Chapter 3

Connections

31. Tangent Connectors

We assume that $r \in^{\sim}$ with $r \geq 2$ and a C^{r}-manifold \mathcal{M} are given. Let a number $s \in 1 . . r$ and a C^{s} bundle $(\mathcal{B}, \tau, \mathcal{M})$ be given. We assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and we put

$$
\begin{equation*}
n:=\operatorname{dim} \mathcal{M} \quad \text { and } \quad m:=\operatorname{dim} \mathcal{B}-\operatorname{dim} \mathcal{M} \tag{31.1}
\end{equation*}
$$

Then $m=\operatorname{dim} \mathcal{B}_{x}$ for all $x \in \mathcal{M}$.
Recall that for every bundle chart $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$, we have $\operatorname{ev}_{1} \circ \phi(\mathbf{v})=\tau(\mathbf{v})$ and

$$
\begin{equation*}
\phi(\mathbf{v})=\left(z, \operatorname{ev}_{2}(\phi(\mathbf{v}))\right) \quad \text { where } \quad z:=\tau(\mathbf{v}) \tag{31.2}
\end{equation*}
$$

for all $\mathbf{v} \in \operatorname{Dom} \phi$. Moreover, if $\phi, \psi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$, it follows easily from (31.2) with ϕ replaced by ψ that

$$
\begin{equation*}
\left(\psi \square \phi^{\leftarrow}\right)(z, \mathbf{u})=\left(z, \operatorname{ev}_{2}\left(\left(\psi \square \phi^{\leftarrow}\right)(z, \mathbf{u})\right)\right) \tag{31.3}
\end{equation*}
$$

for all $z \in \mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}$ and all $\mathbf{u} \in \mathcal{V}_{\phi}$.
Now let $\mathbf{b} \in \mathcal{B}$ be fixed and put $x:=\tau(\mathbf{b})$. Let $\operatorname{in}_{x}: \mathcal{B}_{x} \rightarrow \mathcal{B}$ be the inclusion mapping

$$
\begin{equation*}
\mathrm{in}_{x}:=\mathbf{1}_{\mathcal{B}_{x} \subset \mathcal{B}} \tag{31.4}
\end{equation*}
$$

Consider the following diagram

$$
\mathcal{B}_{x} \xrightarrow{\mathrm{in}_{x}} \mathcal{B} \xrightarrow{\tau} \mathcal{M}
$$

the composite $\tau \circ \operatorname{in}_{x}$ is the constant mapping with value x. Taking the gradient of $\left(\tau \circ \mathrm{in}_{x}\right)$ at \mathbf{b}, we get $\left(\nabla_{\mathbf{b}} \tau\right)\left(\nabla_{\mathbf{b}} \mathrm{in}_{x}\right)=\mathbf{0}$ and hence $\operatorname{Rng} \nabla_{\mathbf{b}} \mathrm{in}_{x} \subset \operatorname{Null} \nabla_{\mathbf{b}} \tau$. Indeed, we have Rng $\nabla_{\mathbf{b}} \mathrm{in}_{x}=$ Null $\nabla_{\mathbf{b}} \tau$ as to be shown in Prop.1.

Notation: We define the projection mapping $\mathbf{P}_{\mathbf{b}}$ at \mathbf{b} by

$$
\begin{equation*}
\mathbf{P}_{\mathbf{b}}:=\nabla_{\mathbf{b}} \tau \in \operatorname{Lin}\left(\mathrm{T}_{\mathbf{b}} \mathcal{B}, \mathrm{T}_{x} \mathcal{M}\right) \tag{31.5}
\end{equation*}
$$

and the injection mapping $\mathbf{I}_{\mathbf{b}}$ at \mathbf{b} by

$$
\begin{equation*}
\mathbf{I}_{\mathbf{b}}:=\nabla_{\mathbf{b}} \operatorname{in}_{x} \in \operatorname{Lin}\left(\mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}\right) \tag{31.6}
\end{equation*}
$$

Proposition 1: The projection mapping $\mathbf{P}_{\mathbf{b}}$ is surjective, the injection mapping $\mathbf{I}_{\mathbf{b}}$ is injective, and we have

$$
\begin{equation*}
\operatorname{Null} \mathbf{P}_{\mathbf{b}}=\operatorname{Rng} \mathbf{I}_{\mathbf{b}} \tag{31.7}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\mathrm{T}_{\mathbf{b}} \mathcal{B}_{x} \xrightarrow{\mathbf{I}_{\mathbf{b}}} \mathrm{T}_{\mathbf{b}} \mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{b}}} \mathrm{T}_{x} \mathcal{M} \tag{31.8}
\end{equation*}
$$

is a short exact sequence.
Proof: Choose a bundle chart $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$. It follows from (31.2) that

$$
\left.\left(\phi \circ \mathrm{in}_{x}\right)(\mathbf{d})=(x, \phi\rfloor_{x}(\mathbf{d})\right) \quad \text { for all } \quad \mathbf{d} \in \mathcal{B}_{x} .
$$

Using the chain rule and (31.6), we obtain

$$
\begin{equation*}
\left.\left(\left(\nabla_{\mathbf{b}} \phi\right) \mathbf{I}_{\mathbf{b}}\right) \mathbf{m}=\left(\mathbf{0}, \nabla_{\mathbf{b}} \phi\right\rfloor_{x} \mathbf{m}\right) \quad \text { for all } \quad \mathbf{m} \in \mathrm{T}_{\mathbf{b}} \mathcal{B}_{x} \tag{31.9}
\end{equation*}
$$

Since both $\nabla_{\mathbf{b}} \phi$ and $\left.\nabla_{\mathbf{b}} \phi\right\rfloor_{x}$ are invertible, it follows that $\operatorname{Null} \mathbf{I}_{\mathbf{b}}=\{\mathbf{0}\}$ and

$$
\begin{equation*}
\operatorname{Rng} \mathbf{I}_{\mathbf{b}}=\left(\nabla_{\mathbf{b}} \phi\right)^{<}\left(\{\mathbf{0}\} \times \mathrm{T}_{\mathbf{v}} \mathcal{V}_{\phi}\right) \quad \text { where } \quad \mathbf{v}:=\operatorname{ev}_{2}(\phi(\mathbf{b})) \tag{31.10}
\end{equation*}
$$

On the other hand, it follows from (31.2) that

$$
\left(\tau \circ \phi^{\leftarrow}\right)(z, \mathbf{u})=z \quad \text { for all } \quad z \in \mathcal{O}_{\phi}
$$

and all $\mathbf{u} \in \mathcal{V}_{\phi}$. Using the chain rule and (31.5) we conclude that

$$
\begin{equation*}
\mathbf{P}_{\mathbf{b}}\left(\nabla_{\mathbf{b}} \phi\right)^{-1}(\mathbf{t}, \mathbf{w})=\mathbf{t} \quad \text { for all } \quad \mathbf{t} \in \mathrm{T}_{x} \mathcal{M} \tag{31.11}
\end{equation*}
$$

and all $\mathbf{w} \in \mathrm{T}_{\mathbf{v}} \mathcal{V}_{\phi}$. Since $\nabla_{\mathbf{b}} \phi$ is invertible, it follows that $\operatorname{Rng} \mathbf{P}_{\mathbf{b}}=\mathrm{T}_{x} \mathcal{M}$ and

$$
\begin{equation*}
\text { Null } \mathbf{P}_{\mathbf{b}}=\left(\left(\nabla_{\mathbf{b}} \phi\right)^{-1}\right)_{>}\left(\{\mathbf{0}\} \times \mathrm{T}_{\mathbf{v}} \mathcal{V}_{\phi}\right) \quad \text { where } \quad \mathbf{v}:=\operatorname{ev}_{2}(\phi(\mathbf{b})) \tag{31.12}
\end{equation*}
$$

Since $\left(\left(\nabla_{\mathbf{b}} \phi\right)^{-1}\right)_{>}=\left(\nabla_{\mathbf{b}} \phi\right)^{<}$, comparison of (31.10) with (31.12) shows that (31.7) holds.

Definition: A linear right-inverse of the projection-mapping $\mathbf{P}_{\mathbf{b}}$ will be called a right tangent-connector at \mathbf{b}, a linear left-inverse of the injection-mapping $\mathbf{I}_{\mathbf{b}}$ will be called a left tangent-connector at \mathbf{b}. The sets

$$
\begin{align*}
\operatorname{Rcon}_{\mathbf{b}} \mathcal{B} & :=\operatorname{Riv}\left(\mathbf{P}_{\mathbf{b}}\right) \\
\operatorname{Lcon}_{\mathbf{b}} \mathcal{B} & :=\operatorname{Liv}\left(\mathbf{I}_{\mathbf{b}}\right) \tag{31.13}
\end{align*}
$$

of allright tangent-connectors at \mathbf{b} and all left tangent-connectors at \mathbf{b} will be called the right tangent-connector space at \mathbf{b} and the left tangentconnector space at \mathbf{b}, respectively.

The right tangent connector space $\operatorname{Rcon}_{\mathbf{b}} \mathcal{B}$ is a flat in $\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}\right)$ with direction space

$$
\begin{equation*}
\left\{\mathbf{I}_{\mathbf{b}} \mathbf{L} \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right)\right\} \tag{31.14}
\end{equation*}
$$

and the left tangent connector space $\operatorname{Lcon}_{\mathbf{b}} \mathcal{B}$ is a flat in $\operatorname{Lin}\left(\mathrm{T}_{\mathbf{b}} \mathcal{B}, \mathrm{T}_{\mathbf{b}} \mathcal{B}_{x}\right)$ with direction space

$$
\begin{equation*}
\left\{-\mathbf{L} \mathbf{P}_{\mathbf{b}} \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right)\right\} . \tag{31.15}
\end{equation*}
$$

Using the identifications

$$
\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right)\left\{\mathbf{P}_{\mathbf{b}}\right\} \cong \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right) \cong\left\{\mathbf{I}_{\mathbf{b}}\right\} \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}\right)
$$

we consider $\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right)$ as the external translation space of both $\mathrm{Rcon}_{\mathbf{b}} \mathcal{B}$ and $\operatorname{Lcon}_{\mathbf{b}} \mathcal{B}$. Since $\operatorname{dim} \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right)=n m$, we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Rcon}_{\mathbf{b}} \mathcal{B}=n m=\operatorname{dim} \operatorname{Lcon}_{\mathbf{b}} \mathcal{B} . \tag{31.16}
\end{equation*}
$$

By Prop. 1 of Sect. 14, there is a flat isomorphism

$$
\boldsymbol{\Lambda}: \operatorname{Rcon}_{\mathbf{b}} \mathcal{B} \rightarrow \operatorname{Lcon}_{\mathbf{b}} \mathcal{B}
$$

which assigns to every $\mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}} \mathcal{B}$ an element $\boldsymbol{\Lambda}(\mathbf{K}) \in \operatorname{Lcon}_{\mathbf{b}} \mathcal{B}$ such that

$$
\begin{equation*}
\{\mathbf{0}\} \longleftarrow \mathrm{T}_{\mathbf{b}} \mathcal{B}_{x} \underset{\boldsymbol{\Lambda}(\mathbf{K})}{\longleftarrow} \mathrm{T}_{\mathbf{b}} \mathcal{B} \underset{\mathbf{K}}{\longleftarrow} \mathrm{T}_{x} \mathcal{M} \longleftarrow\{\mathbf{0}\} \tag{31.17}
\end{equation*}
$$

is again a short exact sequence. We have

$$
\begin{equation*}
\mathbf{K} \mathbf{P}_{\mathbf{b}}+\mathbf{I}_{\mathbf{b}} \boldsymbol{\Lambda}(\mathbf{K})=\mathbf{1}_{\mathrm{T}_{\mathbf{b}} \mathcal{B}} \tag{31.18}
\end{equation*}
$$

Proposition 2: For each bundle chart $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$, let $\mathbf{A}_{\mathbf{b}}^{\phi}$ in $\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}\right)$ be defined by

$$
\begin{equation*}
\mathbf{A}_{\mathbf{b}}^{\phi} \mathbf{t}:=\left(\nabla_{\mathbf{b}} \phi\right)^{-1}(\mathbf{t}, \mathbf{0}) \quad \text { for all } \quad \mathbf{t} \in \mathrm{T}_{x} \mathcal{M} \tag{31.19}
\end{equation*}
$$

Then $\mathbf{A}_{\mathbf{b}}^{\phi}$ is a linear right-inverse of $\mathbf{P}_{\mathbf{b}}$; i.e. $\mathbf{A}_{\mathbf{b}}^{\phi} \in \operatorname{Rcon} \mathbf{n}_{\mathbf{b}} \mathcal{B}$.
Proof : If we substitute $\mathbf{w}:=\mathbf{0}$ in (31.11) and use (31.19), we obtain

$$
\mathbf{P}_{\mathbf{b}}\left(\mathbf{A}_{\mathbf{b}}^{\phi} \mathbf{t}\right)=\mathbf{t} \quad \text { for all } \quad \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}
$$

which shows that $\mathbf{A}_{\mathbf{b}}^{\phi}$ is a linear right-inverse of $\mathbf{P}_{\mathbf{b}}$.

