Chapter 3 Connections

31. Tangent Connectors

We assume that $r \in \tilde{}$ with $r \geq 2$ and a C^r-manifold \mathcal{M} are given. Let a number $s \in 1..r$ and a C^s bundle $(\mathcal{B}, \tau, \mathcal{M})$ be given. We assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and we put

$$n := \dim \mathcal{M} \quad \text{and} \quad m := \dim \mathcal{B} - \dim \mathcal{M}.$$
 (31.1)

Then $m = \dim \mathcal{B}_x$ for all $x \in \mathcal{M}$.

Recall that for every bundle chart $\phi \in Ch(\mathcal{B}, \mathcal{M})$, we have $ev_1 \circ \phi(\mathbf{v}) = \tau(\mathbf{v})$ and

$$\phi(\mathbf{v}) = (z, \operatorname{ev}_2(\phi(\mathbf{v}))) \quad \text{where} \quad z := \tau(\mathbf{v})$$
(31.2)

for all $\mathbf{v} \in \text{Dom } \phi$. Moreover, if $\phi, \psi \in \text{Ch}(\mathcal{B}, \mathcal{M})$, it follows easily from (31.2) with ϕ replaced by ψ that

$$(\psi \circ \phi^{\leftarrow})(z, \mathbf{u}) = \left(z, \operatorname{ev}_2((\psi \circ \phi^{\leftarrow})(z, \mathbf{u}))\right)$$
(31.3)

for all $z \in \mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}$ and all $\mathbf{u} \in \mathcal{V}_{\phi}$.

Now let $\mathbf{b} \in \mathcal{B}$ be fixed and put $x := \tau(\mathbf{b})$. Let $in_x : \mathcal{B}_x \to \mathcal{B}$ be the inclusion mapping

$$\operatorname{in}_x := \mathbf{1}_{\mathcal{B}_x \subset \mathcal{B}}.\tag{31.4}$$

Consider the following diagram

 $\mathcal{B}_x \xrightarrow{\operatorname{in}_x} \mathcal{B} \xrightarrow{\tau} \mathcal{M},$

the composite $\tau \circ in_x$ is the constant mapping with value x. Taking the gradient of $(\tau \circ in_x)$ at **b**, we get $(\nabla_{\mathbf{b}}\tau)(\nabla_{\mathbf{b}}in_x) = \mathbf{0}$ and hence $\operatorname{Rng} \nabla_{\mathbf{b}}in_x \subset \operatorname{Null} \nabla_{\mathbf{b}}\tau$. Indeed, we have $\operatorname{Rng} \nabla_{\mathbf{b}}in_x = \operatorname{Null} \nabla_{\mathbf{b}}\tau$ as to be shown in Prop.1.

<u>Notation</u>: We define the projection mapping P_b at b by

$$\mathbf{P}_{\mathbf{b}} := \nabla_{\mathbf{b}} \tau \in \operatorname{Lin}\left(\mathrm{T}_{\mathbf{b}}\mathcal{B}, \mathrm{T}_{x}\mathcal{M}\right)$$
(31.5)

and the injection mapping I_b at b by

$$\mathbf{I}_{\mathbf{b}} := \nabla_{\mathbf{b}} \mathrm{in}_x \in \mathrm{Lin}\left(\mathrm{T}_{\mathbf{b}}\mathcal{B}_x, \mathrm{T}_{\mathbf{b}}\mathcal{B}\right). \tag{31.6}$$

Proposition 1: The projection mapping $\mathbf{P}_{\mathbf{b}}$ is surjective, the injection mapping $\mathbf{I}_{\mathbf{b}}$ is injective, and we have

$$\operatorname{Null} \mathbf{P}_{\mathbf{b}} = \operatorname{Rng} \mathbf{I}_{\mathbf{b}}$$
(31.7)

i.e.

$$\Gamma_{\mathbf{b}}\mathcal{B}_x \xrightarrow{\mathbf{I}_{\mathbf{b}}} T_{\mathbf{b}}\mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{b}}} T_x\mathcal{M}$$
 (31.8)

is a short exact sequence.

Proof: Choose a bundle chart $\phi \in Ch_x(\mathcal{B}, \mathcal{M})$. It follows from (31.2) that

 $(\phi \circ \operatorname{in}_x)(\mathbf{d}) = (x, \phi \rfloor_x(\mathbf{d}))$ for all $\mathbf{d} \in \mathcal{B}_x$.

Using the chain rule and (31.6), we obtain

$$((\nabla_{\mathbf{b}}\phi)\mathbf{I}_{\mathbf{b}})\mathbf{m} = (\mathbf{0}, \nabla_{\mathbf{b}}\phi \rfloor_{x}\mathbf{m}) \quad \text{for all} \quad \mathbf{m} \in \mathbf{T}_{\mathbf{b}}\mathcal{B}_{x} .$$
(31.9)

Since both $\nabla_{\mathbf{b}} \phi$ and $\nabla_{\mathbf{b}} \phi \Big|_{x}$ are invertible, it follows that Null $\mathbf{I}_{\mathbf{b}} = \{\mathbf{0}\}$ and

Rng
$$\mathbf{I}_{\mathbf{b}} = (\nabla_{\mathbf{b}} \phi)^{<} (\{\mathbf{0}\} \times T_{\mathbf{v}} \mathcal{V}_{\phi}) \text{ where } \mathbf{v} := \mathrm{ev}_{2}(\phi(\mathbf{b})).$$
 (31.10)

On the other hand, it follows from (31.2) that

$$(\tau \circ \phi^{\leftarrow})(z, \mathbf{u}) = z$$
 for all $z \in \mathcal{O}_{\phi}$

and all $\mathbf{u} \in \mathcal{V}_{\phi}$. Using the chain rule and (31.5) we conclude that

$$\mathbf{P}_{\mathbf{b}}(\nabla_{\mathbf{b}}\phi)^{-1}(\mathbf{t},\mathbf{w}) = \mathbf{t} \quad \text{for all} \quad \mathbf{t} \in \mathbf{T}_{x}\mathcal{M}$$
(31.11)

and all $\mathbf{w} \in T_{\mathbf{v}} \mathcal{V}_{\phi}$. Since $\nabla_{\mathbf{b}} \phi$ is invertible, it follows that $\operatorname{Rng} \mathbf{P}_{\mathbf{b}} = T_x \mathcal{M}$ and

Null
$$\mathbf{P}_{\mathbf{b}} = ((\nabla_{\mathbf{b}}\phi)^{-1})_{>}(\{\mathbf{0}\} \times \mathrm{T}_{\mathbf{v}}\mathcal{V}_{\phi}) \text{ where } \mathbf{v} := \mathrm{ev}_{2}(\phi(\mathbf{b})).$$
 (31.12)

Since $((\nabla_{\mathbf{b}}\phi)^{-1})_{>} = (\nabla_{\mathbf{b}}\phi)^{<}$, comparison of (31.10) with (31.12) shows that (31.7) holds.

Definition: A linear right-inverse of the projection-mapping $\mathbf{P}_{\mathbf{b}}$ will be called a **right tangent-connector** at \mathbf{b} , a linear left-inverse of the injection-mapping $\mathbf{I}_{\mathbf{b}}$ will be called a **left tangent-connector** at \mathbf{b} . The sets

$$\operatorname{Rcon}_{\mathbf{b}} \mathcal{B} := \operatorname{Riv}(\mathbf{P}_{\mathbf{b}})$$

$$\operatorname{Lcon}_{\mathbf{b}} \mathcal{B} := \operatorname{Liv}(\mathbf{I}_{\mathbf{b}})$$
(31.13)

of all right tangent-connectors at **b** and all left tangent-connectors at **b** will be called the **right tangent-connector space** at **b** and the **left tangentconnector space** at **b**, respectively.

