the
maximum local flow for k at x we mean a mapping

α : I ×D →M

where I is an open interval containing 0,and D containing x, and D is an open
subset ofM containing x, such that for every y ∈ D the mapping α(·, y) : I →M
is the maximum integral process (integral curve) of k with the initial condition
y; i.e. α(0, y) = y and k

(
α(t, y)

)
= (α•(·, y))(t).

Let x ∈ M and a continuous vector field k : M → TM be given. It is a
well known theorem in O.D.E. (see Sect.1 of Ch.4, [L]) that there is a maximum
local flow

α : I ×D →M

for k at x. We may define a mapping Lk : I → TlisxM by

Lk(t) := ∇xα(t, ·) for all t ∈ I.

It is clear that
Lk>(I) =

⋃
y∈α(·,x)>(I)

Lis(Tx,Ty).

Since Lk(0) = 1Tx
, Lk is a transfer process from x. We shall call Lk the Lie

transfer process from x of the vector-field k.

Proposition 4: Let x ∈ M and a vector field k :M→ TM be given. Let Lk

be the Lie transfer process from x of k. We have sd0Lk = �x k and

(LiekH)(x) = ∂0

(
t 7→ Φ(Lk(t)−1)H(p(t))

)
. (47.15)

Proof: Define the processes H : I → LisVχ and V : I → LisVχ by

H(t) : = ∇αx (t)χ∇xαt(∇xχ)−1 = ∇αx (t)χLk(t)(∇xχ)−1

V(t) : = ∇αx (t)χ(Dχ
αx (t) �

αx (t)
k)(∇αx (t)χ)−1
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Taking the gradient of H at 0 and observing Dχ
αx (t) �αx (t) k =

(∇αx (t)χ)−1∇αx (t)kχ, we have

H
.(t) = ∂t

(
s 7→ ∇αx (s)χ∇xαs(∇xχ)−1

)
= ∂t

(
s 7→ (∇xα

s
)
)χ(∇xχ)−1

= ∇x

(
∂t(s 7→ α

s
)
)χ(∇xχ)−1

= ∇x(kχ ◦ αt)(∇xχ)−1

= ∇αx (t)kχ∇xαt(∇xχ)−1

=
(
∇αx (t)χ

(
(∇αx (t)χ)−1∇αx (t)kχ

)
(∇αx (t)χ)−1

)(
∇αx (t)χ∇xαt(∇xχ)−1

)
=

(
∇αx (t)χ(Dχ

αx (t) �
αx (t)

k)(∇αx (t)χ)−1
)(
∇αx (t)χ∇xα

t
(∇xχ)−1

)
= (VH)(t).

This shows that Lk is the only transfer process from x such that sdLk = (�k)◦
α

x
. Since α

x
(0) = x, we have sd0Lk = �x k. The assertion follows by applying

Prop.2.

48. Lie Group

Definition: A Lie group is a set G endowed both with the structure of a group
and with the structure of a Cω-manifold in such a way that the group-operation
and the group-inversion are analytic mappings.

We use multiplicative notation and terminology for the group G and denote
its unity by u.

For every x ∈ G, we define the left-multiplication lex : G → G by

lex(y) := xy for all y ∈ G. (48.1)

lex : G → G, is invertible for all x ∈ G; in fact,

(x 7→ lex) : G → Perm G (48.2)

is an injective group-homomorphism, i.e. we have

leu = 1G , lexy = lex ◦ ley , lex−1 = le←x (48.3)

for all x, y ∈ G. Also, when x ∈ G is given, lex is analytic and we have

∇ylex ∈ Lis(TxM,TxyM) ⊂ TlisyG (48.4)
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for all y ∈ G. We define the analytic mapping

G : G → TlisuG (48.5)

by
G(x) := ∇ulex for all x ∈ G. (48.6)

Taking the gradient of (48.18)2 at u gives

G(xy) := (∇ylex)G(y) for all x, y ∈ G. (48.7)

For every t ∈ TuM, we define the analytic vector field Gt : G → TG by

(Gt)(y) = G(y)t for all y ∈ G. (48.8)

We have

G(u) = 1TuM and (Gt)(u) = t for all t ∈ TuM. (48.9)

Proposition 5: For all t, s ∈ TuM we have

[[ Gt , Gs ]] = G [[ Gt , Gs ]]u (48.10)

Proof: Let t ∈ TuM and x ∈ G be given and choose χ ∈ ChxG. Since lex is
analytic and invertible and lex(u) = x, we have χ lex ∈ ChuG. Using the
chain rule and (48.22), we obtain

∇y(χ lex) = (∇xyχ)∇ylex = (∇xyχ)G(xy)G(y)−1 for all y ∈ G. (48.11)

Using the definitions (48.23) and (23.25), we see that

(Gt)χ lex(y) = ∇y(χ lex)G(y)t = (∇xyχ)G(xy)t

for all y ∈ G and hence

(Gt)χ lex = (Gt)χ lex. (48.12)

Using the chain rule again, we find

∇u(Gt)χ lex = ∇x(Gt)χG(x) for all t ∈ Tu (48.13)

Now let s, t ∈ TuM be given and put h := Gt, k := Gs. Using (43.17)
with x replaced by u and χ by χ lex we conclude from (48.28) that

[[ h , k ]]u = ∇u(χ leu)−1
(
(∇xkχ)h(x)− (∇xhχ)k(x)

)
.
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Using (48.26) with y := u and observing (48.23), we obtain

[[ h , k ]]u = G(x)−1∇xχ−1
(
(∇xkχ)h(x)− (∇xhχ)k(x)

)
.