Proposition 3: If $\phi, \psi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$, then $\mathbf{A}_{\mathbf{b}}^{\psi}$ and $\mathbf{A}_{\mathbf{b}}^{\phi}$ differ by

$$
\begin{align*}
\mathbf{A}_{\mathbf{b}}^{\phi}-\mathbf{A}_{\mathbf{b}}^{\psi} & =\mathbf{I}_{\mathbf{b}} \boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi} \tag{31.20}\\
\mathbf{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right)-\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\psi}\right) & =-\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi} \mathbf{P}_{\mathbf{b}}
\end{align*}
$$

where

$$
\begin{equation*}
\left.\left.\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi}:=\left(\nabla_{\mathbf{b}} \psi\right\rfloor_{x}\right)^{-1}\left(\mathrm{ev}_{2} \circ \nabla_{x}\left(\left(\psi \circ \phi^{\leftarrow}\right)(\cdot, \phi\rfloor_{x} \mathbf{b}\right)\right)\right) \tag{31.21}
\end{equation*}
$$

which belongs to $\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right)$.
Proof : It follows from (31.2) that

$$
\begin{equation*}
\left.\phi(\mathbf{b})=(x, \phi\rfloor_{x} \mathbf{b}\right) \tag{31.22}
\end{equation*}
$$

Using (31.3) and (31.22), we obtain

$$
\begin{equation*}
\left.\nabla_{\phi(\mathbf{b})}\left(\psi \square \phi^{\leftarrow}\right)(\mathbf{t}, \mathbf{0})=\left(\mathbf{t}, \mathrm{ev}_{2}\left(\nabla_{x}\left(\left(\psi \square \phi^{\leftarrow}\right)(\cdot, \phi\rfloor_{x} \mathbf{b}\right)\right) \mathbf{t}\right)\right) \tag{31.23}
\end{equation*}
$$

for all $\mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$.
In view of (23.16), with x replaced by \mathbf{b}, γ by ψ, and χ by ϕ, we have

$$
\nabla_{\phi(\mathbf{b})}\left(\psi \circ \phi^{\leftarrow}\right)=\left(\nabla_{\mathbf{b}} \psi\right)\left(\nabla_{\mathbf{b}} \phi\right)^{-1}
$$

If we substitute this formula into (31.23) and use (31.19) and (31.21), we obtain

$$
\left.\left(\nabla_{\mathbf{b}} \psi\right)\left(\mathbf{A}_{\mathbf{b}}^{\phi} \mathbf{t}\right)=\left(\mathbf{t}, \nabla_{\mathbf{b}} \psi\right\rfloor_{x} \boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi} \mathbf{t}\right)
$$

for all $\mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$. Using (31.19) with ψ replaced by ϕ, we conclude that

$$
\left.\mathbf{A}_{\mathbf{b}}^{\phi} \mathbf{t}=\mathbf{A}_{\mathbf{b}}^{\psi} \mathbf{t}+\left(\nabla_{\mathbf{b}} \psi\right)^{-1}\left(\mathbf{0}, \nabla_{\mathbf{b}} \psi\right\rfloor_{x} \boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi} \mathbf{t}\right)
$$

for all $\mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$. The desired result (31.20) ${ }_{1}$ now follows from (31.9), with ϕ replaced by ψ and $\mathbf{m}:=\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi} \mathbf{t}$. Equation (31.20) $)_{2}$ follows from (31.20) ${ }_{1}$ and Prop. 3 of Sect. 14.
Notation: Let $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ be given. The mapping

$$
\Gamma_{\mathbf{b}}^{\phi}: \operatorname{Rcon}_{\mathbf{b}} \mathcal{B} \rightarrow \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{b}} \mathcal{B}_{x}\right)
$$

is defined by $\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi}:=\boldsymbol{\Gamma}^{\mathbf{A}_{\mathbf{b}}^{\phi}}$ in terms of (14.10); i.e. by

$$
\begin{equation*}
\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi}(\mathbf{K}):=-\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right) \mathbf{K} \quad \text { for all } \quad \mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}} \mathcal{B} . \tag{31.24}
\end{equation*}
$$

If $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, we have, by Prop. 6 of Sect. 14,

$$
\begin{align*}
\mathbf{A}_{\mathbf{b}}^{\phi}-\mathbf{K} & =\mathbf{I}_{\mathbf{b}} \boldsymbol{\Gamma}_{\mathbf{b}}^{\phi}(\mathbf{K}) \\
\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right)-\boldsymbol{\Lambda}(\mathbf{K}) & =-\mathbf{\Gamma}_{\mathbf{b}}^{\phi}(\mathbf{K}) \mathbf{P}_{\mathbf{b}} \tag{31.25}
\end{align*}
$$

for all $\mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}} \mathcal{B}$. Moreover; if $\phi, \psi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, then (31.20) and (31.24) give

$$
\begin{equation*}
\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi}(\mathbf{K})-\boldsymbol{\Gamma}_{\mathbf{b}}^{\psi}(\mathbf{K})=\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi} \quad \text { for all } \quad \mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}} \mathcal{B} \tag{31.26}
\end{equation*}
$$

where $\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi}$ is defined by (31.21). It follows from (31.26) and $\boldsymbol{\Gamma}_{\mathbf{b}}^{\psi}\left(\mathbf{A}_{\mathbf{b}}^{\psi}\right)=\mathbf{0}$ that $\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi, \psi}=\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi}\left(\mathbf{A}_{\mathbf{b}}^{\psi}\right)$ for all $\phi, \psi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$.

Convention : Assume that \mathcal{B} is a flat-space bundle. Let $\mathbf{b} \in \mathcal{B}$ be given and put $x:=\tau(\mathbf{b})$. The fiber \mathcal{B}_{x} has the structure of a flat space; the translation space of \mathcal{B}_{x} is denoted by \mathcal{U}_{x}. We may and will use the identification as described in (23.9) and (23.10); i.e. we identify $\mathrm{T}_{\mathbf{b}} \mathcal{B}_{x}$ with \mathcal{U}_{x}. Then (31.8) becomes

$$
\begin{equation*}
\mathcal{U}_{x} \quad \xrightarrow{\mathbf{I}_{\mathbf{b}}} \quad \mathrm{T}_{\mathbf{b}} \mathcal{B} \quad \xrightarrow{\mathbf{P}_{\mathbf{b}}} \quad \mathrm{T}_{x} \mathcal{M} \tag{31.27}
\end{equation*}
$$

In particular, if \mathcal{B} is a linear-space bundle, we have $\mathcal{U}_{x}=\mathcal{B}_{x}$ and (31.27) becomes

$$
\begin{equation*}
\mathcal{B}_{x} \xrightarrow{\mathbf{I}_{\mathbf{b}}} \quad \mathrm{T}_{\mathbf{b}} \mathcal{B} \quad \xrightarrow{\mathbf{P}_{\mathbf{b}}} \quad \mathrm{T}_{x} \mathcal{M} \tag{31.28}
\end{equation*}
$$

Remark 1: For every bundle chart ϕ in $\operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$, we have

$$
\begin{array}{lc}
\mathbf{P}_{\mathbf{b}}=\mathrm{ev}_{1} \circ \nabla_{\mathbf{b}} \phi, & \mathbf{A}_{\mathbf{b}}^{\phi}=\left(\nabla_{\mathbf{b}} \phi\right)^{-1} \circ \mathrm{ins}_{1} \\
\left.\mathbf{I}_{\mathbf{b}}=\left(\nabla_{\mathbf{b}} \phi\right)^{-1} \circ \mathrm{ins}_{2} \circ \nabla_{\mathbf{b}} \phi\right\rfloor_{x}, & \left.\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right)=\left(\nabla_{\mathbf{b}} \phi\right\rfloor_{x}\right)^{-1}\left(\mathrm{ev}_{2} \circ \nabla_{\mathbf{b}} \phi\right)
\end{array}
$$

where ev_{i} and $\operatorname{ins}_{i}, i \in 2^{1}$, are evaluations and insertions, respectively.
Proof: Let $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ be given. Using (31.9), (31.19) and also observing $\mathbf{A}_{\mathbf{b}}^{\phi} \mathbf{P}_{\mathbf{b}}+\mathbf{I}_{\mathbf{b}} \boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right)=\mathbf{1}_{\mathrm{T}_{\mathbf{b}} \mathcal{B}}$, we have

$$
\begin{equation*}
\left.\nabla_{\mathbf{b}} \phi=\nabla_{\mathbf{b}} \phi\left(\mathbf{A}_{\mathbf{b}}^{\phi} \mathbf{P}_{\mathbf{b}}+\mathbf{I}_{\mathbf{b}} \boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right)\right)=\left(\mathbf{P}_{\mathbf{b}},\left(\nabla_{\mathbf{b}} \phi\right)\right\rfloor_{x} \boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right)\right) \tag{31.30}
\end{equation*}
$$

The desired result (31.29) follows from (31.9), (31.19) and (31.30).
If in addition $\phi\rfloor_{x}=\mathbf{1}_{\mathcal{B}_{x}}$, then we have

$$
\mathbf{I}_{\mathbf{b}}=\left(\nabla_{\mathbf{b}} \phi\right)^{-1} \circ \mathrm{ins}_{2} \quad \text { and } \quad \boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{b}}^{\phi}\right)=\left(\mathrm{ev}_{2} \circ \nabla_{\mathbf{b}} \phi\right)
$$

Remark 2: For every cross section $\mathbf{s}: \mathcal{M} \rightarrow \mathcal{B}$, we have $\tau \circ \mathbf{s}=\mathbf{1}_{\mathcal{M}}$. If \mathbf{s} is differentiable at $x \in \mathcal{M}$, then the gradient of $\mathbf{1}_{\mathcal{M}}=\tau \circ \mathbf{s}$ at x gives

$$
\begin{equation*}
\mathbf{1}_{\mathrm{T}_{x} \mathcal{M}}=\nabla_{x}(\tau \circ \mathbf{s})=\left(\nabla_{\mathbf{s}(x)} \tau\right)\left(\nabla_{x} \mathbf{s}\right)=\mathbf{P}_{\mathbf{s}(x)} \nabla_{x} \mathbf{s} \tag{31.31}
\end{equation*}
$$

We see that $\nabla_{x} \mathbf{s}$ is a right tangent connector at $\mathbf{s}(x)$; i.e. $\nabla_{x} \mathbf{s} \in \operatorname{Rcon}_{\mathbf{s}(x)}(\mathcal{B})$.
Remark 3: Let \mathcal{B} be a linear space bundle and let $x \in \mathcal{M}$ be given. Denote the zero of the linear space \mathcal{B}_{x} by $\mathbf{0}_{x}$. It follows from (31.21) that $\boldsymbol{\Gamma}_{\mathbf{0}_{x}}^{\phi, \psi}=\mathbf{0}$ and then from (31.20) that $\mathbf{A}_{\mathbf{0}_{x}}^{\phi}=\mathbf{A}_{\mathbf{0}_{x}}^{\psi}$ for all $\phi, \psi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$. This shows that $\left\{\mathbf{A}_{\mathbf{0}_{x}}^{\phi} \mid \phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})\right\}$ is a singleton and hence

$$
\left\{\mathbf{A}_{\mathbf{0}_{x}}^{\phi} \mid \phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})\right\} \operatorname{Rcon}_{\mathbf{0}_{x}} \mathcal{B}
$$

Remark 4: For every $\mathbf{b} \in \mathcal{B}$, we define the vertical space $V_{b} \mathcal{B}$ of \mathcal{B} at \mathbf{b} by

$$
\begin{equation*}
\mathrm{V}_{\mathbf{b}} \mathcal{B}:=\operatorname{Null} \mathbf{P}_{\mathbf{b}}=\operatorname{Rng} \mathbf{I}_{\mathbf{b}} \subset \mathrm{T}_{\mathbf{b}} \mathcal{B} \tag{31.32}
\end{equation*}
$$

Since $\mathbf{I}_{\mathbf{b}}$ is injective, $\mathrm{V}_{\mathbf{b}} \mathcal{B}$ is isomorphic with $\mathrm{T}_{\mathbf{b}} \mathcal{B}_{\tau(\mathbf{b})}$. The sequence

$$
\begin{equation*}
\mathrm{V}_{\mathbf{b}} \mathcal{B} \quad \longrightarrow \mathrm{T}_{\mathbf{b}} \mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{b}}} \mathrm{T}_{\tau(\mathbf{b})} \mathcal{M} \tag{31.33}
\end{equation*}
$$

is a short exact sequence. For every right tangent connector $\mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}} \mathcal{B}$, the range of \mathbf{K}

$$
\begin{equation*}
\mathrm{H}_{\mathbf{b}}^{\mathrm{K}} \mathcal{B}:=\operatorname{Rng} \mathbf{K} \subset \mathrm{T}_{\mathbf{b}} \mathcal{B} \tag{31.34}
\end{equation*}
$$

is called the horizontal space of \mathcal{B} at \mathbf{b} relative to \mathbf{K}. It is easily seen that $\mathrm{V}_{\mathrm{b}} \mathcal{B}$ and $\mathrm{H}_{\mathrm{b}}^{\mathrm{K}} \mathcal{B}$ are supplementary in $\mathrm{T}_{\mathrm{b}} \mathcal{B}$.

Notes 31

(1) The convention that we made in this section was first introduced by Noll, in 1974, on the tangent bundle TM (see [N3]). This convention plays a central role in our development.
(2) The short exact sequence (31.33) can be found in [Sa].

32. Transfer Isomorphisms, Shift Spaces

We assume that $r \in^{\sim}$ with $r \geq 2$ and a C^{r}-manifold \mathcal{M} are given. Let a number $s \in 1$..r be given and let \mathcal{B} be a C^{s} linear-space bundle over \mathcal{M}. We assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and put $n:=\operatorname{dim} \mathcal{M}$ and $m:=\operatorname{dim} \mathcal{B}-\operatorname{dim} \mathcal{M}$. Then

$$
\begin{equation*}
m=\operatorname{dim} \mathcal{B}_{x} \quad \text { for all } \quad x \in \mathcal{M} \tag{32.1}
\end{equation*}
$$

Now let $x \in \mathcal{M}$ be fixed. We define the bundle of transfer isomorphisms of \mathcal{B} from x by

$$
\begin{equation*}
\operatorname{Tlis}_{x} \mathcal{B}:=\bigcup_{y \in \mathcal{M}} \operatorname{Lis}\left(\mathcal{B}_{x}, \mathcal{B}_{y}\right) \tag{32.2}
\end{equation*}
$$

It is endowed with the natural structure of a C^{s}-fiber bundle as shown below. The corresponding bundle projection $\pi_{x}: \operatorname{Tlis}_{x} \mathcal{B} \rightarrow \mathcal{M}$ is given by

$$
\begin{equation*}
\pi_{x}(\mathbf{T}): \in\left\{y \in \mathcal{M} \mid \mathbf{T} \in \operatorname{Lis}\left(\mathcal{B}_{x}, \mathcal{B}_{y}\right)\right\} \tag{32.3}
\end{equation*}
$$

and the bundle inclusion $\iota_{x}: \operatorname{Lis} \mathcal{B}_{x} \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ at x is

$$
\begin{equation*}
\iota_{x}:=\mathbf{1}_{\text {Lis }_{x} \subset \operatorname{Tlis}_{x} \mathcal{B}} . \tag{32.4}
\end{equation*}
$$

For every bundle chart $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$, we define

$$
\begin{equation*}
\operatorname{tlis}_{x}^{\phi}: \operatorname{Tlis}_{x}\left(\mathcal{O}_{\phi}\right) \rightarrow \mathcal{O}_{\phi} \times \operatorname{Lis}\left(\mathcal{B}_{x}, \mathcal{V}_{\phi}\right) \tag{32.5}
\end{equation*}
$$

by

$$
\begin{equation*}
\left.\operatorname{tlis}_{x}^{\phi}(\mathbf{T}):=(z, \phi\rfloor_{z} \mathbf{T}\right), \quad \text { where } \quad z:=\pi_{x}(\mathbf{T}) \tag{32.6}
\end{equation*}
$$

It is easily seen that tlis ${ }_{x}^{\phi}$ is invertible and that

$$
\begin{equation*}
\left.\operatorname{tlis}_{x}^{\phi^{\leftarrow}}(z, \mathbf{L})=(\phi\rfloor_{z}\right)^{-1} \mathbf{L} \tag{32.7}
\end{equation*}
$$

for all $z \in \mathcal{O}_{\phi}$ and all $\mathbf{L} \in \operatorname{Lis}\left(\mathcal{B}_{x}, \mathcal{V}_{\phi}\right)$. Moreover, if $\psi, \phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$, it follows easily from (32.7) and (32.6) with ϕ replaced by ψ that

$$
\begin{equation*}
\left(\operatorname{tlis}_{x}^{\psi} \square \operatorname{tlis}_{x}^{\phi \leftarrow}\right)(z, \mathbf{L})=(z,(\psi \diamond \phi)(z) \mathbf{L}) \tag{32.8}
\end{equation*}
$$

for all $z \in \mathcal{O}_{\psi} \cap \mathcal{O}_{\phi}$ and all $\mathbf{L} \in \operatorname{Lis}\left(\mathcal{B}_{x}, \mathcal{V}_{\phi}\right)$ (See (22.7) for the definition of $\psi \diamond \phi)$. It is clear that tlis ${ }_{x}^{\psi}$ व $\operatorname{tlis}_{x}^{\phi^{\leftarrow}}$ is of class C^{s}. Since $\psi, \phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$ were arbitrary, it follows that $\left\{\operatorname{tlis}_{x}^{\alpha} \mid \alpha \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})\right\}$ is a C^{s}-bundle atlas of $\operatorname{Tlis}_{x} \mathcal{B}$. We consider $\left(\operatorname{Tlis}_{x} \mathcal{B}, \pi_{x}, \mathcal{M}\right)$ as being endowed with the C^{s} fiber bundle structure over \mathcal{M} determined by this atlas.