The right tangent connector space $\operatorname{Rcon}_{\mathbf{b}}\mathcal{B}$ is a flat in $\operatorname{Lin}(T_x\mathcal{M}, T_{\mathbf{b}}\mathcal{B})$ with direction space

$$\left\{ \mathbf{I_b L} \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_x \mathcal{M}, \mathrm{T_b} \mathcal{B}_x\right) \right\},$$
 (31.14)

and the left tangent connector space $Lcon_{\mathbf{b}}\mathcal{B}$ is a flat in $Lin(T_{\mathbf{b}}\mathcal{B}, T_{\mathbf{b}}\mathcal{B}_x)$ with direction space

$$\left\{ -\mathbf{L}\mathbf{P}_{\mathbf{b}} \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x}\mathcal{M}, \mathrm{T}_{\mathbf{b}}\mathcal{B}_{x}\right) \right\}.$$
 (31.15)

Using the identifications

$$\operatorname{Lin}\left(\operatorname{T}_{x}\mathcal{M},\operatorname{T}_{\mathbf{b}}\mathcal{B}_{x}\right)\left\{\mathbf{P}_{\mathbf{b}}\right\}\cong\operatorname{Lin}\left(\operatorname{T}_{x}\mathcal{M},\operatorname{T}_{\mathbf{b}}\mathcal{B}_{x}\right)\cong\left\{\mathbf{I}_{\mathbf{b}}\right\}\operatorname{Lin}\left(\operatorname{T}_{x}\mathcal{M},\operatorname{T}_{\mathbf{b}}\mathcal{B}\right),$$

we consider $\operatorname{Lin}(\operatorname{T}_{x}\mathcal{M}, \operatorname{T}_{\mathbf{b}}\mathcal{B}_{x})$ as the external translation space of both $\operatorname{Rcon}_{\mathbf{b}}\mathcal{B}$ and $\operatorname{Lcon}_{\mathbf{b}}\mathcal{B}$. Since dim $\operatorname{Lin}(\operatorname{T}_{x}\mathcal{M}, \operatorname{T}_{\mathbf{b}}\mathcal{B}_{x}) = n m$, we have

$$\dim \operatorname{Rcon}_{\mathbf{b}} \mathcal{B} = n \, m = \dim \operatorname{Lcon}_{\mathbf{b}} \mathcal{B}. \tag{31.16}$$

By Prop. 1 of Sect. 14, there is a flat isomorphism

$$\Lambda : \operatorname{Rcon}_{\mathbf{b}} \mathcal{B} \to \operatorname{Lcon}_{\mathbf{b}} \mathcal{B}$$

which assigns to every $\mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}}\mathcal{B}$ an element $\Lambda(\mathbf{K}) \in \operatorname{Lcon}_{\mathbf{b}}\mathcal{B}$ such that

$$\{\mathbf{0}\} \quad \longleftarrow \quad \mathrm{T}_{\mathbf{b}}\mathcal{B}_{x} \quad \xleftarrow{}_{\mathbf{\Lambda}(\mathbf{K})} \quad \mathrm{T}_{\mathbf{b}}\mathcal{B} \quad \xleftarrow{}_{\mathbf{K}} \quad \mathrm{T}_{x}\mathcal{M} \quad \longleftarrow \quad \{\mathbf{0}\} \tag{31.17}$$

is again a short exact sequence. We have

$$\mathbf{KP_b} + \mathbf{I_b} \mathbf{\Lambda}(\mathbf{K}) = \mathbf{1}_{\mathbf{T_b}\mathcal{B}}.$$
 (31.18)

Proposition 2: For each bundle chart $\phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$, let $\mathbf{A}_{\mathbf{b}}^{\phi}$ in $\operatorname{Lin}(\mathrm{T}_x\mathcal{M}, \mathrm{T}_{\mathbf{b}}\mathcal{B})$ be defined by

$$\mathbf{A}_{\mathbf{b}}^{\phi} \mathbf{t} := (\nabla_{\mathbf{b}} \phi)^{-1}(\mathbf{t}, \mathbf{0}) \qquad \text{for all} \quad \mathbf{t} \in \mathbf{T}_{x} \mathcal{M} \ . \tag{31.19}$$

Then $\mathbf{A}_{\mathbf{b}}^{\phi}$ is a linear right-inverse of $\mathbf{P}_{\mathbf{b}}$; i.e. $\mathbf{A}_{\mathbf{b}}^{\phi} \in \operatorname{Rcon}_{\mathbf{b}}\mathcal{B}$.

Proof: If we substitute $\mathbf{w} := \mathbf{0}$ in (31.11) and use (31.19), we obtain

$$\mathbf{P}_{\mathbf{b}}(\mathbf{A}_{\mathbf{b}}^{\phi}\mathbf{t}) = \mathbf{t}$$
 for all $\mathbf{t} \in T_x \mathcal{M}$

which shows that $\mathbf{A}^{\phi}_{\mathbf{b}}$ is a linear right-inverse of $\mathbf{P}_{\mathbf{b}}$.

\sim	
· .	
~	
_	
~	

Proposition 3: If $\phi, \psi \in Ch_x(\mathcal{B}, \mathcal{M})$, then $\mathbf{A}_{\mathbf{b}}^{\psi}$ and $\mathbf{A}_{\mathbf{b}}^{\phi}$ differ by

$$\mathbf{A}_{\mathbf{b}}^{\phi} - \mathbf{A}_{\mathbf{b}}^{\psi} = \mathbf{I}_{\mathbf{b}} \, \boldsymbol{\Gamma}_{\mathbf{b}}^{\phi,\psi}$$
$$\mathbf{\Lambda}(\mathbf{A}_{\mathbf{b}}^{\phi}) - \mathbf{\Lambda}(\mathbf{A}_{\mathbf{b}}^{\psi}) = -\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi,\psi} \mathbf{P}_{\mathbf{b}}$$
(31.20)

where

$$\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi,\psi} := (\nabla_{\mathbf{b}}\psi \rfloor_{x})^{-1} \Big(\operatorname{ev}_{2} \circ \nabla_{x} \big((\psi \circ \phi^{\leftarrow})(\cdot,\phi \rfloor_{x} \mathbf{b}) \big) \Big)$$
(31.21)

which belongs to $\operatorname{Lin}(\operatorname{T}_{x}\mathcal{M},\operatorname{T}_{\mathbf{b}}\mathcal{B}_{x}).$

Proof: It follows from (31.2) that

$$\phi(\mathbf{b}) = (x, \phi \rfloor_x \mathbf{b}). \tag{31.22}$$

Using (31.3) and (31.22), we obtain

$$\nabla_{\phi(\mathbf{b})}(\psi \circ \phi^{\leftarrow})(\mathbf{t}, \mathbf{0}) = \left(\mathbf{t} , \operatorname{ev}_{2}\left(\nabla_{x}\left((\psi \circ \phi^{\leftarrow})(\cdot, \phi \rfloor_{x} \mathbf{b})\right)\mathbf{t}\right)\right)$$
(31.23)

for all $\mathbf{t} \in T_x \mathcal{M}$.