Since x ∈ G was arbitrary, we obtain (48.25) by applying (43.17) again.

Proposition 6: Define(
(t, s) 7→ [t, s]

)
: TuM2 → TuM (48.14)

by
[t, s] := [[ Gt , Gs ]]u, (48.15)

where G is defined by (48.21). Then (48.21) endows TuM with the structure of
a Lie-algebra, i.e. it is bilinear, skew, and satisfies the “Jacobi-identity”[

[t1, t2], t3

]
+

[
[t2, t3], t1

]
+

[
[t3, t1], t2

]
= 0 (48.16)

for all t1, t2, t3 ∈ TuM. We use the notation LaG := TuM for this Lie-algebra
and call it the Lie-algebra of G.

Proof: It is clear from the definition (48.30) and from (43.13) that (t, s) 7→
[t, s] is bilinear and skew. The Jacobi-indendity (48.31) follows from Prop. 7 of
Sect. 43, applied to hi := Gti , i ∈ 3], and Prop. 5.

For each y ∈ G, define C(y) ∈ Lin(TyM,SyTG) by

C(y) := ∇y

(
z 7→ G(z)G(y)−1

)
. (48.17)

Then (48.32) defines, as described in (48.9), a natural connection C : G → ConG
on G. This connection is analytic.

Let a vector fuield h ∈ X1(TG) be given and let the lineon-field ∇–Ch
be defined according to (41.3). Then it follows from Prop.2 that ∇–Ch = 0 if
h = Gt for some t ∈ TuM, where G is defined by (48.21). Conversely, if
∇–Ch = 0 and if G is connected, then h = Gt for some t ∈ TuM.

Proposition 7: The Lie-algebra-operation of TuM is the opposite of the torsion
Tu(C(u)), i.e.

[t, s] = Tu(C(u))(t, s) for all t, s ∈ Tu. (48.18)

Proof: Let t, s ∈ Tu be given. Application of (43.18) to h := Gt, k := Gs,
x := u gives (48.33) if (48.30) is observed and ∇–Ch = 0 = ∇–Ck, as described in
above, is applied.

Remark : The curvature field R(C) = 0 ???
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Proposition 8: Let d ∈ × and p ∈ [0, d] → G, of class C1 and with p(0) = u,
be given. Then G p : [0, d]→ TlisuG is the parallelism along p for C.

Proof: Put T := G p. Then T(s)T(t)−1 = G(p(s))G(p(t))−1 for all s, t ∈
[0, d]. Hence, by (48.32), (35.10), and the chain rule,

sdtT = C(p(t))p.(t) for all t ∈ [0, d],

i.e. sdT = (C p)p. . In view of (35.23) the assertion follows.

An non-constant homomorphism q : → G from the additive group of to G
is called a one-parameter subgroup of G if it is of class C1.

Proposition 9: Let d ∈ × and p ∈ [0, d] → G, of class C1 and with p(0) = u,
be given. Then p is geodesic if and only if p = q|[0,d] for some one-parameter
subgroup q of G.

Proof: By Prop. 6 and (35.28), p is geodesic if and only if p.(0) 6= 0 and

G(p(t))p.(0) = p.(t) for all t ∈ [0, d]. (48.19)

Let q be a one-parameter subgroup of G and p = q|[0,d]. Let t ∈ [0, d[ be
given. Then

lep(t)p(s) = q(t)q(s) = q(t + s) = p(t + s)

for all s ∈ [0, d] ∩ ([0, d]− t) = [0, d− t[.

Differentiating with respect to s at 0 and using (48.21), we get

G(p(t))p.(0) = p.(t).

Since t ∈ [0.d[ was arbitrary and since p. is continuous at d, (48.34) follows.
Assume now that p is geodesic, i.e. that (48.34) holds. Let q : I → G be

the (unique) solution of the differential equation

? q ∈ C1(I,G) , (G q)p.(0) = q. (48.20)

whose domain I is the maximal interval that contains 0 ∈ . Then I is an
open interval, [0, d] ⊂ I, and p = q|[0,d] by the standard uniqueness theorem for
differential equations. Let t ∈ I be given and define u : I → G and v : (I−t)→ G
by

u(s) := q(t)q(s) = leq(t)(q(s)) for all s ∈ I (48.21)

and
v(s) := q(t + s) for all s ∈ I − t (48.22)
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Using the chain rule and (48.24), it follows from (48.36) that

u.(s) = (∇q(s)leq(t))q
.(s) = G(q(t)q(s))G(q(s))−1q.(s)

for all s ∈ I and hence, by (71.23) and (71.24), that

u. = (G u)p.(0) , u(0) = q(t). (48.23)

On the other hand, it follows (48.35) and (48.36) that

v.(s) = q.(t + s) = G(q(t + s))p.(0)

for all s ∈ I − t and hence that

v. = (G v)p.(0) , v(0) = q(t). (48.24)

Comparing (48.38) and (48.39), we see that u and v satisfiy the same dif-
ferential equation and initial condition. Since the domain of q is the maximal
interval containng 0, it is clear that the domains of u and v must both be the
maximal interval containing 0. It follows that I − t = I, which can be valid for
all t ∈ I only if I = . The standard uniqueness theorem for differential equations
shows that u = v and hence, by (48.36) and (48.37), that q(t + s) = q(t)q(s)
for all s ∈ . Since t ∈ was arbitrary, it follows that q must be a one-parameter
subgroup of G.
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