Remark : We may view $\operatorname{Tlis}_{x} \mathcal{B}$ as a Tran_{x}-bundle, where Tran_{x} is the isocategory whose objects are of the form $\operatorname{Lis}\left(\mathcal{B}_{x}, \mathcal{V}\right)$ with $\mathcal{V} \in L S$ and whose isomorphisms are of the form

$$
(\mathbf{T} \mapsto \mathbf{L T}): \operatorname{Lis}\left(\mathcal{B}_{x}, \operatorname{Dom} \mathbf{L}\right) \rightarrow \operatorname{Lis}\left(\mathcal{B}_{x}, \operatorname{Cod} \mathbf{L}\right)
$$

with $\mathbf{L} \in \operatorname{LIS}$.
It is easily seen that the mappings π_{x} and ι_{x} defined by (32.3) and (32.4) are of class C^{s}.

We now apply the results of Sect. 31 by replacing the ISO-bundle \mathcal{B} there by the bundle $\operatorname{Tlis}_{x} \mathcal{B}$ and $\mathbf{b} \in \mathcal{B}$ there by $\mathbf{1}_{\mathcal{B}_{x}} \in \operatorname{Tlis}_{x} \mathcal{B}$.

Definition: The shift-space $\mathrm{S}_{x} \mathcal{B}$ of \mathcal{B} at $x \in \mathcal{M}$ is defined to be

$$
\begin{equation*}
\mathrm{S}_{x} \mathcal{B}:=\mathrm{T}_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{Tlis}_{x} \mathcal{B} . \tag{32.9}
\end{equation*}
$$

We define the projection mapping of $\mathrm{S}_{x} \mathcal{B}$ by

$$
\begin{equation*}
\mathbf{P}_{x}:=\mathbf{P}_{\mathbf{1}_{\mathcal{B}_{x}}}=\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \pi_{x} \in \operatorname{Lin}\left(\mathrm{~S}_{x} \mathcal{B}, \mathrm{~T}_{x} \mathcal{M}\right) \tag{32.10}
\end{equation*}
$$

and the injection mapping of $\mathrm{S}_{x} \mathcal{B}$ by

$$
\begin{equation*}
\mathbf{I}_{x}:=\mathbf{I}_{\mathbf{1}_{\mathcal{B}_{x}}}=\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \iota_{x} \in \operatorname{Lin}\left(\operatorname{Lin} \mathcal{B}_{x}, \mathrm{~S}_{x} \mathcal{B}\right) \tag{32.11}
\end{equation*}
$$

in terms of (31.5) and (31.6); respectively, where π_{x} and ι_{x} are defined by (32.3) and (32.4).

It is clear from (32.5) that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Tlis}_{x} \mathcal{B}\right)=\operatorname{dim}\left(\mathrm{S}_{x} \mathcal{B}\right)=n+m^{2} \tag{32.12}
\end{equation*}
$$

Proposition 1: The projection mapping \mathbf{P}_{x} is surjective, the injection mapping \mathbf{I}_{x} is injective, and we have

$$
\begin{equation*}
\operatorname{Null} \mathbf{P}_{x}=\operatorname{Rng} \mathbf{I}_{x} \tag{32.13}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\operatorname{Lin} \mathcal{B}_{x} \quad \xrightarrow{\mathbf{I}_{x}} \mathcal{S}_{x} \mathcal{B} \xrightarrow{\mathbf{P}_{x}} \mathrm{~T}_{x} \mathcal{M} \tag{32.14}
\end{equation*}
$$

is a short exact sequence.

Definition: A linear right-inverse of the projection-mapping \mathbf{P}_{x} will be called a right shift-connector (or simply right connector) at x, a linear left-inverse
of the injection-mapping \mathbf{I}_{x} will be called a left shift-connector (or simply left connector) at x. The sets

$$
\begin{align*}
\operatorname{Rcon}_{x} \mathcal{B} & :=\operatorname{Rcon}_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{Tlis}_{x} \mathcal{B} \tag{32.15}\\
\operatorname{Lcon}_{x} \mathcal{B} & :=\operatorname{Lcon}_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{Tlis}_{x} \mathcal{B}
\end{align*}
$$

of all right connectors at x and all left connector at x will be called the right connector space at x and the left connector space at x, respectively.

The right connector space $\operatorname{Rcon}_{x} \mathcal{B}$ is a flat in $\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathcal{S}_{x} \mathcal{B}\right)$ with direction space

$$
\begin{equation*}
\left\{\mathbf{I}_{x} \mathbf{L} \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)\right\} \tag{32.16}
\end{equation*}
$$

and the left connector space $\operatorname{Lcon}_{x} \mathcal{B}$ is a flat in $\operatorname{Lin}\left(\mathcal{S}_{x} \mathcal{B}, \operatorname{Lin} \mathcal{B}_{x}\right)$ with direction space

$$
\begin{equation*}
\left\{-\mathbf{L} \mathbf{P}_{x} \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)\right\} \tag{32.17}
\end{equation*}
$$

Using the identifications

$$
\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)\left\{\mathbf{P}_{x}\right\} \cong \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right) \cong\left\{\mathbf{I}_{x}\right\} \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)
$$

we consider $\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)$ as the external translation space of both $\operatorname{Rcon}_{x} \mathcal{B}$ and $\operatorname{Lcon}_{x} \mathcal{B}$. Since $\operatorname{dim} \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)=n m^{2}$, we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Rcon}_{x} \mathcal{B}=n m^{2}=\operatorname{dim} \operatorname{Lcon}_{x} \mathcal{B} \tag{32.18}
\end{equation*}
$$

The flat isomorphism

$$
\boldsymbol{\Lambda}: \operatorname{Rcon}_{x} \mathcal{B} \rightarrow \operatorname{Lcon}_{x} \mathcal{B}
$$

assigns to every $\mathbf{K} \in \operatorname{Rcon}_{x} \mathcal{B}$ an element $\boldsymbol{\Lambda}(\mathbf{K}) \in \operatorname{Lcon}_{x} \mathcal{B}$ such that

$$
\begin{equation*}
\operatorname{Lin} \mathcal{B}_{x} \underset{\Lambda(\mathbf{K})}{\overleftarrow{K}} \mathcal{S}_{x} \mathcal{B} \quad \overleftarrow{\mathbf{K}} \quad \mathrm{~T}_{x} \mathcal{M} \tag{32.19}
\end{equation*}
$$

is again a short exact sequence. We have

$$
\begin{equation*}
\mathbf{K} \mathbf{P}_{x}+\mathbf{I}_{x} \boldsymbol{\Lambda}(\mathbf{K})=\mathbf{1}_{\mathcal{S}_{x} \mathcal{B}} \quad \text { for all } \quad \mathbf{K} \in \operatorname{Rcon}_{x} \mathcal{B} \tag{32.20}
\end{equation*}
$$

Convention : Since there is one-to-one correspondence between right connectors and left connectors, we shall only deal with one kind of connectors, say right connectors. If we say "connector", we mean a right connector. The notation

$$
\operatorname{Con}_{x} \mathcal{B}:=\operatorname{Rcon}_{x} \mathcal{B}
$$

is also used.

Proposition 2: For each $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, let $\mathbf{A}_{x}^{\phi} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathcal{S}_{x} \mathcal{B}\right)$ be defined by $\mathbf{A}_{x}^{\phi}:=\mathbf{C}_{\mathbf{1}_{\mathcal{B}_{x}}}^{\text {tlis }}$ in terms of (31.19); i.e.

$$
\begin{equation*}
\mathbf{A}_{x}^{\phi} \mathbf{t}:=\left(\nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{tlis}_{x}^{\phi}\right)^{-1}(\mathbf{t}, \mathbf{0}) \quad \text { for all } \quad \mathbf{t} \in \mathrm{T}_{x} \mathcal{M} \tag{32.21}
\end{equation*}
$$

Then \mathbf{A}_{x}^{ϕ} is a linear right-inverse of \mathbf{P}_{x}, i.e. $\mathbf{A}_{x}^{\phi} \in \operatorname{Con}_{x} \mathcal{B}$.

Let $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ be given. We have the following short exact sequence
and

$$
\begin{equation*}
\mathbf{A}_{x}^{\phi} \mathbf{P}_{x}+\mathbf{I}_{x} \boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right)=\mathbf{1}_{\mathcal{S}_{x} \mathcal{B}} . \tag{32.23}
\end{equation*}
$$

Proposition 3: If $\psi, \phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ are given, then

$$
\begin{align*}
\mathbf{A}_{x}^{\phi}-\mathbf{A}_{x}^{\psi} & =\mathbf{I}_{x} \boldsymbol{\Gamma}_{x}^{\phi, \psi} \tag{32.24}\\
\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right)-\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\psi}\right) & =-\boldsymbol{\Gamma}_{x}^{\phi, \psi} \mathbf{P}_{x}
\end{align*}
$$

where $\boldsymbol{\Gamma}_{x}^{\phi, \psi}:=\boldsymbol{\Gamma}_{\mathbf{1}_{\mathcal{B}_{x}}}^{\mathrm{tlis}{ }_{x}^{\phi}, \mathrm{tlis}_{x}^{\psi}}$ in terms of (31.21) is of the form

$$
\begin{equation*}
\left.\left.\boldsymbol{\Gamma}_{x}^{\phi, \psi}:=(\psi\rfloor_{x}\right)^{-1}\left(\nabla_{x}(\psi \diamond \phi)\right) \circ\left(\mathbf{1}_{\mathrm{T}_{x} \mathcal{B}} \times \phi\right\rfloor_{x}\right) \tag{32.25}
\end{equation*}
$$

which belongs to $\operatorname{Lin}\left(\mathrm{T}_{x}, \operatorname{Lin} \mathcal{B}_{x}\right)$. Here, the notation (22.7) is used.
Proof : Applying Prop. 3 in Sect. 32 with ϕ replaced by tlis ${ }_{x}^{\phi}$ and ψ replaced by $\operatorname{tlis}_{x}^{\psi}$ together with (32.6) and (32.8), we obtain the desired result (32.25).

Notation: Let $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ be given. We define the mapping

$$
\boldsymbol{\Gamma}_{x}^{\phi}: \operatorname{Con}_{x} \mathcal{B} \rightarrow \operatorname{Lin}\left(\mathrm{~T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right)
$$

by $\boldsymbol{\Gamma}_{x}^{\phi}:=\boldsymbol{\Gamma}^{\mathbf{A}_{x}^{\phi}}=\boldsymbol{\Gamma}_{\mathbf{1}_{\mathcal{B}_{x}}}^{\mathrm{tlis}{ }_{x}^{\phi}}$ in terms of (14.10) and (31.24); i.e.

$$
\begin{equation*}
\boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K})=-\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right) \mathbf{K} \quad \text { for all } \quad \mathbf{K} \in \operatorname{Con}_{x} \mathcal{B} \tag{32.26}
\end{equation*}
$$

If $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, then (31.25) reduces to

$$
\begin{align*}
\mathbf{A}_{x}^{\phi}-\mathbf{K} & =\mathbf{I}_{x} \boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K}) \\
\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right)-\boldsymbol{\Lambda}(\mathbf{K}) & =-\boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K}) \mathbf{P}_{x} \tag{32.27}
\end{align*}
$$

for all $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}$. Moreover; if $\psi, \phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, then

$$
\begin{equation*}
\boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K})-\boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{K})=\boldsymbol{\Gamma}_{x}^{\phi, \psi} \quad \text { for all } \quad \mathbf{K} \in \operatorname{Con}_{x} \mathcal{B} \tag{32.28}
\end{equation*}
$$

where $\boldsymbol{\Gamma}_{x}^{\phi, \psi}$ is defined by (32.25). It follows from (32.28) that $\boldsymbol{\Gamma}_{x}^{\psi, \phi}=-\boldsymbol{\Gamma}_{x}^{\phi, \psi}$ and from $\boldsymbol{\Gamma}_{x}^{\psi}\left(\mathbf{A}_{x}^{\psi}\right)=\mathbf{0}$ that $\boldsymbol{\Gamma}_{x}^{\phi}\left(\mathbf{A}_{x}^{\psi}\right)=\boldsymbol{\Gamma}_{x}^{\phi, \psi}$ for all bundle charts $\psi, \phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$.

For every cross section $\mathbf{H}: \mathcal{O} \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ of the bundle $\operatorname{Tlis}_{x} \mathcal{B}$, the mapping $\mathbf{T}: \mathcal{M} \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ defined by

$$
\begin{equation*}
\mathbf{T}(y):=\mathbf{H}(y) \mathbf{H}^{-1}(x) \quad \text { for all } \quad y \in \mathcal{M} \tag{32.29}
\end{equation*}
$$

is a cross section of the bundle $\operatorname{Tlis}_{x} \mathcal{B}$ with $\mathbf{T}(x)=\mathbf{1}_{\mathcal{B}_{x}}$.
Definition: A cross section $\mathbf{T}: \mathcal{O} \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ of the bundle $\operatorname{Tlis}_{x} \mathcal{B}$ such that $\mathbf{T}(x)=\mathbf{1}_{\mathcal{B}_{x}}$ is called a transport from x.