In view of (23.16), with x replaced by **b**, γ by ψ , and χ by ϕ , we have

$$\nabla_{\phi(\mathbf{b})}(\psi \circ \phi^{\leftarrow}) = (\nabla_{\mathbf{b}}\psi)(\nabla_{\mathbf{b}}\phi)^{-1}.$$

If we substitute this formula into (31.23) and use (31.19) and (31.21), we obtain

$$(\nabla_{\!\mathbf{b}}\psi)(\mathbf{A}^{\phi}_{\mathbf{b}}\mathbf{t}) = \left(\mathbf{t} \ , \ \nabla_{\!\mathbf{b}}\psi \big\rfloor_x \Gamma^{\phi,\psi}_{\mathbf{b}}\mathbf{t} \right)$$

for all $\mathbf{t} \in T_x \mathcal{M}$. Using (31.19) with ψ replaced by ϕ , we conclude that

$$\mathbf{A}_{\mathbf{b}}^{\phi}\mathbf{t} = \mathbf{A}_{\mathbf{b}}^{\psi}\mathbf{t} + (
abla_{\mathbf{b}}\psi)^{-1}\Big(\mathbf{0}, \
abla_{\mathbf{b}}\psi\Big]_{x}\mathbf{\Gamma}_{\mathbf{b}}^{\phi,\psi}\mathbf{t}\Big)$$

for all $\mathbf{t} \in T_x \mathcal{M}$. The desired result $(31.20)_1$ now follows from (31.9), with ϕ replaced by ψ and $\mathbf{m} := \Gamma_{\mathbf{b}}^{\phi,\psi} \mathbf{t}$. Equation $(31.20)_2$ follows from $(31.20)_1$ and Prop. 3 of Sect.14.

Notation: Let $\phi \in Ch_x(\mathcal{B}, \mathcal{M})$ be given. The mapping

$$\Gamma_{\mathbf{b}}^{\phi} : \operatorname{Rcon}_{\mathbf{b}} \mathcal{B} \to \operatorname{Lin}\left(\operatorname{T}_{x} \mathcal{M}, \operatorname{T}_{\mathbf{b}} \mathcal{B}_{x}\right)$$

is defined by $\Gamma_{\mathbf{b}}^{\phi} := \Gamma^{\mathbf{A}_{\mathbf{b}}^{\phi}}$ in terms of (14.10); i.e. by

$$\Gamma_{\mathbf{b}}^{\phi}(\mathbf{K}) := -\Lambda(\mathbf{A}_{\mathbf{b}}^{\phi})\mathbf{K} \quad \text{for all} \quad \mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}}\mathcal{B}.$$
(31.24)

If $\phi \in Ch_x(\mathcal{B}, \mathcal{M})$, we have, by Prop. 6 of Sect. 14,

$$\mathbf{A}_{\mathbf{b}}^{\phi} - \mathbf{K} = \mathbf{I}_{\mathbf{b}} \, \boldsymbol{\Gamma}_{\mathbf{b}}^{\phi}(\mathbf{K})$$

$$\boldsymbol{\Lambda}(\mathbf{A}_{\mathbf{b}}^{\phi}) - \boldsymbol{\Lambda}(\mathbf{K}) = -\boldsymbol{\Gamma}_{\mathbf{b}}^{\phi}(\mathbf{K}) \mathbf{P}_{\mathbf{b}}$$
(31.25)

for all $\mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}} \mathcal{B}$. Moreover; if $\phi, \psi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$, then (31.20) and (31.24) give

$$\Gamma_{\mathbf{b}}^{\phi}(\mathbf{K}) - \Gamma_{\mathbf{b}}^{\psi}(\mathbf{K}) = \Gamma_{\mathbf{b}}^{\phi,\psi} \quad \text{for all} \quad \mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}}\mathcal{B},$$
(31.26)

where $\Gamma_{\mathbf{b}}^{\phi,\psi}$ is defined by (31.21). It follows from (31.26) and $\Gamma_{\mathbf{b}}^{\psi}(\mathbf{A}_{\mathbf{b}}^{\psi}) = \mathbf{0}$ that $\Gamma_{\mathbf{b}}^{\phi,\psi} = \Gamma_{\mathbf{b}}^{\phi}(\mathbf{A}_{\mathbf{b}}^{\psi})$ for all $\phi, \psi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$.

<u>Convention</u>: Assume that \mathcal{B} is a flat-space bundle. Let $\mathbf{b} \in \mathcal{B}$ be given and put $x := \tau(\mathbf{b})$. The fiber \mathcal{B}_x has the structure of a flat space; the translation space of \mathcal{B}_x is denoted by \mathcal{U}_x . We may and will use the identification as described in (23.9) and (23.10); i.e. we identify $T_{\mathbf{b}}\mathcal{B}_x$ with \mathcal{U}_x . Then (31.8) becomes

$$\mathcal{U}_x \xrightarrow{\mathbf{I}_{\mathbf{b}}} \mathbf{T}_{\mathbf{b}}\mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{b}}} \mathbf{T}_x \mathcal{M}.$$
 (31.27)

In particular, if \mathcal{B} is a linear-space bundle, we have $\mathcal{U}_x = \mathcal{B}_x$ and (31.27) becomes

$$\mathcal{B}_x \xrightarrow{\mathbf{I}_{\mathbf{b}}} \mathbf{T}_{\mathbf{b}}\mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{b}}} \mathbf{T}_x\mathcal{M}.$$
 (31.28)

Remark 1: For every bundle chart ϕ in $Ch_x(\mathcal{B}, \mathcal{M})$, we have

$$\mathbf{P}_{\mathbf{b}} = \operatorname{ev}_{1} \circ \nabla_{\mathbf{b}} \phi, \qquad \mathbf{A}_{\mathbf{b}}^{\phi} = (\nabla_{\mathbf{b}} \phi)^{-1} \circ \operatorname{ins}_{1}, \\
\mathbf{I}_{\mathbf{b}} = (\nabla_{\mathbf{b}} \phi)^{-1} \circ \operatorname{ins}_{2} \circ \nabla_{\mathbf{b}} \phi \big|_{x}, \qquad \mathbf{\Lambda} (\mathbf{A}_{\mathbf{b}}^{\phi}) = (\nabla_{\mathbf{b}} \phi \big|_{x})^{-1} (\operatorname{ev}_{2} \circ \nabla_{\mathbf{b}} \phi), \quad (31.29)$$

where ev_i and ins_i , $i \in 2^{l}$, are evaluations and insertions, respectively.

Proof: Let $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$ be given. Using (31.9), (31.19) and also observing $\mathbf{A}_{\mathbf{b}}^{\phi}\mathbf{P}_{\mathbf{b}} + \mathbf{I}_{\mathbf{b}}\Lambda(\mathbf{A}_{\mathbf{b}}^{\phi}) = \mathbf{1}_{\mathrm{T}_{\mathbf{b}}\mathcal{B}}$, we have

$$\nabla_{\mathbf{b}}\phi = \nabla_{\mathbf{b}}\phi \left(\mathbf{A}_{\mathbf{b}}^{\phi}\mathbf{P}_{\mathbf{b}} + \mathbf{I}_{\mathbf{b}}\boldsymbol{\Lambda}(\mathbf{A}_{\mathbf{b}}^{\phi})\right) = \left(\mathbf{P}_{\mathbf{b}}, \left(\nabla_{\mathbf{b}}\phi\right)\right]_{x}\boldsymbol{\Lambda}(\mathbf{A}_{\mathbf{b}}^{\phi})\right).$$
(31.30)

The desired result (31.29) follows from (31.9), (31.19) and (31.30).

If in addition $\phi \rfloor_x = \mathbf{1}_{\mathcal{B}_x}$, then we have

 $\mathbf{I}_{\mathbf{b}} = (\nabla_{\mathbf{b}}\phi)^{-1} \circ \operatorname{ins}_2 \qquad \text{and} \qquad \mathbf{\Lambda}(\mathbf{A}_{\mathbf{b}}^{\phi}) = (\operatorname{ev}_2 \circ \nabla_{\mathbf{b}}\phi).$

2			
ŀ	-	١	
¢		J	

Remark 2: For every cross section $\mathbf{s} : \mathcal{M} \to \mathcal{B}$, we have $\tau \circ \mathbf{s} = \mathbf{1}_{\mathcal{M}}$. If \mathbf{s} is differentiable at $x \in \mathcal{M}$, then the gradient of $\mathbf{1}_{\mathcal{M}} = \tau \circ \mathbf{s}$ at x gives

$$\mathbf{1}_{\mathrm{T}_{x}\mathcal{M}} = \nabla_{x}(\tau \circ \mathbf{s}) = (\nabla_{\mathbf{s}(x)}\tau)(\nabla_{x}\mathbf{s}) = \mathbf{P}_{\mathbf{s}(x)}\nabla_{x}\mathbf{s}.$$
 (31.31)

We see that $\nabla_x \mathbf{s}$ is a right tangent connector at $\mathbf{s}(x)$; i.e. $\nabla_x \mathbf{s} \in \operatorname{Rcon}_{\mathbf{s}(x)}(\mathcal{B})$.

Remark 3: Let \mathcal{B} be a linear space bundle and let $x \in \mathcal{M}$ be given. Denote the zero of the linear space \mathcal{B}_x by $\mathbf{0}_x$. It follows from (31.21) that $\Gamma_{\mathbf{0}_x}^{\phi,\psi} = \mathbf{0}$ and then from (31.20) that $\mathbf{A}_{\mathbf{0}_x}^{\phi} = \mathbf{A}_{\mathbf{0}_x}^{\psi}$ for all $\phi, \psi \in \mathrm{Ch}_x(\mathcal{B}, \mathcal{M})$. This shows that $\{ \mathbf{A}_{\mathbf{0}_x}^{\phi} \mid \phi \in \mathrm{Ch}_x(\mathcal{B}, \mathcal{M}) \}$ is a singleton and hence

$$\left\{ \mathbf{A}_{\mathbf{0}_{x}}^{\phi} \mid \phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M}) \right\} \operatorname{Rcon}_{\mathbf{0}_{x}} \mathcal{B}.$$

Remark 4: For every $\mathbf{b} \in \mathcal{B}$, we define the **vertical space** $V_{\mathbf{b}}\mathcal{B}$ of \mathcal{B} at \mathbf{b} by

$$V_{\mathbf{b}}\mathcal{B} := \operatorname{Null} \mathbf{P}_{\mathbf{b}} = \operatorname{Rng} \mathbf{I}_{\mathbf{b}} \subset T_{\mathbf{b}}\mathcal{B} .$$
(31.32)

Since $\mathbf{I}_{\mathbf{b}}$ is injective, $V_{\mathbf{b}}\mathcal{B}$ is isomorphic with $T_{\mathbf{b}}\mathcal{B}_{\tau(\mathbf{b})}$. The sequence

$$V_{\mathbf{b}}\mathcal{B} \longrightarrow T_{\mathbf{b}}\mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{b}}} T_{\tau(\mathbf{b})}\mathcal{M}$$
 (31.33)

is a short exact sequence. For every right tangent connector $\mathbf{K} \in \operatorname{Rcon}_{\mathbf{b}}\mathcal{B}$, the range of \mathbf{K}

$$H_{\mathbf{b}}^{\mathbf{K}}\mathcal{B} := \operatorname{Rng} \mathbf{K} \subset T_{\mathbf{b}}\mathcal{B}$$
(31.34)

is called the **horizontal space** of \mathcal{B} at **b** relative to **K**. It is easily seen that $V_{\mathbf{b}}\mathcal{B}$ and $H_{\mathbf{b}}^{\mathbf{K}}\mathcal{B}$ are supplementary in $T_{\mathbf{b}}\mathcal{B}$.

Notes 31

(1) The convention that we made in this section was first introduced by Noll, in 1974, on the tangent bundle $T\mathcal{M}$ (see [N3]). This convention plays a central role in our development.

(2) The short exact sequence (31.33) can be found in [Sa].

32. Transfer Isomorphisms, Shift Spaces

We assume that $r \in \tilde{}$ with $r \geq 2$ and a C^r -manifold \mathcal{M} are given. Let a number $s \in 1..r$ be given and let \mathcal{B} be a C^s linear-space bundle over \mathcal{M} . We assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and put $n := \dim \mathcal{M}$ and $m := \dim \mathcal{B} - \dim \mathcal{M}$. Then

$$m = \dim \mathcal{B}_x \quad \text{for all} \quad x \in \mathcal{M}.$$
 (32.1)

Now let $x \in \mathcal{M}$ be fixed. We define the **bundle of transfer isomorphisms** of \mathcal{B} from x by

$$\operatorname{Tlis}_{x} \mathcal{B} := \bigcup_{y \in \mathcal{M}} \operatorname{Lis}(\mathcal{B}_{x}, \mathcal{B}_{y}).$$
(32.2)

It is endowed with the natural structure of a C^s-fiber bundle as shown below. The corresponding bundle projection π_x : Tlis_x $\mathcal{B} \to \mathcal{M}$ is given by

$$\pi_x(\mathbf{T}) :\in \left\{ y \in \mathcal{M} \mid \mathbf{T} \in \operatorname{Lis}(\mathcal{B}_x, \mathcal{B}_y) \right\}$$
(32.3)

and the bundle inclusion $\iota_x : \operatorname{Lis} \mathcal{B}_x \to \operatorname{Tlis}_x \mathcal{B}$ at x is

$$\iota_x := \mathbf{1}_{\mathrm{Lis}\mathcal{B}_x \subset \mathrm{Tlis}_x \mathcal{B}}.$$
(32.4)

For every bundle chart $\phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$, we define

$$\operatorname{tlis}_{x}^{\phi}: \operatorname{Tlis}_{x}(\mathcal{O}_{\phi}) \to \mathcal{O}_{\phi} \times \operatorname{Lis}(\mathcal{B}_{x}, \mathcal{V}_{\phi})$$
(32.5)

by

$$\operatorname{tlis}_{x}^{\phi}(\mathbf{T}) := \left(z , \phi \rfloor_{z} \mathbf{T} \right), \quad \text{where} \quad z := \pi_{x}(\mathbf{T}).$$
(32.6)

It is easily seen that tlis_x^{ϕ} is invertible and that

$$\operatorname{tlis}_{x}^{\phi}(z,\mathbf{L}) = (\phi \rfloor_{z})^{-1}\mathbf{L}$$
(32.7)

for all $z \in \mathcal{O}_{\phi}$ and all $\mathbf{L} \in \text{Lis}(\mathcal{B}_x, \mathcal{V}_{\phi})$. Moreover, if $\psi, \phi \in \text{Ch}_x(\mathcal{B}, \mathcal{M})$, it follows easily from (32.7) and (32.6) with ϕ replaced by ψ that

$$\left(\operatorname{tlis}_{x}^{\psi} \circ \operatorname{tlis}_{x}^{\phi} \stackrel{\leftarrow}{}\right)(z, \mathbf{L}) = \left(z, (\psi \diamond \phi)(z)\mathbf{L}\right)$$
(32.8)

for all $z \in \mathcal{O}_{\psi} \cap \mathcal{O}_{\phi}$ and all $\mathbf{L} \in \operatorname{Lis}(\mathcal{B}_x, \mathcal{V}_{\phi})$ (See (22.7) for the definition of $\psi \diamond \phi$). It is clear that $\operatorname{tlis}_x^{\psi} \circ \operatorname{tlis}_x^{\phi}$ is of class C^s . Since $\psi, \phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$ were arbitrary, it follows that $\{\operatorname{tlis}_x^{\alpha} \mid \alpha \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})\}$ is a C^s -bundle atlas of $\operatorname{Tlis}_x \mathcal{B}$. We consider $(\operatorname{Tlis}_x \mathcal{B}, \pi_x, \mathcal{M})$ as being endowed with the C^s fiber bundle structure over \mathcal{M} determined by this atlas.