For every bundle chart $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$, we see that

$$
\left.\left.\left(y \mapsto(\phi\rfloor_{y}\right)^{-1} \phi\right\rfloor_{x}\right): \mathcal{O}_{\phi} \rightarrow \operatorname{Tlis}_{x} \mathcal{B}
$$

is a transport from x which is of class C^{s}.
Remark 1: For every $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}$, there is a bundle chart $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$ with $\phi\rfloor_{x}=\mathbf{1}_{\mathcal{B}_{x}}$ such that

$$
\begin{equation*}
\left.\mathbf{K}=\nabla_{x}(\phi\rfloor\right)^{-1}=\mathbf{A}_{x}^{\phi} \tag{32.30}
\end{equation*}
$$

Proof: Let $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}$ be given. It is not hard to construct a transport $\mathbf{T}: \mathcal{O} \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ from x such that (Ask Prof. Noll!!!!!!!!!!!!!!!!!!!!!!)

$$
\begin{equation*}
\mathbf{K}=\nabla_{x} \mathbf{T} . \tag{32.31}
\end{equation*}
$$

There is a bundle chart $\phi: \tau^{<}(\mathcal{O}) \rightarrow \mathcal{O} \times \mathcal{B}_{x}$ induced from \mathbf{T} by

$$
\begin{equation*}
\phi(\mathbf{v}):=\left(y, \mathbf{T}^{-1}(y) \mathbf{v}\right) \quad \text { where } \quad y:=\tau(\mathbf{v}) \tag{32.32}
\end{equation*}
$$

for all $\mathbf{v} \in \tau^{<}(\mathcal{O})$. It is easily seen that $\left.(\phi\rfloor\right)^{-1}=\mathbf{T}$. The first part of (32.30) follows from (32.31). In view of (31.29) we have

$$
\begin{align*}
\left.\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right)\left(\nabla_{x}(\phi\rfloor\right)^{-1}\right) & \left.=\left(\mathrm{ev}_{2} \circ \nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{tlis}_{x}^{\phi}\right) \nabla_{x}(\phi\rfloor\right)^{-1} \tag{32.33}\\
& \left.=\mathrm{ev}_{2} \circ \nabla_{x}\left(y \mapsto \operatorname{tis}_{x}^{\phi}\left((\phi\rfloor_{y}\right)^{-1}\right)\right)
\end{align*}
$$

Using (32.6) and ovbserving $\phi\rfloor_{y} \in \operatorname{Lin}\left(\mathcal{B}_{y}, \mathcal{B}_{x}\right)$, we have

$$
\begin{equation*}
\left.\left.\left.\operatorname{tlis}_{x}^{\phi}\left((\phi\rfloor_{y}\right)^{-1}\right)=(y, \phi\rfloor_{y}(\phi\rfloor_{y}\right)^{-1}\right)=\left(y, \mathbf{1}_{\mathcal{B}_{x}}\right) \tag{32.34}
\end{equation*}
$$

Taking the gradient of (32.34) at x, we observe that

$$
\begin{equation*}
\left.\nabla_{x}\left(y \mapsto \operatorname{tlis}_{x}^{\phi}\left((\phi\rfloor_{y}\right)^{-1}\right)\right)=\left(\mathbf{1}_{\mathrm{T}_{x} \mathcal{M}}, \mathbf{0}\right) \tag{32.35}
\end{equation*}
$$

It follows from (32.33) and (32.35) that

$$
\left.\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right)\left(\nabla_{x}(\phi\rfloor\right)^{-1}\right)=\mathbf{0}
$$

This can happen only when $\left.\nabla_{x}(\phi\rfloor\right)^{-1}=\mathbf{A}_{x}^{\phi}$.

33. Torsion

Let $r \in^{\sim}$, with $r \geq 2$, and a C^{r}-manifold \mathcal{M} be given. For every $x \in \mathcal{M}$, we have; as described in Sect. 32 with $\mathcal{B}:=\mathrm{T} \mathcal{M}$,

$$
\begin{equation*}
\operatorname{Tlis}_{x} \mathrm{TM}:=\bigcup_{y \in \mathcal{M}} \operatorname{Lis}\left(\mathrm{~T}_{x} \mathcal{M}, \mathrm{~T}_{y} \mathcal{M}\right) \tag{33.1}
\end{equation*}
$$

We also have the following short exact sequence

$$
\begin{equation*}
\operatorname{Lin~}_{\mathrm{T}_{x} \mathcal{M}} \quad \xrightarrow{\mathbf{I}_{x}} \mathrm{~S}_{x} \mathrm{TM} \quad \xrightarrow{\mathbf{P}_{x}} \quad \mathrm{~T}_{x} \mathcal{M} \tag{33.2}
\end{equation*}
$$

The short exact sequence (33.2) is of the form (15.1) and hence all of the results in Sect. 15 can be used here.

For every manifold chart $\chi \in \operatorname{Ch} \mathcal{M}$, the tangent mapping tgt $_{\chi}$; as defined in (22.13), is a bundle chart of the tangent bundle $\mathrm{T} \mathcal{M}$ such that $\mathrm{ev}_{2} \circ \operatorname{tgt}_{\chi}=\nabla \chi$. Note that not every tangent bundle chart $\phi \in \operatorname{Ch}(\mathrm{T} \mathcal{M}, \mathcal{M})$ can be obtained from the gradient of a manifold chart. To avoid complicated notations, we replace all the superscript of $\phi=\operatorname{tgt}_{\chi}$ by superscript of χ; i.e. we use the following notation

$$
\begin{equation*}
\mathbf{A}_{x}^{\chi}:=\mathbf{A}_{x}^{\operatorname{tgt}_{\chi}}, \quad \boldsymbol{\Gamma}_{x}^{\chi}:=\boldsymbol{\Gamma}_{x}^{\operatorname{tgt}_{\chi}} \quad \text { and } \quad \boldsymbol{\Gamma}_{x}^{\chi, \gamma}:=\boldsymbol{\Gamma}_{x}^{\operatorname{tgt}_{\chi}, \operatorname{tgt}_{\gamma}} \tag{33.3}
\end{equation*}
$$

for all manifold charts $\chi, \gamma \in \operatorname{Ch} \mathcal{M}$. Given $\chi, \gamma \in \operatorname{Ch} \mathcal{M}$. It is easily seen from (32.25) and (23.16) that

$$
\begin{equation*}
\boldsymbol{\Gamma}_{x}^{\chi, \gamma}:=\left(\left(\nabla_{x} \gamma\right)^{-1} \nabla_{\chi}^{(2)} \gamma(x)\right) \circ\left(\nabla_{x} \chi \times \nabla_{x} \chi\right) \tag{33.4}
\end{equation*}
$$

It follows from the Theorem on Symmetry of Second Gradients (see Sect.612, [FDS]) that $\Gamma_{x}^{\chi, \gamma}$ belongs to the subspace $\operatorname{Sym}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$ of $\operatorname{Lin}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right) \cong \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin}^{2} \mathcal{M}\right)$.

Proposition 1: There is exactly one flat \mathcal{F} in $\mathrm{Con}_{x} \mathrm{TM}$ with direction space $\left\{\mathbf{I}_{x}\right\} \operatorname{Sym}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$ which contains \mathbf{A}_{x}^{χ} for every manifold chart $\chi \in \mathrm{Ch}_{x} \mathcal{M}$, so that

$$
\begin{equation*}
\mathcal{F}=\mathbf{A}_{x}^{\chi}+\left\{\mathbf{I}_{x}\right\} \operatorname{Sym}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right) \quad \text { for all } \quad \chi \in \mathrm{Ch}_{x} \mathcal{M} \tag{33.5}
\end{equation*}
$$

Definition: The shift-bracket $\mathbf{B}_{x} \in \operatorname{Skw}_{2}\left(\mathrm{~S}_{x} \mathrm{~T} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$ of $\mathrm{S}_{x} \mathrm{TM}$ is defined by

$$
\begin{equation*}
\mathbf{B}_{x}:=\mathbf{B}_{\mathcal{F}} \tag{33.6}
\end{equation*}
$$

where $\mathbf{B}_{\mathcal{F}}$ is defined as in (15.5).
Definition: The torsion-mapping $\mathbf{T}_{x}: \operatorname{Con}_{x} \mathrm{~T} \mathcal{M} \rightarrow \mathrm{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$ of $\mathrm{Con}_{x} \mathrm{TM}$ is defined by

$$
\begin{equation*}
\mathbf{T}_{x}:=\mathbf{T}_{\mathcal{F}} \tag{33.7}
\end{equation*}
$$

where $\mathbf{T}_{\mathcal{F}}$ is defined as in (15.8).
It follows from Prop. 3 of Sect. 15 that, for every manifold chart $\chi \in \mathrm{Ch}_{x} \mathcal{M}$, we have

$$
\begin{equation*}
\mathbf{T}_{x}=\boldsymbol{\Gamma}_{x}^{\chi}-\boldsymbol{\Gamma}_{x}^{\chi \sim} \tag{33.8}
\end{equation*}
$$

where \sim denotes the value-wise switch, so that $\boldsymbol{\Gamma}_{x}^{\chi \sim}(\mathbf{K})(\mathbf{s}, \mathbf{t})=\boldsymbol{\Gamma}_{x}^{\chi}(\mathbf{K})(\mathbf{t}, \mathbf{s})$ for all $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{M}$ and all $\mathbf{s}, \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$.

The torsion-mapping \mathbf{T}_{x} is a surjective flat mapping with $\mathbf{T}_{x}^{<}(\{\mathbf{0}\})=\mathcal{F}$ whose gradient

$$
\begin{equation*}
\nabla \mathbf{T}_{x} \in \operatorname{Lin}\left(\operatorname{Lin}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right), \operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)\right) \tag{33.9}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\left(\nabla \mathbf{T}_{x}\right) \mathbf{L}=\mathbf{L}^{\sim}-\mathbf{L} \tag{33.10}
\end{equation*}
$$

for all $\mathbf{L} \in \operatorname{Lin}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$.
Definition: We say that a connector $\mathbf{K} \in \operatorname{Con}_{x} \mathrm{~T} \mathcal{M}$ is torsion-free (or symmetric) if $\mathbf{T}_{x}(\mathbf{K})=\mathbf{0}$, i.e. $\mathbf{K} \in \mathcal{F}$. The flat of all symmetric connectors will be denoted by $\operatorname{Scon}_{x} \mathcal{M}:=\mathbf{T}_{x}^{<}(\{\mathbf{0}\})$.

The mapping

$$
\begin{equation*}
\mathbf{S}_{x}:=\left.\left(\mathbf{1}_{\operatorname{Con}_{x} \mathrm{~T} \mathcal{M}}+\frac{1}{2} \mathbf{I}_{x} \mathbf{T}_{x}\right)\right|^{\operatorname{Scon}_{x} \mathcal{M}} \tag{33.11}
\end{equation*}
$$

is the projection of $\mathrm{Con}_{x} \mathrm{~T} \mathcal{M}$ onto $\mathrm{Scon}_{x} \mathcal{M}$ with

$$
\operatorname{Null} \nabla \mathbf{S}_{x}=\operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)
$$

If $\mathbf{K} \in \operatorname{Con}_{x} \mathrm{TM}$, we call $\mathbf{S}_{x}(\mathbf{K})=\mathbf{K}+\frac{1}{2} \mathbf{I}_{x}\left(\mathbf{T}_{x}(\mathbf{K})\right)$ the symmetric part of K.

Theorem : A connector $\mathbf{K} \in \mathrm{Con}_{x} \mathrm{TM}$ is symmetric if and only if $\mathbf{K}=\mathbf{A}_{x}^{\chi}$ for some $\chi \in \mathrm{Ch}_{x} \mathcal{M}$. Thus $\operatorname{Scon}_{x} \mathcal{M}=\left\{\mathbf{A}_{x}^{\chi} \mid \chi \in \mathrm{Ch}_{x} \mathcal{M}\right\}$.

Proof: Let $\mathbf{K} \in \operatorname{Con}_{x} \mathcal{M}$ be given. If $\mathbf{K}=\mathbf{A}_{x}^{\chi}$ for some $\chi \in \mathrm{Ch}_{x} \mathcal{M}$, then $\boldsymbol{\Gamma}_{x}^{\chi}(\mathbf{K})=\mathbf{0}$ and hence $\mathbf{T}_{x}(\mathbf{K})=\mathbf{0}$ by (33.8).

Assume now that $\mathbf{T}_{x}(\mathbf{K})=\mathbf{0}$. We choose $\gamma \in \mathrm{Ch}_{x} \mathcal{M}$ and put

$$
\begin{equation*}
\mathbf{L}:=\nabla_{x} \gamma \boldsymbol{\Gamma}_{x}^{\gamma}(\mathbf{K}) \circ\left(\left(\nabla_{x} \gamma\right)^{-1} \times\left(\nabla_{x} \gamma\right)^{-1}\right) . \tag{33.12}
\end{equation*}
$$

It follows from (33.8) that \mathbf{L} is symmetric, i.e. that $\mathbf{L} \in \operatorname{Sym}_{2}\left(\mathcal{V}_{\gamma}^{2}, \mathcal{V}_{\gamma}\right)$. We now define the mapping $\alpha: \operatorname{Dom} \gamma \rightarrow \mathcal{V}_{\gamma}$ by

$$
\alpha(z):=\gamma(z)+\frac{1}{2} \mathbf{L}(\gamma(z)-\gamma(x), \gamma(z)-\gamma(x)) \quad \text { for all } \quad z \in \operatorname{Dom} \gamma
$$

Take the gradient at x, we have $\nabla_{x} \alpha=\nabla_{x} \gamma$ i.e. that is $\left(\nabla_{x} \alpha\right)\left(\nabla_{x} \gamma\right)^{-1}=\mathbf{1}_{\mathcal{V}_{\gamma}}$. It follows from the Local Inversion Theorem that there exist an open subset \mathcal{N} of $\operatorname{Dom} \alpha$ such that $\chi:=\left.\alpha\right|_{\mathcal{N}} ^{\alpha>(\mathcal{N})}$ is a bijection of class C^{r}. It is easily seen that $\chi \in \mathrm{Ch}_{x} \mathcal{M}$ and that

$$
\nabla_{\gamma}^{(2)} \chi(x)=\mathbf{L}
$$

Using (33.12), (32.25) and $\nabla_{x} \chi=\nabla_{x} \gamma$, we conclude that

$$
\boldsymbol{\Gamma}_{x}^{\gamma}(\mathbf{K})=\left(\nabla_{x} \chi\right)^{-1} \nabla_{\gamma}^{(2)} \chi \circ\left(\nabla_{x} \gamma \times \nabla_{x} \gamma\right)=\boldsymbol{\Gamma}_{x}^{\gamma, \chi}
$$

Hence, by (32.24) and (32.27), we have

$$
\mathbf{A}_{x}^{\gamma}-\mathbf{A}_{x}^{\chi}=\mathbf{I}_{x} \boldsymbol{\Gamma}_{x}^{\gamma, \chi}=\mathbf{I}_{x} \boldsymbol{\Gamma}_{x}^{\gamma}(\mathbf{K})=\mathbf{A}_{x}^{\gamma}-\mathbf{K},
$$

which gives $\mathbf{K}=\mathbf{A}_{x}^{\chi}$.