Remark: We may view $\text{Tlis}_x \mathcal{B}$ as a Tran_x -bundle, where Tran_x is the isocategory whose objects are of the form $\text{Lis}(\mathcal{B}_x, \mathcal{V})$ with $\mathcal{V} \in LS$ and whose isomorphisms are of the form

$$(\mathbf{T} \mapsto \mathbf{LT}) : \mathrm{Lis}(\mathcal{B}_x, \mathrm{Dom}\mathbf{L}) \to \mathrm{Lis}(\mathcal{B}_x, \mathrm{Cod}\mathbf{L})$$

with $\mathbf{L} \in \text{LIS}$.

It is easily seen that the mappings π_x and ι_x defined by (32.3) and (32.4) are of class C^s .

We now apply the results of Sect.31 by replacing the ISO-bundle \mathcal{B} there by the bundle $\text{Tlis}_x \mathcal{B}$ and $\mathbf{b} \in \mathcal{B}$ there by $\mathbf{1}_{\mathcal{B}_x} \in \text{Tlis}_x \mathcal{B}$.

Definition: The shift-space $S_x \mathcal{B}$ of \mathcal{B} at $x \in \mathcal{M}$ is defined to be

$$S_x \mathcal{B} := T_{\mathbf{1}_{\mathcal{B}_x}} Tlis_x \mathcal{B}.$$
(32.9)

We define the **projection mapping** of $S_x \mathcal{B}$ by

$$\mathbf{P}_{x} := \mathbf{P}_{\mathbf{1}_{\mathcal{B}_{x}}} = \nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \pi_{x} \in \operatorname{Lin}\left(\mathbf{S}_{x}\mathcal{B}, \mathbf{T}_{x}\mathcal{M}\right)$$
(32.10)

and the injection mapping of $S_x \mathcal{B}$ by

$$\mathbf{I}_x := \mathbf{I}_{\mathbf{1}_{\mathcal{B}_x}} = \nabla_{\mathbf{1}_{\mathcal{B}_x}} \iota_x \in \operatorname{Lin}\left(\operatorname{Lin}\mathcal{B}_x, \operatorname{S}_x\mathcal{B}\right)$$
(32.11)

in terms of (31.5) and (31.6); respectively, where π_x and ι_x are defined by (32.3) and (32.4).

It is clear from (32.5) that

$$\dim (\mathrm{Tlis}_x \mathcal{B}) = \dim (\mathrm{S}_x \mathcal{B}) = n + m^2.$$
(32.12)

Proposition 1: The projection mapping \mathbf{P}_x is surjective, the injection mapping \mathbf{I}_x is injective, and we have

$$\operatorname{Null} \mathbf{P}_x = \operatorname{Rng} \mathbf{I}_x \tag{32.13}$$

i.e.

$$\operatorname{Lin} \mathcal{B}_{x} \xrightarrow{\mathbf{I}_{x}} \mathcal{S}_{x} \mathcal{B} \xrightarrow{\mathbf{P}_{x}} \mathrm{T}_{x} \mathcal{M}$$
(32.14)

is a short exact sequence.

Definition: A linear right-inverse of the projection-mapping \mathbf{P}_x will be called a right shift-connector (or simply right connector) at x, a linear left-inverse

of the injection-mapping I_x will be called a left shift-connector (or simply left connector) at x. The sets

$$\operatorname{Rcon}_{x} \mathcal{B} := \operatorname{Rcon}_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{Tlis}_{x} \mathcal{B}$$
$$\operatorname{Lcon}_{x} \mathcal{B} := \operatorname{Lcon}_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{Tlis}_{x} \mathcal{B}$$
(32.15)

of all right connectors at x and all left connector at x will be called the **right** connector space at x and the left connector space at x, respectively.

The right connector space $\operatorname{Rcon}_x \mathcal{B}$ is a flat in $\operatorname{Lin}(\operatorname{T}_x \mathcal{M}, \mathcal{S}_x \mathcal{B})$ with direction space

$$\left\{ \mathbf{I}_{x}\mathbf{L} \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_{x}\mathcal{M}, \operatorname{Lin}\mathcal{B}_{x}\right) \right\},$$
(32.16)

and the left connector space $\operatorname{Lcon}_x \mathcal{B}$ is a flat in $\operatorname{Lin}(\mathcal{S}_x \mathcal{B}, \operatorname{Lin} \mathcal{B}_x)$ with direction space

$$\{ -\mathbf{L}\mathbf{P}_x \mid \mathbf{L} \in \operatorname{Lin}\left(\mathrm{T}_x\mathcal{M}, \operatorname{Lin}\mathcal{B}_x\right) \}.$$
(32.17)

Using the identifications

$$\operatorname{Lin}\left(\mathrm{T}_{x}\mathcal{M},\operatorname{Lin}\mathcal{B}_{x}\right)\{\mathbf{P}_{x}\}\cong\operatorname{Lin}\left(\mathrm{T}_{x}\mathcal{M},\operatorname{Lin}\mathcal{B}_{x}\right)\cong\{\mathbf{I}_{x}\}\operatorname{Lin}\left(\mathrm{T}_{x}\mathcal{M},\operatorname{Lin}\mathcal{B}_{x}\right),$$

we consider $\operatorname{Lin}(\operatorname{T}_x\mathcal{M},\operatorname{Lin}\mathcal{B}_x)$ as the external translation space of both $\operatorname{Rcon}_x\mathcal{B}$ and $\operatorname{Lcon}_x\mathcal{B}$. Since dim $\operatorname{Lin}(\operatorname{T}_x\mathcal{M},\operatorname{Lin}\mathcal{B}_x) = nm^2$, we have

$$\dim \operatorname{Rcon}_x \mathcal{B} = nm^2 = \dim \operatorname{Lcon}_x \mathcal{B}.$$
(32.18)

The flat isomorphism

$$\mathbf{\Lambda}: \operatorname{Rcon}_x \mathcal{B}
ightarrow \operatorname{Lcon}_x \mathcal{B}$$

assigns to every $\mathbf{K} \in \operatorname{Rcon}_x \mathcal{B}$ an element $\Lambda(\mathbf{K}) \in \operatorname{Lcon}_x \mathcal{B}$ such that

$$\operatorname{Lin} \mathcal{B}_x \quad \xleftarrow{}_{\Lambda(\mathbf{K})} \quad \mathcal{S}_x \mathcal{B} \quad \xleftarrow{}_{\mathbf{K}} \quad \operatorname{T}_x \mathcal{M}$$
(32.19)

is again a short exact sequence. We have

$$\mathbf{KP}_x + \mathbf{I}_x \mathbf{\Lambda}(\mathbf{K}) = \mathbf{1}_{\mathcal{S}_x \mathcal{B}}$$
 for all $\mathbf{K} \in \operatorname{Rcon}_x \mathcal{B}$. (32.20)

<u>Convention</u>: Since there is one-to-one correspondence between right connectors and left connectors, we shall only deal with one kind of connectors, say right connectors. If we say "connector", we mean a right connector. The notation

$$\operatorname{Con}_x \mathcal{B} := \operatorname{Rcon}_x \mathcal{B}$$

is also used.