34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle $(\mathcal{B}, \tau, \mathcal{M})$ of class $\mathrm{C}^{s}, s \geq 2$, is given. We also assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and put $n:=\operatorname{dim} \mathcal{M}$ and $m:=\operatorname{dim} \mathcal{B}-\operatorname{dim} \mathcal{M}$. Then we have, as in (32.1),

$$
\begin{equation*}
m=\operatorname{dim} \mathcal{B}_{x} \quad \text { for all } \quad x \in \mathcal{M} \tag{34.1}
\end{equation*}
$$

Definition: The connector bundle Con \mathcal{B} of \mathcal{B} is defined to be the union of all the right-connector spaces

$$
\begin{equation*}
\operatorname{Con} \mathcal{B}:=\bigcup_{x \in \mathcal{M}} \operatorname{Con}_{x} \mathcal{B} . \tag{34.2}
\end{equation*}
$$

It is endowed with the structure of a C^{s-1}-flat space bundle over \mathcal{M} as shown below.

If \mathcal{P} is an open subset of \mathcal{M} and $x \in \mathcal{P}$, we can identify $\operatorname{Con}_{x} \mathcal{A} \cong \operatorname{Con}_{x} \mathcal{B}$, where $\mathcal{A}:=\tau^{<}(\mathcal{P})$, in the same way as was done for the tangent space. Hence we may regard $\operatorname{Con} \mathcal{A}$ as a subset of $\operatorname{Con} \mathcal{B}$.

Note that the family $\left(\operatorname{Con}_{x} \mathcal{B} \mid x \in \mathcal{M}\right)$ is disjoint. The bundle projection $\rho: \operatorname{Con} \mathcal{B} \rightarrow \mathcal{M}$ is given by

$$
\begin{equation*}
\rho(\mathbf{K}): \in\left\{y \in \mathcal{M} \mid \mathbf{K} \in \operatorname{Con}_{x} \mathcal{B}\right\} \tag{34.3}
\end{equation*}
$$

and, for every $x \in \mathcal{M}$, the bundle inclusion $\operatorname{in}_{x}: \operatorname{Con}_{x} \mathcal{B} \rightarrow \operatorname{Con} \mathcal{B}$ at x is

$$
\begin{equation*}
\operatorname{in}_{x}:=\mathbf{1}_{\operatorname{Con}_{x} \mathcal{B} \subset \operatorname{Con} \mathcal{B}} \tag{34.4}
\end{equation*}
$$

For every $(\chi, \phi) \in \operatorname{Ch} \mathcal{M} \times \operatorname{Ch}(\mathcal{B}, \mathcal{M})$ we define

$$
\begin{equation*}
\operatorname{con}^{(\chi, \phi)}: \operatorname{Con}(\operatorname{Dom} \phi) \rightarrow\left(\operatorname{Dom} \chi \cap \mathcal{O}_{\phi}\right) \times \operatorname{Lin}\left(\mathcal{V}_{\chi}, \operatorname{Lin} \mathcal{V}_{\phi}\right) \tag{34.5}
\end{equation*}
$$

by

$$
\begin{gather*}
\left.\left.\operatorname{con}^{(\chi, \phi)}(\mathbf{H}):=(z, \phi\rfloor_{z} \boldsymbol{\Lambda}\left(\mathbf{A}_{z}^{\phi}\right)(\mathbf{H})\left(\nabla_{z} \chi^{-1} \times \phi\right\rfloor_{z}^{-1}\right)\right) \tag{34.6}\\
\text { where } \quad z:=\rho(\mathbf{H})
\end{gather*}
$$

for all $\mathbf{H} \in \operatorname{Con}(\operatorname{Dom} \phi)$. It is easily seen that $\operatorname{con}(\chi, \phi)$ is invertible and

$$
\begin{equation*}
\left.\left.\operatorname{con}^{(\chi, \phi)}(z, \mathbf{L})=\mathbf{A}_{z}^{\phi}+\mathbf{I}_{z} \phi\right\rfloor_{z}^{-1} \mathbf{L}\left(\nabla_{z} \chi \times \phi\right\rfloor_{z}\right) \tag{34.7}
\end{equation*}
$$

for all $z \in\left(\operatorname{Dom} \chi \cap \mathcal{O}_{\phi}\right)$ and all $\mathbf{L} \in \operatorname{Lin}\left(\mathcal{V}_{\chi}, \operatorname{Lin} \mathcal{V}_{\phi}\right)$. Let $(\chi, \phi),(\gamma, \psi) \in \operatorname{Ch} \mathcal{M} \times$ $\mathrm{Ch}(\mathcal{B}, \mathcal{M})$ be given. We easily deduce from (34.7) and (34.6), with (χ, ϕ) replaced by (γ, ψ) and $\boldsymbol{\Lambda}\left(\mathbf{A}_{z}^{\psi}\right)\left(\mathbf{A}_{z}^{\phi}\right)=-\boldsymbol{\Gamma}_{z}^{\psi, \phi}=\boldsymbol{\Gamma}_{z}^{\phi, \psi}$, that

$$
\begin{align*}
& \left(\operatorname{con}^{(\gamma, \psi)} \square \operatorname{con}(\chi, \phi)^{\leftarrow}\right)(z, \mathbf{L}) \\
& \left.\left.\quad=(z, \psi\rfloor_{z} \boldsymbol{\Gamma}_{z}^{\phi, \psi}\left(\nabla_{z} \gamma^{-1} \times \psi\right\rfloor_{z}^{-1}\right)+\kappa(z) \mathbf{L}\left(\nabla_{z} \lambda \times \kappa(z)^{-1}\right)\right) \tag{34.8}\\
& \quad \text { where } \lambda:=\gamma \square \chi^{\leftarrow} \text { and } \kappa:=\psi \diamond \phi(\operatorname{see}(22.7))
\end{align*}
$$

for all $z \in\left(\operatorname{Dom} \chi \cap \mathcal{O}_{\phi}\right) \cap\left(\operatorname{Dom} \gamma \cap \mathcal{O}_{\psi}\right)$ and $\mathbf{L} \in \operatorname{Lin}\left(\mathcal{V}_{\chi}, \operatorname{Lin} \mathcal{V}_{\phi}\right)$. It is clear that $\operatorname{con}^{(\gamma, \psi)} \square \operatorname{con}(\chi, \phi) \leftarrow$ is of class C^{s-1}. Since $(\gamma, \psi),(\chi, \phi) \in \operatorname{Ch} \mathcal{M} \times \operatorname{Ch}(\mathcal{B}, \mathcal{M})$ were arbitrary, it follows that $\left\{\operatorname{con}^{(\alpha, \phi)} \mid(\alpha, \phi) \in \operatorname{Ch} \mathcal{M} \times \operatorname{Ch}(\mathcal{B}, \mathcal{M})\right\}$ is a C^{s-1} bundle atlas of $\operatorname{Con} \mathcal{B}$; it determines the natural structure of a C^{s-1} flat-space bundle over \mathcal{M}.

The mappings ρ and in_{x} defined by (34.3) and (34.4) are easily seen to be of class C^{s-1}.

Definition: Let \mathcal{O} be an open subset of \mathcal{M}. A cross section on \mathcal{O} of the connector bundle $\operatorname{Con} \mathcal{B}$

$$
\begin{equation*}
\mathbf{A}: \mathcal{O} \rightarrow \operatorname{Con} \mathcal{B} \tag{34.9}
\end{equation*}
$$

is called a connection on \mathcal{O} for the bundle \mathcal{B}. A connection on \mathcal{M} for the bundle \mathcal{B} is simply called a connection for the bundle \mathcal{B}. For every bundle chart ϕ in $\operatorname{Ch}(\mathcal{B}, \mathcal{M})$, the connection \mathbf{A}^{ϕ} on \mathcal{O}_{ϕ} is defined by

$$
\begin{equation*}
\mathbf{A}^{\phi}(x):=\mathbf{A}_{x}^{\phi} \quad \text { for all } \quad x \in \mathcal{O}_{\phi}, \tag{34.10}
\end{equation*}
$$

where \mathbf{A}_{x}^{ϕ} is given by (32.21).
Definition: The tangent-space of $\operatorname{Con} \mathcal{B}$ at \mathbf{K} is denoted by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{K}} \operatorname{Con} \mathcal{B} \tag{34.11}
\end{equation*}
$$

We define the projection mapping of $\mathrm{T}_{\mathrm{K}} \operatorname{Con} \mathcal{B}$ by

$$
\begin{equation*}
\mathbf{P}_{\mathbf{K}}:=\nabla_{\mathbf{K}} \rho \in \operatorname{Lin}\left(\mathrm{T}_{\mathbf{K}} \operatorname{Con} \mathcal{B}, \mathrm{T}_{x} \mathcal{M}\right) \tag{34.12}
\end{equation*}
$$

and the injection mapping of $\mathrm{T}_{\mathrm{K}} \operatorname{Con} \mathcal{B}$ by

$$
\begin{equation*}
\mathbf{I}_{\mathbf{K}}:=\nabla_{\mathbf{K}} \operatorname{in}_{x} \in \operatorname{Lin}\left(\operatorname{Lin}\left(\mathrm{~T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right), \mathrm{T}_{\mathbf{K}} \operatorname{Con} \mathcal{B}\right) \tag{34.13}
\end{equation*}
$$

where ρ and in_{x} are defined by (34.3) and (34.4).

It is clear from (34.5) that

$$
\begin{equation*}
\operatorname{dim}(\operatorname{Con} \mathcal{B})=\operatorname{dim}\left(\mathrm{T}_{\mathbf{K}} \operatorname{Con} \mathcal{B}\right)=n+n m^{2} . \tag{34.14}
\end{equation*}
$$

Proposition 1: The projection mapping $\mathbf{P}_{\mathbf{K}}$ is surjective, the injection mapping $\mathbf{I}_{\mathbf{K}}$ is injective, and we have

$$
\begin{equation*}
\operatorname{Null} \mathbf{P}_{\mathrm{K}}=\operatorname{Rng} \mathbf{I}_{\mathrm{K}} \tag{34.15}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \operatorname{Lin} \mathcal{B}_{x}\right) \xrightarrow{\mathbf{I}_{\mathbf{K}}} \mathrm{T}_{\mathbf{K}} \operatorname{Con} \mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{K}}} \mathrm{T}_{x} \mathcal{M} \tag{34.16}
\end{equation*}
$$

is a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence all of the results in Sect. 15 can be used here.

Proposition 2: For each $(\chi, \phi) \in \mathrm{Ch}_{x} \mathcal{M} \times \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, let

$$
\mathbf{A}_{\mathbf{K}}^{(\chi, \phi)} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathrm{~T}_{\mathbf{K}} \operatorname{Con} \mathcal{B}\right)
$$

be defined by $\mathbf{A}_{\mathbf{K}}^{(\chi, \phi)}:=\mathbf{A}_{\mathbf{K}}^{\operatorname{con}(\chi, \phi)}$ in terms of the notation (32.21); i.e.

$$
\begin{equation*}
\mathbf{A}_{\mathbf{K}}^{(\chi, \phi)}:=\left(\nabla_{\mathbf{K}} \operatorname{con}^{(\chi, \phi)}\right)^{-1} \circ \mathrm{ins}_{1} \tag{34.17}
\end{equation*}
$$

Then $\mathbf{A}_{\mathbf{K}}^{(\chi, \phi)}$ is a linear right-inverse of $\mathbf{P}_{\mathbf{K}}$; i.e. $\mathbf{P}_{\mathbf{K}} \mathbf{A}_{\mathbf{K}}^{(\chi, \phi)}=\mathbf{1}_{\mathrm{T}_{x} \mathcal{M}}$.

Proposition 3: If $(\gamma, \psi),(\chi, \phi) \in \mathrm{Ch}_{x} \mathcal{M} \times \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, with $\mathbf{A}_{x}^{\phi}=\mathbf{K}=\mathbf{A}_{x}^{\psi}$, then

$$
\begin{align*}
\mathbf{A}_{\mathbf{K}}^{(\chi, \phi)}-\mathbf{A}_{\mathbf{K}}^{(\gamma, \psi)} & =\mathbf{I}_{\mathbf{K}} \boldsymbol{\Gamma}_{\mathbf{K}}^{(\chi, \phi),(\gamma, \psi)} \\
\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{K}}^{(\chi, \phi)}\right)-\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{K}}^{(\gamma, \psi)}\right) & =-\boldsymbol{\Gamma}_{\mathbf{K}}^{(\chi, \phi),(\gamma, \psi)} \mathbf{P}_{\mathbf{K}} \tag{34.18}
\end{align*}
$$

where $\boldsymbol{\Gamma}_{\mathbf{K}}^{(\chi, \phi),(\gamma, \psi)}:=\boldsymbol{\Gamma}_{\mathbf{K}}^{\operatorname{con}(\chi, \phi), \operatorname{con}(\gamma, \psi)}$ in terms of the notation (32.25) is given by

$$
\begin{equation*}
\left.\left.\boldsymbol{\Gamma}_{\mathbf{K}}^{(\chi, \phi),(\gamma, \psi)}\left(\mathbf{t}, \mathbf{t}^{\prime}\right)=(\psi\rfloor_{x}\right)^{-1}\left(\nabla_{\gamma(x)}^{(2)}(\psi \diamond \phi)\left(\nabla_{x} \gamma \mathbf{t}, \nabla_{x} \gamma \mathbf{t}^{\prime}\right)\right) \phi\right\rfloor_{x} \tag{34.19}
\end{equation*}
$$

for all $\mathbf{t}, \mathbf{t}^{\prime} \in \mathrm{T}_{x} \mathcal{M}$. We have $\boldsymbol{\Gamma}_{\mathbf{K}}^{(\chi, \phi),(\gamma, \psi)} \in \operatorname{Sym}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \operatorname{Lin} \mathcal{B}_{x}\right)$. Here, the notation (22.7) is used.