 $\begin{aligned} \mathbf{Proposition } & \mathbf{2:} \ \textit{For each } \phi \in \mathrm{Ch}_x(\mathcal{B}, \mathcal{M}), \ \textit{let } \mathbf{A}_x^{\phi} \in \mathrm{Lin}\left(\mathrm{T}_x\mathcal{M}, \mathcal{S}_x\mathcal{B}\right) \ \textit{be defined} \\ & \textit{by } \mathbf{A}_x^{\phi} := \mathbf{C}_{\mathbf{1}_{\mathcal{B}_x}}^{\mathrm{tlis}_x^{\phi}} \ \textit{in terms of } (31.19); \ \textit{i.e.} \\ & \mathbf{A}_x^{\phi} \, \mathbf{t} := (\nabla_{\mathbf{1}_{\mathcal{B}_x}} \mathrm{tlis}_x^{\phi})^{-1}(\mathbf{t}, \mathbf{0}) \quad \text{ for all } \mathbf{t} \in \mathrm{T}_x\mathcal{M} \ . \end{aligned} \tag{32.21} \\ & \textit{Then } \mathbf{A}_x^{\phi} \ \textit{is a linear right-inverse of } \mathbf{P}_x, \ \textit{i.e.} \ \mathbf{A}_x^{\phi} \in \mathrm{Con}_x\mathcal{B}. \end{aligned}$

Let $\phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$ be given. We have the following short exact sequence

$$\operatorname{Lin} \mathcal{B}_{x} \quad \xleftarrow{}_{\boldsymbol{\Lambda}(\mathbf{A}_{x}^{\phi})} \quad \mathcal{S}_{x} \mathcal{B} \quad \xleftarrow{}_{\mathbf{A}_{x}^{\phi}} \quad \operatorname{T}_{x} \mathcal{M}$$
(32.22)

and

$$\mathbf{A}_{x}^{\phi}\mathbf{P}_{x} + \mathbf{I}_{x}\boldsymbol{\Lambda}(\mathbf{A}_{x}^{\phi}) = \mathbf{1}_{\mathcal{S}_{x}\mathcal{B}}.$$
(32.23)

Proposition 3: If $\psi, \phi \in Ch_x(\mathcal{B}, \mathcal{M})$ are given, then

$$\mathbf{A}_{x}^{\phi} - \mathbf{A}_{x}^{\psi} = \mathbf{I}_{x} \, \mathbf{\Gamma}_{x}^{\phi,\psi}$$
$$\mathbf{\Lambda}(\mathbf{A}_{x}^{\phi}) - \mathbf{\Lambda}(\mathbf{A}_{x}^{\psi}) = -\mathbf{\Gamma}_{x}^{\phi,\psi} \mathbf{P}_{x}$$
(32.24)

where $\Gamma_x^{\phi,\psi} := \Gamma_{\mathbf{1}_{\mathcal{B}_x}}^{\mathrm{tlis}_x^{\phi},\mathrm{tlis}_x^{\psi}}$ in terms of (31.21) is of the form

$$\mathbf{\Gamma}_{x}^{\phi,\psi} := (\psi \rfloor_{x})^{-1} \big(\nabla_{x} (\psi \diamond \phi) \big) \circ (\mathbf{1}_{\mathrm{T}_{x}\mathcal{B}} \times \phi \rfloor_{x})$$
(32.25)

which belongs to $\operatorname{Lin}(\operatorname{T}_x, \operatorname{Lin} \mathcal{B}_x)$. Here, the notation (22.7) is used.

Proof: Applying Prop. 3 in Sect. 32 with ϕ replaced by tlis_x^{ϕ} and ψ replaced by tlis_x^{ψ} together with (32.6) and (32.8), we obtain the desired result (32.25).

<u>Notation</u>: Let $\phi \in Ch_x(\mathcal{B}, \mathcal{M})$ be given. We define the mapping

 $\Gamma_x^{\phi} : \operatorname{Con}_x \mathcal{B} \to \operatorname{Lin}\left(\operatorname{T}_x \mathcal{M}, \operatorname{Lin} \mathcal{B}_x\right)$

by $\Gamma_{x}^{\phi} := \Gamma^{\mathbf{A}_{x}^{\phi}} = \Gamma^{\mathrm{tlis}_{x}^{\phi}}_{\mathbf{1}_{\mathcal{B}_{x}}}$ in terms of (14.10) and (31.24); i.e. $\Gamma_{x}^{\phi}(\mathbf{K}) = -\Lambda(\mathbf{A}_{x}^{\phi})\mathbf{K}$ for all $\mathbf{K} \in \mathrm{Con}_{x}\mathcal{B}.$ (32.26)

If $\phi \in Ch_x(\mathcal{B}, \mathcal{M})$, then (31.25) reduces to

$$\mathbf{A}_{x}^{\phi} - \mathbf{K} = \mathbf{I}_{x} \, \mathbf{\Gamma}_{x}^{\phi}(\mathbf{K})$$

$$\mathbf{\Lambda}(\mathbf{A}_{x}^{\phi}) - \mathbf{\Lambda}(\mathbf{K}) = -\mathbf{\Gamma}_{x}^{\phi}(\mathbf{K}) \mathbf{P}_{x}$$

(32.27)

for all $\mathbf{K} \in \operatorname{Con}_x \mathcal{B}$. Moreover; if $\psi, \phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$, then

$$\Gamma_x^{\phi}(\mathbf{K}) - \Gamma_x^{\psi}(\mathbf{K}) = \Gamma_x^{\phi,\psi} \quad \text{for all} \quad \mathbf{K} \in \operatorname{Con}_x \mathcal{B}, \tag{32.28}$$

where $\Gamma_x^{\phi,\psi}$ is defined by (32.25). It follows from (32.28) that $\Gamma_x^{\psi,\phi} = -\Gamma_x^{\phi,\psi}$ and from $\Gamma_x^{\psi} \left(\mathbf{A}_x^{\psi} \right) = \mathbf{0}$ that $\Gamma_x^{\phi} \left(\mathbf{A}_x^{\psi} \right) = \Gamma_x^{\phi,\psi}$ for all bundle charts $\psi, \phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$.

For every cross section $\mathbf{H} : \mathcal{O} \to \mathrm{Tlis}_x \mathcal{B}$ of the bundle $\mathrm{Tlis}_x \mathcal{B}$, the mapping $\mathbf{T} : \mathcal{M} \to \mathrm{Tlis}_x \mathcal{B}$ defined by

$$\mathbf{T}(y) := \mathbf{H}(y)\mathbf{H}^{-1}(x) \quad \text{for all} \quad y \in \mathcal{M}$$
(32.29)

is a cross section of the bundle $\text{Tlis}_x \mathcal{B}$ with $\mathbf{T}(x) = \mathbf{1}_{\mathcal{B}_x}$.

Definition: A cross section $\mathbf{T} : \mathcal{O} \to \text{Tlis}_x \mathcal{B}$ of the bundle $\text{Tlis}_x \mathcal{B}$ such that $\mathbf{T}(x) = \mathbf{1}_{\mathcal{B}_x}$ is called a **transport from** x.