Proof: Let $(\gamma, \psi),(\chi, \phi) \in \mathrm{Ch}_{x} \mathcal{M} \times \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$, with $\mathbf{A}_{x}^{\phi}=\mathbf{K}=\mathbf{A}_{x}^{\psi}$, be given. Then, we have $\nabla_{x}(\psi \diamond \phi)=\boldsymbol{\Lambda}\left(\mathbf{A}_{x}^{\phi}\right)(\mathbf{K})=\mathbf{0}$. It follows from (34.6) that

$$
\begin{equation*}
\left.\operatorname{con}^{(\chi, \phi)}\right\rfloor_{x}(\mathbf{K})=\mathbf{0} \tag{34.20}
\end{equation*}
$$

Using (34.8), (34.20) and (33.25), we obtain

$$
\begin{align*}
& \left(\operatorname{con}^{(\gamma, \psi)} \square \operatorname{con}^{\left.(\chi, \phi)^{\leftarrow}\right)}\left(z, \operatorname{con}^{(\chi, \phi)}\right\rfloor_{x}(\mathbf{K})\right) \\
& \left.\left.\quad=\left(z, \nabla_{z}(\psi \diamond \phi)\left(\nabla_{z} \gamma^{-1} \times(\phi\rfloor_{z} \circ \psi\right\rfloor_{z}^{-1}\right)\right)\right) . \tag{34.21}
\end{align*}
$$

Taking the gradient of (34.21) with respect to z at x and observing $\nabla_{x}(\psi \diamond \phi)=\mathbf{0}$, we have

$$
\begin{align*}
& \left.\operatorname{ev}_{2}\left(\nabla_{x}\left(\left(\operatorname{con}^{(\gamma, \psi)} \square \operatorname{con}^{(\chi, \phi)} \leftarrow\right)\left(\cdot, \operatorname{con}^{(\chi, \phi)}\right\rfloor_{x}(\mathbf{K})\right)\right) \mathbf{t}\right) \tag{34.22}\\
& \left.\left.\quad=\left(\left(\nabla_{\gamma(x)}^{(2)}(\psi \diamond \phi)\right) \nabla_{x} \gamma \mathbf{t}\right)\left(\mathbf{1}_{\mathcal{V}_{\gamma}} \times(\phi\rfloor_{x} \circ \psi\right\rfloor_{x}^{-1}\right)\right)
\end{align*}
$$

for all $\mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$. Using (34.22), (34.6) with (χ, ϕ) replaced by (γ, ψ) and applying Prop. 3 in Sect. 32 with ϕ replaced by $\operatorname{con}^{(\chi, \phi)}$ and ψ replaced by $\operatorname{con}^{(\gamma, \psi)}$, we obtain the desired result (34.19).

If $\phi, \psi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, with $\mathbf{A}_{x}^{\phi}=\mathbf{K}=\mathbf{A}_{x}^{\psi}$, we have $\boldsymbol{\Gamma}_{x}^{\phi, \psi}=\mathbf{0}$ by (33.25). It follows from (21.9) that the right hand side of (34.19) does not depend on the manifold charts $\chi, \gamma \in \mathrm{Ch}_{x} \mathcal{M}$. In particular, when $\psi=\phi$ we have $\mathbf{A}_{\mathrm{K}}^{(\chi, \phi)}=$ $\mathbf{A}_{\mathrm{K}}^{(\gamma, \phi)}$ for all manifold charts $\chi, \gamma \in \mathrm{Ch}_{x} \mathcal{M}$.

By using the definition of the gradient

$$
\nabla_{x} \mathbf{A}^{\phi}=\left(\nabla_{\mathbf{K}} \operatorname{con}^{\chi, \phi}\right)^{-1} \nabla_{\chi(x)}\left(\operatorname{con}^{\chi, \phi} \mathbf{A}^{\phi} \chi^{\leftarrow}\right) \nabla_{x} \chi
$$

and (34.6), we can easily seen that for every bundle chart $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ with $\mathbf{A}_{x}^{\phi}=\mathbf{K}$

$$
\begin{equation*}
\nabla_{x} \mathbf{A}^{\phi}=\mathbf{A}_{\mathrm{K}}^{(\chi, \phi)} \quad \text { for all } \quad \chi \in \mathrm{Ch}_{x} \mathcal{M} \tag{34.23}
\end{equation*}
$$

for all bundle charts $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$ with $\mathbf{A}_{x}^{\phi}=\mathbf{K}$.
Proof: The assertion follows from (34.23) together with (34.18) and (34.19).
Definition: The bracket $\mathbf{B}_{\mathrm{K}} \in \operatorname{Skw}_{2}\left(\mathrm{~T}_{\mathrm{K}} \operatorname{Con} \mathcal{B}^{2}, \mathrm{~T}_{x} \mathcal{M}\right)$ of $\mathrm{T}_{\mathrm{K}} \operatorname{Con} \mathcal{B}$ is defined by

$$
\begin{equation*}
\mathbf{B}_{\mathrm{K}}:=\mathbf{B}_{\mathcal{F}_{\mathrm{K}}} \tag{34.25}
\end{equation*}
$$

where $\mathbf{B}_{\mathcal{F}_{\mathbf{K}}}$ is defined as in (15.5).

Definition: Let $\mathbf{A}: \mathcal{M} \rightarrow \operatorname{Con} \mathcal{B}$ be a connection which is differentiable at x. The curvature of \mathbf{A} at x, denoted by

$$
\begin{equation*}
\mathbf{R}_{x}(\mathbf{A}) \in \operatorname{Skw}_{2}\left(\mathrm{~T}_{x} \mathcal{M}^{2}, \operatorname{Lin}_{\mathcal{B}_{x}}\right) \tag{34.26}
\end{equation*}
$$

is defined by

$$
\begin{equation*}
\mathbf{R}_{x}(\mathbf{A}):=\mathbf{T}_{\mathcal{F}_{\mathbf{A}(x)}}\left(\nabla_{x} \mathbf{A}\right) \tag{34.27}
\end{equation*}
$$

where $\mathbf{T}_{\mathcal{F}_{\mathbf{A}(x)}}$ is defined as in (15.8).
If \mathbf{A} is differentiable, then the mapping $\mathbf{R}(\mathbf{A}): \mathcal{M} \rightarrow \operatorname{Skw}_{2}\left(\operatorname{Tan} \mathcal{M}^{2}\right.$, Lin $\left.\mathcal{B}\right)$ defined by

$$
\mathbf{R}(\mathbf{A})(x):=\mathbf{R}_{x}(\mathbf{A}) \quad \text { for all } \quad x \in \mathcal{M}
$$

is called the curvature field of the connection \mathbf{A}.
A fomula for the curvature field $\mathbf{R}(\mathbf{A})$ in terms of covariant gradients will be given in Prop. 5. If the connection \mathbf{A} is of class C^{p}, with $p \in 1 . . s-1$, then $\nabla \mathbf{A}$ is of class C^{p-1}, and so is the curvature field $\mathbf{R}(\mathbf{A})$.

More generally, if $\phi, \psi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$, without assuming that $\mathbf{A}_{x}^{\phi}=\mathbf{K}=\mathbf{A}_{x}^{\psi}$, then Eq. (34.19) must be replaced by

$$
\begin{align*}
& \boldsymbol{\Gamma}_{\mathbf{K}}^{(\chi, \phi),(\gamma, \psi)}\left(\mathbf{t}, \mathbf{t}^{\prime}\right) \\
&=-\boldsymbol{\Gamma}_{x}^{\phi, \psi}(\mathbf{t}) \boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K})\left(\mathbf{t}^{\prime}\right)+\boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K})\left(\mathbf{t}^{\prime}\right) \boldsymbol{\Gamma}_{x}^{\phi, \psi}(\mathbf{t})+\boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K}) \boldsymbol{\Gamma}_{x}^{\chi, \gamma}\left(\mathbf{t}, \mathbf{t}^{\prime}\right) \tag{34.28}\\
&\left.\left.-\boldsymbol{\Gamma}_{x}^{\phi, \psi}\left(\mathbf{t}^{\prime}\right) \boldsymbol{\Gamma}_{x}^{\phi, \psi}(\mathbf{t})+(\psi\rfloor_{x}\right)^{-1}\left(\nabla_{\gamma}^{(2)}(\psi \diamond \phi)\right)(x)\left(\nabla_{x} \gamma \mathbf{t}, \nabla_{x} \gamma \mathbf{t}^{\prime}\right) \phi\right\rfloor_{x}
\end{align*}
$$

for all $\mathbf{t}, \mathbf{t}^{\prime} \in \mathrm{T}_{x} \mathcal{M}$. If one of those two bundle charts, say ϕ, satisfies $\mathbf{A}_{x}^{\phi}=\mathbf{K}$, then it follows from (34.28), $\boldsymbol{\Gamma}_{x}^{\phi}(\mathbf{K})=\mathbf{0}$ and $-\boldsymbol{\Gamma}_{x}^{\phi, \psi}=\boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{K})$ that

$$
\begin{align*}
& \boldsymbol{\Gamma}_{\mathbf{K}}^{(\chi, \phi),(\gamma, \psi)}\left(\mathbf{t}, \mathbf{t}^{\prime}\right) \tag{34.29}\\
& \left.\left.\quad=-\boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{K}) \mathbf{t}^{\prime} \boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{K}) \mathbf{t}+(\psi\rfloor_{x}\right)^{-1}\left(\nabla_{\gamma}^{(2)}(\psi \diamond \phi)\right)(x)\left(\nabla_{x} \gamma \mathbf{t}, \nabla_{x} \gamma \mathbf{t}^{\prime}\right) \phi\right\rfloor_{x}
\end{align*}
$$

for all $\mathbf{t}, \mathbf{t}^{\prime} \in \mathrm{T}_{x} \mathcal{M}$.

Proposition 5: Let $\mathbf{A}: \mathcal{M} \rightarrow$ Con \mathcal{B} be a connection that is differentiable at $x \in \mathcal{M}$. The curvature of \mathbf{A} at x is given by

$$
\begin{align*}
\left(\mathbf{R}_{x}(\mathbf{A})\right)(\mathbf{s}, \mathbf{t})= & \left(\nabla_{x}^{\gamma, \psi} \boldsymbol{\Gamma}^{\psi}(\mathbf{A})\right)(\mathbf{s}, \mathbf{t})-\left(\nabla_{x}^{\gamma, \psi} \boldsymbol{\Gamma}^{\psi}(\mathbf{A})\right)(\mathbf{t}, \mathbf{s}) \\
& +\left(\boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{s} \boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{t}-\boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{t} \boldsymbol{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{s}\right) \tag{34.30}
\end{align*}
$$

for all $(\gamma, \psi) \in \mathrm{Ch}_{x} \mathcal{M} \times \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ and all $\mathbf{s}, \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$.
Proof: Let a bundle chart $(\gamma, \psi) \in \mathrm{Ch}_{x} \mathcal{M} \times \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ be given. It follows from (42.6) and $\boldsymbol{\Lambda}\left(\mathbf{A}_{z}^{\psi}\right)(\mathbf{A}(z))=-\boldsymbol{\Gamma}_{z}^{\psi}(\mathbf{A}(z))$ that

$$
\begin{equation*}
\left.\left.\operatorname{con}^{(\gamma, \psi)} \circ \mathbf{A}(z)=(z,-\psi\rfloor_{z} \boldsymbol{\Gamma}_{z}^{\psi}(\mathbf{A}(z))\left(\nabla_{z} \gamma^{-1} \times \psi\right\rfloor_{z}^{-1}\right)\right) \tag{34.31}
\end{equation*}
$$

In view of (32.29), we have

$$
\begin{align*}
\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{A}(x)}^{(\gamma, \psi)}\right)\left(\nabla_{x} \mathbf{A}\right) & \left.=\operatorname{con}^{(\gamma, \psi)}\right\rfloor_{x}^{-1}\left(\mathrm{ev}_{2} \circ \nabla_{\mathbf{A}(x)}\left(\operatorname{con}^{(\gamma, \psi)}\right)\right)\left(\nabla_{x} \mathbf{A}\right) \\
& \left.=\operatorname{con}^{(\gamma, \psi)}\right\rfloor_{x}^{-1} \operatorname{ev}_{2} \circ\left(\nabla_{x}\left(\operatorname{con}^{(\gamma, \psi)} \circ \mathbf{A}\right)\right) \\
& \left.\left.\left.\left.=\nabla_{x}(z \mapsto-\psi\rfloor_{x}^{-1} \psi\right\rfloor_{z} \boldsymbol{\Gamma}_{z}^{\psi}(\mathbf{A}(z))\left(\nabla_{z} \gamma^{-1} \nabla_{x} \gamma \times \psi\right\rfloor_{z}^{-1} \psi\right\rfloor_{x}\right)\right) \tag{34.32}
\end{align*}
$$

By using

$$
\left.\left.\mathbf{A}_{x}^{\gamma}=\nabla_{x}\left(z \mapsto \nabla_{z} \gamma^{-1} \nabla_{x} \gamma\right) \quad, \quad \mathbf{A}_{x}^{\psi}=\nabla_{x}(z \rightarrow \psi\rfloor_{z}^{-1} \psi\right\rfloor_{x}\right)
$$

and (42.38), we observe that

$$
\begin{aligned}
\boldsymbol{\Lambda}\left(\mathbf{A}_{\mathbf{A}(x)}^{(\gamma, \psi)}\right)\left(\nabla_{x} \mathbf{A}\right) & \left.\left.\left.\left.=\nabla_{x}(z \mapsto-\psi\rfloor_{x}^{-1} \psi\right\rfloor_{z} \boldsymbol{\Gamma}_{z}^{\psi}(\mathbf{A}(z))\left(\nabla_{z} \gamma^{-1} \nabla_{x} \gamma \times \psi\right\rfloor_{z}^{-1} \psi\right\rfloor_{x}\right)\right) \\
& =-\left(\square_{x} \boldsymbol{\Gamma}^{\psi}(\mathbf{A})\right)\left(\mathbf{A}_{x}^{\gamma}, \mathbf{A}_{x}^{\psi}\right) \\
& =-\nabla_{x}^{\gamma, \psi} \boldsymbol{\Gamma}^{\psi}(\mathbf{A})
\end{aligned}
$$

Together with (42.27) and (42.29), we prove (34.12).
Remark : When the linear-space bundle \mathcal{B} is the tangent bundle $\mathrm{T} \mathcal{M}$, we have

$$
\begin{align*}
\left(\mathbf{R}_{x}(\mathbf{A})\right)(\mathbf{s}, \mathbf{t})= & \left(\nabla_{x}^{\chi} \boldsymbol{\Gamma}^{\chi}(\mathbf{A})\right)(\mathbf{s}, \mathbf{t})-\left(\nabla_{x}^{\chi} \boldsymbol{\Gamma}^{\chi}(\mathbf{A})\right)(\mathbf{t}, \mathbf{s}) \\
& +\left(\boldsymbol{\Gamma}_{x}^{\chi}(\mathbf{A}(x)) \mathbf{s} \boldsymbol{\Gamma}_{x}^{\chi}(\mathbf{A}(x)) \mathbf{t}-\boldsymbol{\Gamma}_{x}^{\chi}(\mathbf{A}(x)) \mathbf{t} \boldsymbol{\Gamma}_{x}^{\chi}(\mathbf{A}(x)) \mathbf{s}\right) \tag{34.33}
\end{align*}
$$

for all manifold chart $\chi \in \mathrm{Ch}_{x} \mathcal{M}$ and all $\mathbf{s}, \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}$.
If a transport $\mathbf{T}: \mathcal{M} \rightarrow \operatorname{Tlis}_{x} \mathcal{M}$ from x is differentiable at y, we define the connector-gradient, $\mathbb{\nabla}_{y} \mathbf{T} \in \operatorname{Lin}\left(\mathcal{I}_{y}, \mathcal{S}_{y}\right)$, of \mathbf{T} at y by

$$
\begin{equation*}
\nabla_{y} \mathbf{T}:=\nabla_{y}\left(z \mapsto \mathbf{T}(z) \mathbf{T}(y)^{-1}\right) \tag{34.34}
\end{equation*}
$$

Theorem : A connection $\mathbf{A}: \mathcal{M} \rightarrow \operatorname{Con} \mathcal{B}$ is curvature-free if and only if, locally \mathbf{A} agrees with \mathbf{A}^{ϕ} for some bundle chart $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$. In other word, for every $x \in \mathcal{M}$, there is an open neighbourhood \mathcal{N}_{x} of x and a transport $\mathbf{T}: \mathcal{N}_{x} \rightarrow \operatorname{Tlis}_{x} \mathcal{M}$ from x such that $\odot \mathbf{T}=\left.\mathbf{A}\right|_{\mathcal{N}_{x}}$

Proof: Ask Prof. Noll!!!!!!!!!!!!!!!!!