For every bundle chart $\phi \in Ch(\mathcal{B}, \mathcal{M})$, we see that

$$(y \mapsto (\phi \rfloor_y)^{-1} \phi \rfloor_x) : \mathcal{O}_\phi \to \mathrm{Tlis}_x \mathcal{B}$$

is a transport from x which is of class C^s .

Remark 1: For every $\mathbf{K} \in \operatorname{Con}_x \mathcal{B}$, there is a bundle chart $\phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$ with $\phi \big|_x = \mathbf{1}_{\mathcal{B}_x}$ such that

$$\mathbf{K} = \nabla_{x}(\phi \rfloor)^{-1} = \mathbf{A}_{x}^{\phi}.$$
 (32.30)

$$\mathbf{K} = \nabla_{\!x} \mathbf{T}.\tag{32.31}$$

There is a bundle chart $\phi : \tau^{<}(\mathcal{O}) \to \mathcal{O} \times \mathcal{B}_x$ induced from **T** by

$$\phi(\mathbf{v}) := (y, \mathbf{T}^{-1}(y)\mathbf{v}) \quad \text{where} \quad y := \tau(\mathbf{v}) \tag{32.32}$$

for all $\mathbf{v} \in \tau^{<}(\mathcal{O})$. It is easily seen that $(\phi_{\perp})^{-1} = \mathbf{T}$. The first part of (32.30) follows from (32.31). In view of (31.29) we have

$$\boldsymbol{\Lambda}(\mathbf{A}_{x}^{\phi})(\nabla_{x}(\phi \rfloor)^{-1}) = (\operatorname{ev}_{2} \circ \nabla_{\mathbf{1}_{\mathcal{B}_{x}}} \operatorname{tlis}_{x}^{\phi}) \nabla_{x}(\phi \rfloor)^{-1}$$

= $\operatorname{ev}_{2} \circ \nabla_{x}(y \mapsto \operatorname{tlis}_{x}^{\phi}((\phi \rfloor_{y})^{-1})).$ (32.33)

Using (32.6) and ovbserving $\phi \rfloor_y \in \text{Lin}(\mathcal{B}_y, \mathcal{B}_x)$, we have

$$\operatorname{tlis}_{x}^{\phi}((\phi \rfloor_{y})^{-1}) = (y, \phi \rfloor_{y}(\phi \rfloor_{y})^{-1}) = (y, \mathbf{1}_{\mathcal{B}_{x}}).$$
(32.34)

Taking the gradient of (32.34) at x, we observe that

$$\nabla_{x} \left(y \mapsto \operatorname{tlis}_{x}^{\phi}((\phi \rfloor_{y})^{-1}) \right) = (\mathbf{1}_{\mathrm{T}_{x}\mathcal{M}}, \mathbf{0}).$$
(32.35)

It follows from (32.33) and (32.35) that

$$\mathbf{\Lambda}(\mathbf{A}_x^{\phi})(\nabla_x(\phi])^{-1}) = \mathbf{0}.$$

This can happen only when $\nabla_x(\phi|)^{-1} = \mathbf{A}_x^{\phi}$.

33. Torsion

Let $r \in \tilde{}$, with $r \geq 2$, and a C^r-manifold \mathcal{M} be given. For every $x \in \mathcal{M}$, we have; as described in Sect. 32 with $\mathcal{B} := T\mathcal{M}$,

$$\mathrm{Tlis}_{x}\mathrm{T}\mathcal{M} := \bigcup_{y \in \mathcal{M}} \mathrm{Lis}(\mathrm{T}_{x}\mathcal{M}, \mathrm{T}_{y}\mathcal{M}).$$
(33.1)

We also have the following short exact sequence

$$\operatorname{Lin} \mathbf{T}_{x} \mathcal{M} \xrightarrow{\mathbf{I}_{x}} \mathbf{S}_{x} \mathbf{T} \mathcal{M} \xrightarrow{\mathbf{P}_{x}} \mathbf{T}_{x} \mathcal{M}.$$
(33.2)

The short exact sequence (33.2) is of the form (15.1) and hence all of the results in Sect.15 can be used here.

For every manifold chart $\chi \in Ch\mathcal{M}$, the tangent mapping tgt_{χ} ; as defined in (22.13), is a bundle chart of the tangent bundle $T\mathcal{M}$ such that $ev_2 \circ tgt_{\chi} = \nabla \chi$. Note that not every tangent bundle chart $\phi \in Ch(T\mathcal{M}, \mathcal{M})$ can be obtained from the gradient of a manifold chart. To avoid complicated notations, we replace all the superscript of $\phi = tgt_{\chi}$ by superscript of χ ; i.e. we use the following notation

$$\mathbf{A}_{x}^{\chi} := \mathbf{A}_{x}^{\mathrm{tgt}_{\chi}}, \quad \mathbf{\Gamma}_{x}^{\chi} := \mathbf{\Gamma}_{x}^{\mathrm{tgt}_{\chi}} \quad \text{and} \quad \mathbf{\Gamma}_{x}^{\chi,\gamma} := \mathbf{\Gamma}_{x}^{\mathrm{tgt}_{\chi},\mathrm{tgt}_{\gamma}}$$
(33.3)

for all manifold charts $\chi, \gamma \in Ch\mathcal{M}$. Given $\chi, \gamma \in Ch\mathcal{M}$. It is easily seen from (32.25) and (23.16) that

$$\mathbf{\Gamma}_{x}^{\chi,\gamma} := \left((\nabla_{x}\gamma)^{-1} \nabla_{\chi}^{(2)} \gamma(x) \right) \circ (\nabla_{x}\chi \times \nabla_{x}\chi).$$
(33.4)

It follows from the Theorem on Symmetry of Second Gradients (see Sect.612, [FDS]) that $\Gamma_x^{\chi,\gamma}$ belongs to the subspace $\operatorname{Sym}_2(\operatorname{T}_x\mathcal{M}^2,\operatorname{T}_x\mathcal{M})$ of $\operatorname{Lin}_2(\operatorname{T}_x\mathcal{M}^2,\operatorname{T}_x\mathcal{M}) \cong \operatorname{Lin}(\operatorname{T}_x\mathcal{M},\operatorname{Lin}\operatorname{T}_x\mathcal{M}).$

Proposition 1: There is exactly one flat \mathcal{F} in $\text{Con}_x T\mathcal{M}$ with direction space $\{\mathbf{I}_x\}\text{Sym}_2(T_x\mathcal{M}^2, T_x\mathcal{M})$ which contains \mathbf{A}_x^{χ} for every manifold chart $\chi \in \text{Ch}_x\mathcal{M}$, so that

$$\mathcal{F} = \mathbf{A}_x^{\chi} + \{\mathbf{I}_x\} \operatorname{Sym}_2(\mathrm{T}_x \mathcal{M}^2, \mathrm{T}_x \mathcal{M}) \quad \text{for all} \quad \chi \in \operatorname{Ch}_x \mathcal{M}.$$
(33.5)

Definition: The shift-bracket $\mathbf{B}_x \in \operatorname{Skw}_2(S_x T \mathcal{M}^2, T_x \mathcal{M})$ of $S_x T \mathcal{M}$ is defined by

$$\mathbf{B}_x := \mathbf{B}_{\mathcal{F}} \tag{33.6}$$

where $\mathbf{B}_{\mathcal{F}}$ is defined as in (15.5).