35. Parallelisms, Geodesics

Let a connector $\mathbf{K} \in \operatorname{Con} \mathcal{B}$ be given and put $x:=\rho(\mathbf{K})$.
We now apply the results of Sect. 32 by replacing the ISO-bundle there by the flat-space bundle $\operatorname{Con} \mathcal{B}$ and $\mathbf{b} \in \mathcal{B}$ there by \mathbf{K}.

Definition: The shift bundle SB of $(\mathcal{B}, \tau, \mathcal{M})$ is defined to be the union of all the shift spaces of \mathcal{B} :

$$
\begin{equation*}
\mathrm{SB}:=\bigcup_{y \in \mathcal{M}} \mathrm{~S}_{y} \mathcal{B} \tag{35.1}
\end{equation*}
$$

It is endowed with the structure of a C^{r-2}-manifold.
We defined the mapping $\sigma: \mathrm{SB} \rightarrow \mathcal{M}$ by

$$
\begin{equation*}
\sigma(\mathbf{s}): \in\left\{y \in \mathcal{M} \mid \mathbf{s} \in \mathrm{S}_{y} \mathcal{B}\right\} \tag{35.2}
\end{equation*}
$$

and every $y \in \mathcal{M}$ the mapping $\operatorname{in}_{y}: \mathrm{S}_{y} \mathcal{B} \rightarrow \mathrm{SB}$ by

$$
\begin{equation*}
\mathrm{in}_{y}:=\mathbf{1}_{\mathrm{S}_{y} \mathcal{B} \subset \mathrm{SB}} \tag{35.3}
\end{equation*}
$$

We define the projection $\mathbf{P}: \mathrm{SB} \rightarrow \mathrm{T} \mathcal{M}$ by

$$
\begin{equation*}
\mathbf{P}(\mathbf{s}):=\mathbf{P}_{\sigma(\mathbf{s})} \mathbf{s} \quad \text { for all } \quad \mathbf{s} \in \mathrm{SB} \tag{35.4}
\end{equation*}
$$

and the injection $\mathrm{I}: \operatorname{Lin} \mathcal{B} \rightarrow \mathrm{SB}$ by

$$
\begin{equation*}
\mathbf{I}(\mathbf{L}):=\mathbf{I}_{\tau^{\operatorname{Ln}}(\mathbf{L})} \mathbf{L} \quad \text { for all } \quad \mathbf{L} \in \operatorname{Lin} \mathcal{B} \tag{35.5}
\end{equation*}
$$

where Ln is the lineon functor (see Sect.13) and

$$
\begin{equation*}
\operatorname{Lin} \mathcal{B}:=\operatorname{Ln}(\mathcal{B})=\bigcup_{y \in \mathcal{M}} \operatorname{Lin} \mathcal{B}_{y} \tag{35.6}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{pt}(\mathbf{P}(\mathbf{s}))=\sigma(\mathbf{s}) \quad \text { for all } \quad \mathbf{s} \in \mathrm{SB} \tag{35.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(\mathbf{I} \mathbf{L})=\tau^{\mathrm{Ln}}(\mathbf{L}) \quad \text { for all } \quad \mathbf{L} \in \operatorname{Lin} \mathcal{B} \tag{35.8}
\end{equation*}
$$

It is easily seen that \mathbf{P} and \mathbf{I} are of class C^{r-2}.

We now fix $x \in \mathcal{M}$ and consider the bundle $\operatorname{Tlis}_{x} \mathcal{B}$ of transfer-isomorphism from x as defined by (32.2). A mapping of the type

$$
\begin{equation*}
\mathbf{T}:[0, d] \rightarrow \operatorname{Tlis}_{x} \mathcal{B} \quad \text { with } \quad \mathbf{T}(0)=\mathbf{1}_{\mathcal{B}_{x}} \tag{35.9}
\end{equation*}
$$

where $d \in^{\times}$, will be called a transfer-process of \mathcal{B} from x. If \mathbf{T} is differentiable at a given $t \in[0, d]$, we defined the shift-derivative $\operatorname{sd}_{t} \mathbf{T} \in \mathrm{~S}_{\pi_{x}(\mathbf{T}(t))} \mathcal{B}$ at t of \mathbf{T} by

$$
\begin{equation*}
\operatorname{sd}_{t} \mathbf{T}:=\partial_{t}\left(s \mapsto \mathbf{T}(s) \mathbf{T}(t)^{-1}\right) \tag{35.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sigma\left(\operatorname{sd}_{t} \mathbf{T}\right)=\pi_{x}(\mathbf{T}(t)) \tag{35.11}
\end{equation*}
$$

when π_{x} is defined by (32.3). If \mathbf{T} is differentiable, we define the shiftderivative (-process) sd $\mathbf{T}:[0, d] \rightarrow \mathrm{SB}$ by

$$
\begin{equation*}
(\operatorname{sd} \mathbf{T})(t):=\operatorname{sd}_{t} \mathbf{T} \quad \text { for all } \quad t \in[0, d] \tag{35.12}
\end{equation*}
$$

If \mathbf{T} is of class $\mathrm{C}^{s}, s \in 1 . .(r-2)$, then $\operatorname{sd} \mathbf{T}$ is of class C^{s-1}.

Proposition 1: Let $\mathbf{T}:[0, d] \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ be a transfer-process of \mathcal{B} from x and put

$$
\begin{equation*}
p:=\pi_{x} \circ \mathbf{T}=\sigma \circ(\operatorname{sd} \mathbf{T}):[0, d] \rightarrow \mathcal{M} \tag{35.13}
\end{equation*}
$$

Then p is differentiable and

$$
\begin{equation*}
\mathbf{P} \circ(\operatorname{sd} \mathbf{T})=p^{\cdot} \tag{35.14}
\end{equation*}
$$

Proof: Let $t \in[0, d]$ be given and put $y:=p(t)$. Then $\mathbf{T}(s) \mathbf{T}(t)^{-1} \in \operatorname{Tlis}_{y} \mathcal{B}$ and

$$
\pi_{y}\left(\mathbf{T}(s) \mathbf{T}(t)^{-1}\right)=\pi_{x}(\mathbf{T}(s))=p(s)
$$

for all $s \in[0, d]$. Differentiation with respect to s at t, using (35.10), (32.10), and the chain rule, gives $\mathbf{P}_{y}\left(\operatorname{sd}_{t} \mathbf{T}\right)=p \cdot(t)$. Since $t \in[0, d]$ was arbitrary, (35.14) follows.

Proposition 2: Let \mathbf{T} be a differentiable transfer-process from x and let p be defined as in Prop. 1. Assume, moreover, that $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$ is a chart such that $\operatorname{Rng} p \subset \mathcal{O}_{\phi}$. If we define $\mathbf{H}:[0, d] \rightarrow \operatorname{Lis}^{\prime} \mathcal{B}_{x}$ and $\mathbf{V}:[0, d] \rightarrow \operatorname{Lin} \mathcal{B}_{x}$ by

$$
\begin{equation*}
\left.\mathbf{H}(t):=(\phi\rfloor_{y}\right) \mathbf{T}(t) \tag{35.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\mathbf{V}(t):=\phi\rfloor_{y}\left(\boldsymbol{\Lambda}\left(\mathbf{A}_{y}^{\phi}\right)\left(\operatorname{sd}_{t} \mathbf{T}\right)\right)(\phi\rfloor_{y}\right)^{-1} \tag{35.16}
\end{equation*}
$$

when $y:=p(t)$ and $t \in[0, d]$, then

$$
\begin{equation*}
\mathbf{H}^{\cdot}=\mathbf{V} \mathbf{H} \quad, \quad \mathbf{H}(0)=\mathbf{1}_{\mathcal{B}_{x}} . \tag{35.17}
\end{equation*}
$$

Proof: Let $t \in[0, d]$ be given and put $y:=p(t)$. Using (32.6) with x replaced by y and \mathbf{T} by $\mathbf{T}(s) \mathbf{T}(t)^{-1}$, we obtain from (35.15) that

$$
\left.\left.\operatorname{tlis}_{y}^{\phi}\left(\mathbf{T}(s) \mathbf{T}(t)^{-1}\right)=(p(s), \phi\rfloor_{y} \mathbf{H}(s) \mathbf{H}(t)^{-1}(\phi\rfloor_{y}\right)^{-1}\right) \quad \text { for all } \quad s \in[0, d]
$$

In view of (31.30) with ϕ replaced by $\operatorname{tlis}_{y}^{\phi}$ and (35.10) we conclude that

$$
\left.\left.\left(\nabla_{\mathbf{1}_{y}} \operatorname{tlis}{ }_{y}^{\phi}\right)\left(\operatorname{sd}_{t} \mathbf{T}\right)=\left(p^{\cdot}(t), \phi\right\rfloor_{y}\left(\mathbf{H}^{\cdot} \mathbf{H}^{-1}\right)(t)(\phi\rfloor_{y}\right)^{-1}\right) .
$$

Comparing this result with (31.29) and (35.16), and using the injectivity of $\nabla_{\mathbf{1}_{\mathrm{T}_{x}}}$ tlis ${ }_{y}^{\phi}$, we obtain $\left(\mathbf{H}^{\cdot} \mathbf{H}^{-1}\right)(t)=\mathbf{V}(t)$. Since $t \in[0, d]$ was arbitrtary, $(35.17)_{1}$ follows. Since both $\phi]_{x}=\mathbf{1}_{\mathcal{B}_{x}}$ and $\mathbf{T}(0)=\mathbf{1}_{\mathcal{B}_{x}},(35.17)_{2}$ is a direct consequence of (35.15).

Theorem on Shift-Processes: Let $\mathbf{U}:[0, d] \rightarrow \mathrm{SB}$, with $d \in^{\times}$, be a continuous shift-process of \mathcal{B} such that $p:=\sigma \circ \mathbf{U}$ is differentiable and

$$
\begin{equation*}
\mathbf{P} \circ \mathbf{U}=p^{\cdot}:[0, d] \rightarrow \operatorname{Tan} \mathcal{M} \tag{35.18}
\end{equation*}
$$

Then there exists exactly one transfer-process $\mathbf{T}:[0, d] \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ of \mathcal{B} from $x:=p(0)$, of class C^{1}, such that $\mathrm{sd} \mathbf{T}=\mathbf{U}$.

Proof: Assume first that $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$ can be chosen such that $\operatorname{Rng} p \subset$ $\operatorname{Dom} \chi$. Define $\overline{\mathbf{V}}:[0, d] \rightarrow \operatorname{Lin} \mathcal{V}_{\phi}$ by

$$
\begin{equation*}
\left.\left.\overline{\mathbf{V}}(t):=(\phi\rfloor_{y}\right)\left(\boldsymbol{\Lambda}\left(\mathbf{A}_{y}^{\phi}\right) \mathbf{U}(t)\right)(\phi\rfloor_{y}\right)^{-1} \quad \text { when } \quad y:=p(t) \tag{35.19}
\end{equation*}
$$

Since \mathbf{U} is continuous, so is $\overline{\mathbf{V}}$. Let $\overline{\mathbf{H}}:[0, d] \rightarrow \operatorname{Lin} \mathcal{V}_{\phi}$ be the unique solution of the initial value problem

$$
\begin{equation*}
? \overline{\mathbf{H}} \quad, \quad \overline{\mathbf{H}}=\overline{\mathbf{V}} \overline{\mathbf{H}} \quad, \quad \overline{\mathbf{H}}(0)=\mathbf{1}_{\mathcal{V}_{\phi}} \tag{35.20}
\end{equation*}
$$

This solution is of class C^{1}.
Now, if \mathbf{T} is a process that satisfies the conditions, then $\overline{\mathbf{V}}$, as defined by (35.19), coincides with \mathbf{V}, as defined by (35.16). Therefore, by Prop. 2, we have $\mathbf{H}=\overline{\mathbf{H}}$ and hence \mathbf{T} must be given by

$$
\begin{equation*}
\left.\left.\mathbf{T}(t)=(\phi\rfloor_{p(t)}\right)^{-1} \overline{\mathbf{H}}(t) \phi\right\rfloor_{x} \quad \text { for all } \quad t \in[0, d] . \tag{35.21}
\end{equation*}
$$

On the other hand, if we define \mathbf{T} by (35.21) and then \mathbf{H} and \mathbf{V} by (35.15) and (35.16), we have $\pi_{x} \circ \mathbf{T}=p, \overline{\mathbf{H}}=\mathbf{H}$, and $\overline{\mathbf{V}}=\mathbf{V}$. Thus, using (31.30) with ϕ replaced by tlis ${ }_{y}^{\phi}$ and (35.19), we conclude that

$$
\left(\nabla_{\mathcal{B}_{y}} \operatorname{tisi}_{y}^{\phi}\right)\left(\operatorname{sd}_{t} \mathbf{T}\right)=\left(\nabla_{\mathbf{1}_{y}} t \operatorname{lis}_{y}^{\phi}\right)(\mathbf{U}(t)) \quad \text { when } \quad y:=p(t)
$$

for all $t \in[0, d]$. Since $\nabla_{\mathcal{B}_{y}}$ tlis ${ }_{y}^{\phi}$ is injective for all $y \in \mathcal{M}$, we conclude that $\mathbf{U}=\operatorname{sd} \mathbf{T}$.

There need not be a single bundle chart $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$ such that $\operatorname{Rng} p \subset$ $\operatorname{Dom} \chi$. However, since $\operatorname{Rng} p$ is a compact subset of \mathcal{M}, we can find a finite set $\mathfrak{F} \subset \operatorname{Ch} \mathcal{M}$ such that

$$
\operatorname{Rng} p \subset \bigcup_{\chi \in \tilde{F}} \operatorname{Dom} \chi .
$$

We can then determine a strictly isotone list $\left(a_{i} \mid i \in(m+1)^{l}\right)$ in such that $a_{0}=0, a_{m}=d$ and such that, for each $i \in m^{l}, p_{>}\left(\left[a_{i}, a_{i+1}\right]\right)$ is included in a single chart belonging to \mathfrak{F}. By applying the result already proved, for each $i \in m^{l}$, to the case when \mathbf{U} is replaced by

$$
\left(t \mapsto \mathbf{U}\left(a_{i}+t\right)\right):\left[0, a_{i+1}-a_{i}\right] \rightarrow \mathrm{SB},
$$

one easily sees that the assertion of the theorem is valid in general.
We assume now that a continuous connection \mathbf{C} is prescribed.
Let $d \in{ }^{\times}$and a process $p:[0, d] \rightarrow \mathcal{M}$ of class C^{1} be given and put $x:=p(0)$. We define the shift process $\mathbf{U}:[0, d] \rightarrow \mathrm{SB}$ by

$$
\begin{equation*}
\mathbf{U}(t):=\mathbf{C}(p(t)) p^{*}(t) \quad \text { for all } \quad t \in[0, d] . \tag{35.22}
\end{equation*}
$$

Clearly, \mathbf{U} is continuous and, since $\mathbf{P}_{y} \mathbf{C}(y)=\mathbf{1}_{\mathrm{T}_{y}}$ for all $y \in \mathcal{M}$, (35.18) is valid. Hence, by the Theorem on Shift Processes there is a unique transfer process $\mathbf{T}:[0, d] \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ of class C^{1} such that

$$
\begin{equation*}
\mathrm{sd} \mathbf{T}=(\mathbf{C} \circ p) p^{\prime} . \tag{35.23}
\end{equation*}
$$

This process is called the parallelism along p for the connection \mathbf{C}.
Let $\mathbf{H}:[0, d] \rightarrow \boldsymbol{\Phi}(\mathcal{B})$ be a process on $\boldsymbol{\Phi}(\mathcal{B})$ and put $p:=\tau \circ \mathbf{H}$. We say that \mathbf{H} is a parallel process for \mathbf{C} if $\mathbf{H}(0) \neq \mathbf{0}$ and if

$$
\begin{equation*}
\mathbf{H}(t)=\boldsymbol{\Phi}(\mathbf{T}(t)) \mathbf{H}(0) \quad \text { for all } \quad t \in[0, d] \tag{35.24}
\end{equation*}
$$

where \mathbf{T} is the parallelism along p for \mathbf{C}.
Let $\mathbf{H}:[0, d] \rightarrow \boldsymbol{\Phi}(\mathcal{B})$ be a process on $\boldsymbol{\Phi}(\mathcal{B})$ and let \mathbf{T} be the parallelism along $p:=\tau^{\boldsymbol{\Phi}} \circ \mathbf{H}$ for the connection \mathbf{C}. Given $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ that satisfies $\operatorname{Rng} p \subset \mathcal{O}_{\phi}$. Define $\left(\mathbf{H}^{\phi\rfloor}\right)^{\bullet}:[0, d] \rightarrow \tau^{<}(\operatorname{Rng} p)$ and $\left(\mathbf{H}^{T}\right)^{\bullet}:[0, d] \rightarrow \tau^{<}(\operatorname{Rng} p)$ by

$$
\begin{align*}
\left(\mathbf{H}^{\phi\rfloor}\right)^{\bullet}(t) & \left.\left.:=\partial_{t}\left(s \mapsto \boldsymbol{\Phi}(\phi\rfloor_{p(t)}^{-1} \phi\right\rfloor_{p(s)}\right) \mathbf{H}(s)\right) \tag{35.25}\\
\left(\mathbf{H}^{T}\right)^{\bullet}(t) & :=\partial_{t}\left(s \mapsto \mathbf{\Phi}\left(\mathbf{T}(t) \mathbf{T}^{-1}(s)\right) \mathbf{H}(s)\right)
\end{align*}
$$

for all $t \in[0, d]$.
Proposition 3: A process $\mathbf{H}:[0, d] \rightarrow \mathbf{\Phi}(\mathcal{B})$ is parallel with respect to \mathbf{C} if and only if \mathbf{H} is of class C^{1} and satisfies the differential equation

$$
\begin{equation*}
\mathbf{0}=\left(\mathbf{H}^{T}\right)^{\bullet}=\left(\mathbf{H}^{\phi\rfloor}\right)^{\bullet}+\boldsymbol{\Phi}^{\bullet}\left(\left(\boldsymbol{\Gamma}^{\phi}(\mathbf{C}) \circ p\right) p^{\bullet}\right) \mathbf{H} \tag{35.26}
\end{equation*}
$$

We assume now that the linear space bundle \mathcal{B} is the tangent bundle $\mathrm{T} \mathcal{M}$ and that a continuous connection $\mathbf{C}: \mathcal{M} \rightarrow \operatorname{ConT} \mathcal{M}$ for $\mathrm{T} \mathcal{M}$ is prescribed.

We say that $p:[0, d] \rightarrow \mathcal{M}$ is a geodesic process for \mathbf{C} if $p^{\bullet}(0) \neq \mathbf{0}$ and if

$$
\begin{equation*}
\mathbf{T}(t) p^{\bullet}(0)=p^{\bullet}(t) \quad \text { for all } \quad t \in[0, d] \tag{35.28}
\end{equation*}
$$

where \mathbf{T} is the parallelism along p for \mathbf{C}, i.e. p^{\bullet} is parallel with respect to the parallelism \mathbf{T}.

Let $p:[0, d] \rightarrow \mathcal{M}$ be a process of class C^{1} such that $p^{\bullet}(0) \neq \mathbf{0}$ and given $\chi \in \operatorname{Ch} \mathcal{M}$ that satisfies $\operatorname{Rng} p \subset \operatorname{Dom} \chi$. Define $\bar{p}:[0, d] \rightarrow \operatorname{Cod} \chi$ by $\bar{p}:=\chi \circ p$ and $\overline{\boldsymbol{\Gamma}}: \operatorname{Cod} \chi \rightarrow \operatorname{Lin}_{2}\left(\mathcal{V}_{\chi}^{2}, \mathcal{V}_{\chi}\right)$ by

$$
\begin{equation*}
\overline{\boldsymbol{\Gamma}}(z):=\nabla_{y} \chi \boldsymbol{\Gamma}_{y}^{\chi}(\mathbf{C}(y)) \circ\left(\nabla_{y} \chi^{-1} \times \nabla_{y} \chi^{-1}\right) \quad \text { when } \quad y:=\chi^{\leftarrow}(z) \tag{35.29}
\end{equation*}
$$

where $\boldsymbol{\Gamma}_{y}^{\chi}$ is defined by (33.3).

Proposition 4: The process p is a geodedic process if and only if \bar{p} is of class C^{2} and satisfies the differential equation

$$
\begin{equation*}
\bar{p}^{\bullet \bullet}+(\overline{\boldsymbol{\Gamma}} \circ \bar{p})\left(\bar{p}^{\bullet}, \bar{p}^{\bullet}\right)=\mathbf{0} \tag{35.30}
\end{equation*}
$$

Geodesic Deviations: Study the derivative of (35.26)???

36. Holonomy

Let a continuous connection $\mathbf{C}: \mathcal{M} \rightarrow$ Con \mathcal{B} be given. For every C^{1} process $p:\left[0, d_{p}\right] \rightarrow \mathcal{M}$ there is exactly one parallelism $\mathbf{T}_{p}:\left[0, d_{p}\right] \rightarrow \operatorname{Tlis}_{x} \mathcal{B}$ from $x:=p(0)$ along p for the connection \mathbf{C}. The reverse process $p^{-}:\left[0, d_{p}\right] \rightarrow \mathcal{M}$ of $p:\left[0, d_{p}\right] \rightarrow \mathcal{M}$ is given by

$$
p^{-}(t):=p\left(d_{p}-t\right) \quad \text { for all } \quad t \in\left[0, d_{p}\right] .
$$

Proposition 1: Let $p^{-}:\left[0, d_{p}\right] \rightarrow \mathcal{M}$ be the reverse process of a C^{1} process $p:\left[0, d_{p}\right] \rightarrow \mathcal{M}$. We have

$$
\begin{equation*}
\mathbf{T}_{p^{-}}(t)=\mathbf{T}_{p}\left(d_{p}-t\right) \mathbf{T}_{p}^{-1}\left(d_{p}\right) \quad \text { for all } \quad t \in\left[0, d_{p}\right] \tag{36.1}
\end{equation*}
$$

Let C^{1} processes $p:\left[0, d_{p}\right] \rightarrow \mathcal{M}$ and $, q:\left[0, d_{q}\right] \rightarrow \mathcal{M}$ with $q(0)=p\left(d_{p}\right)$ be given. We define the continuation process $q * p:\left[0, d_{p}+d_{q}\right] \rightarrow \mathcal{M}$ of p with q by

$$
(q * p)(t):= \begin{cases}p(t) & t \in\left[0, d_{p}\right] \tag{36.2}\\ q\left(t-d_{p}\right) & t \in\left[d_{p}, d_{p}+d_{q}\right]\end{cases}
$$

If in addition that $q^{\bullet}(0)=p^{\bullet}\left(d_{p}\right)$, then the continuation process $q * p$ is of class C^{1} and

$$
\mathbf{T}_{q * p}(t)= \begin{cases}\mathbf{T}_{p}(t) & t \in\left[0, d_{p}\right] \tag{36.3}\\ \mathbf{T}_{q}\left(t-d_{p}\right) \mathbf{T}_{p}\left(d_{p}\right) & t \in\left[d_{p}, d_{p}+d_{q}\right]\end{cases}
$$

Definition: For every pair of C^{1} processes $p:\left[0, d_{p}\right] \rightarrow \mathcal{M}$ and , $q:\left[0, d_{q}\right] \rightarrow \mathcal{M}$ with $q(0)=p\left(d_{p}\right)$ be given. We define the piecewise parallelism (along $q * p$)

$$
\mathbf{T}_{q * p}:\left[0, d_{p}+d_{q}\right] \rightarrow \operatorname{Tlis}_{x} \mathcal{B} \quad \text { where } \quad x:=p(0)
$$

by

$$
\mathbf{T}_{q * p}(t):= \begin{cases}\mathbf{T}_{p}(t) & t \in\left[0, d_{p}\right] \tag{36.4}\\ \mathbf{T}_{q}\left(t-d_{p}\right) \mathbf{T}_{p}\left(d_{p}\right) & t \in\left[d_{p}, d_{p}+d_{q}\right]\end{cases}
$$

In view of (36.1), if $q:=p^{-}$we have $\mathbf{T}_{p^{-}}\left(t-d_{p}\right) \mathbf{T}_{p}\left(d_{p}\right)=\mathbf{T}_{p}\left(2 d_{p}-t\right)$ and hence

$$
\mathbf{T}_{-p * p}(t):= \begin{cases}\mathbf{T}_{p}(t) & t \in\left[0, d_{p}\right] \tag{36.5}\\ \mathbf{T}_{p}\left(2 d_{p}-t\right) & t \in\left[d_{p}, 2 d_{p}\right]\end{cases}
$$

In particular, $\mathbf{T}_{p^{-* p}}\left(2 d_{p}\right)=\mathbf{T}_{-p * p}(0)=\mathbf{1}_{\mathcal{B}_{x}}$.
Let \mathcal{O} be an open neighboorhood of $x \in \mathcal{M}$ and let $\mathcal{L}(\mathcal{O}, x)$ be the set of all piecewise C^{1} loops $p:\left[0, d_{p}\right] \rightarrow \mathcal{M}$ at x with $\operatorname{Rng} p \subset \mathcal{O}$. It is easily seen that $(\mathcal{L}(\mathcal{O}, x), *)$ is a group. We also use the following notation

$$
\begin{equation*}
\mathcal{H}(\mathcal{O}, x):=\left\{\mathbf{T}_{p}\left(d_{p}\right) \mid p \in \mathcal{L}(\mathcal{O}, x)\right\} \tag{36.6}
\end{equation*}
$$

Proposition 3: For every $q, p \in \mathcal{L}(\mathcal{O}, x)$, we have

$$
\begin{equation*}
\mathbf{T}_{q * p}\left(d_{p}+d_{q}\right)=\mathbf{T}_{q}\left(d_{q}\right) \mathbf{T}_{p}\left(d_{p}\right) \tag{36.7}
\end{equation*}
$$

Hence $\mathcal{H}(\mathcal{O}, x)$ is a subgroup of $\operatorname{Lis} \mathcal{B}_{x}$, which is called the holonomy group on \mathcal{O} of the connection \mathbf{C} at x.

Let $\mathbf{T}: \mathcal{M} \rightarrow \operatorname{Tlis}_{x} \mathcal{M}$ be a transport from $x \in \mathcal{M}$ of class C^{1}. For every differentiable process $\lambda:[0,1] \rightarrow \mathcal{M}$, we see that $\mathbf{T} \circ \lambda:[0,1] \rightarrow \operatorname{Tlis}_{x} \mathcal{M}$ is a transfer process from x and

$$
\operatorname{sd} \mathbf{T}=((\mathbb{T}) \circ \lambda) \lambda^{\bullet}
$$

Hence $\mathbf{T} \circ \lambda$ is the parallelism along λ for the connection $\mathbb{\top}$. For every $t \in[0,1]$, $(\mathbf{T} \circ \lambda)(t)=\mathbf{T}(\lambda(t))$ depends on, of course, only on the point $y:=\lambda(t)$, not on the process λ. When λ is closed, beginning and ending at $\lambda(0)=x=\lambda(1)$, then

$$
(\mathbf{T} \circ \lambda)(1)=\mathbf{T}(x)=\mathbf{1}_{\mathcal{B}_{x}} .
$$

The following theorem is a immediated consequence of the above discussion and the Theorem of Sect. 34 .

Theorem : A continuous connection $\mathbf{C}: \mathcal{M} \rightarrow \operatorname{Con\mathcal {B}}$ is curvature-free; i.e. $\mathbf{R}(\mathbf{C})=\mathbf{0}$ if and only if locally the holonomy groups are $\mathcal{H}(\mathcal{O}, x)=\left\{\mathbf{1}_{\mathcal{B}_{x}}\right\}$ for some open subset set \mathcal{O} of \mathcal{M} and all $x \in \mathcal{M}$.

Question ?: Does there exist a connection \mathbf{C} such that $\mathcal{H}(\mathcal{O}, x)=\operatorname{Lis} \mathcal{B}_{x}$ for some x ?