<u>Definition</u>: The torsion-mapping $\mathbf{T}_x : \operatorname{Con}_x T\mathcal{M} \to \operatorname{Skw}_2(T_x\mathcal{M}^2, T_x\mathcal{M})$ of $\operatorname{Con}_x T\mathcal{M}$ is defined by

$$\mathbf{T}_x := \mathbf{T}_{\mathcal{F}} \tag{33.7}$$

where $\mathbf{T}_{\mathcal{F}}$ is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart $\chi \in Ch_x \mathcal{M}$, we have

$$\mathbf{\Gamma}_x = \mathbf{\Gamma}_x^{\chi} - \mathbf{\Gamma}_x^{\chi^{\sim}} \tag{33.8}$$

where $\tilde{}$ denotes the value-wise switch, so that $\Gamma_x^{\chi}(\mathbf{K})(\mathbf{s},\mathbf{t}) = \Gamma_x^{\chi}(\mathbf{K})(\mathbf{t},\mathbf{s})$ for all $\mathbf{K} \in \operatorname{Con}_x \mathcal{M}$ and all $\mathbf{s}, \mathbf{t} \in \operatorname{T}_x \mathcal{M}$.

The torsion-mapping \mathbf{T}_x is a surjective flat mapping with $\mathbf{T}_x^{<}(\{\mathbf{0}\}) = \mathcal{F}$ whose gradient

$$\nabla \mathbf{T}_{x} \in \operatorname{Lin}\left(\operatorname{Lin}_{2}\left(\operatorname{T}_{x}\mathcal{M}^{2},\operatorname{T}_{x}\mathcal{M}\right), \operatorname{Skw}_{2}\left(\operatorname{T}_{x}\mathcal{M}^{2},\operatorname{T}_{x}\mathcal{M}\right)\right)$$
(33.9)

is given by

$$(\nabla \mathbf{T}_x)\mathbf{L} = \mathbf{L}^{\sim} - \mathbf{L} \tag{33.10}$$

for all $\mathbf{L} \in \operatorname{Lin}_2(\mathrm{T}_x\mathcal{M}^2,\mathrm{T}_x\mathcal{M}).$

Definition: We say that a connector $\mathbf{K} \in \operatorname{Con}_x T\mathcal{M}$ is torsion-free (or symmetric) if $\mathbf{T}_x(\mathbf{K}) = \mathbf{0}$, i.e. $\mathbf{K} \in \mathcal{F}$. The flat of all symmetric connectors will be denoted by $\operatorname{Scon}_x \mathcal{M} := \mathbf{T}_x^{<}(\{\mathbf{0}\})$.

The mapping

$$\mathbf{S}_{x} := \left(\mathbf{1}_{\text{Con}_{x}\text{T}\mathcal{M}} + \frac{1}{2}\mathbf{I}_{x}\mathbf{T}_{x}\right)\Big|^{\text{Scon}_{x}\mathcal{M}}$$
(33.11)

is the projection of $Con_x T\mathcal{M}$ onto $Scon_x \mathcal{M}$ with

$$\operatorname{Null} \nabla \mathbf{S}_x = \operatorname{Skw}_2(\operatorname{T}_x \mathcal{M}^2, \operatorname{T}_x \mathcal{M}).$$

If $\mathbf{K} \in \operatorname{Con}_x T\mathcal{M}$, we call $\mathbf{S}_x(\mathbf{K}) = \mathbf{K} + \frac{1}{2}\mathbf{I}_x(\mathbf{T}_x(\mathbf{K}))$ the symmetric part of \mathbf{K} .

Theorem : A connector $\mathbf{K} \in \operatorname{Con}_x T\mathcal{M}$ is symmetric if and only if $\mathbf{K} = \mathbf{A}_x^{\chi}$ for some $\chi \in \operatorname{Ch}_x \mathcal{M}$. Thus $\operatorname{Scon}_x \mathcal{M} = \{ \mathbf{A}_x^{\chi} | \chi \in \operatorname{Ch}_x \mathcal{M} \}.$

Proof: Let $\mathbf{K} \in \operatorname{Con}_x \mathcal{M}$ be given. If $\mathbf{K} = \mathbf{A}_x^{\chi}$ for some $\chi \in \operatorname{Ch}_x \mathcal{M}$, then $\Gamma_x^{\chi}(\mathbf{K}) = \mathbf{0}$ and hence $\mathbf{T}_x(\mathbf{K}) = \mathbf{0}$ by (33.8).

Assume now that $\mathbf{T}_x(\mathbf{K}) = \mathbf{0}$. We choose $\gamma \in \mathrm{Ch}_x \mathcal{M}$ and put

$$\mathbf{L} := \nabla_{x} \gamma \, \boldsymbol{\Gamma}_{x}^{\gamma}(\mathbf{K}) \circ \left((\nabla_{x} \gamma)^{-1} \times (\nabla_{x} \gamma)^{-1} \right) \,. \tag{33.12}$$

It follows from (33.8) that **L** is symmetric, i.e. that $\mathbf{L} \in \operatorname{Sym}_2(\mathcal{V}^2_{\gamma}, \mathcal{V}_{\gamma})$. We now define the mapping $\alpha : \operatorname{Dom} \gamma \to \mathcal{V}_{\gamma}$ by

$$\alpha(z) := \gamma(z) + \frac{1}{2} \mathbf{L} \big(\gamma(z) - \gamma(x) \,, \, \gamma(z) - \gamma(x) \, \big) \quad \text{for all} \quad z \in \text{Dom } \gamma \,.$$

Take the gradient at x, we have $\nabla_x \alpha = \nabla_x \gamma$ i.e. that is $(\nabla_x \alpha)(\nabla_x \gamma)^{-1} = \mathbf{1}_{\mathcal{V}_{\gamma}}$. It follows from the Local Inversion Theorem that there exist an open subset \mathcal{N} of Dom α such that $\chi := \alpha |_{\mathcal{N}}^{\alpha > (\mathcal{N})}$ is a bijection of class C^r . It is easily seen that $\chi \in Ch_x \mathcal{M}$ and that

$$\nabla_{\gamma}^{(2)}\chi(x) = \mathbf{L}$$

Using (33.12), (32.25) and $\nabla_x \chi = \nabla_x \gamma$, we conclude that

$$\mathbf{\Gamma}_{x}^{\gamma}(\mathbf{K}) = (\nabla_{\!\!x} \chi)^{-1} \nabla_{\!\!\gamma}^{(2)} \chi \circ \left(\nabla_{\!\!x} \gamma \times \nabla_{\!\!x} \gamma \right) = \mathbf{\Gamma}_{\!x}^{\gamma,\chi} \; .$$

Hence, by (32.24) and (32.27), we have

$$\mathbf{A}_x^{\gamma} - \mathbf{A}_x^{\chi} = \mathbf{I}_x \mathbf{\Gamma}_x^{\gamma,\chi} = \mathbf{I}_x \mathbf{\Gamma}_x^{\gamma}(\mathbf{K}) = \mathbf{A}_x^{\gamma} - \mathbf{K}$$
,

which gives $\mathbf{K} = \mathbf{A}_x^{\chi}$.

34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle $(\mathcal{B}, \tau, \mathcal{M})$ of class C^s , $s \geq 2$, is given. We also assume that both \mathcal{M} and \mathcal{B} have constant dimensions, and put $n := \dim \mathcal{M}$ and $m := \dim \mathcal{B} - \dim \mathcal{M}$. Then we have, as in (32.1),

$$m = \dim \mathcal{B}_x \quad \text{for all} \quad x \in \mathcal{M}.$$
 (34.1)

Definition: The connector bundle $\operatorname{Con} \mathcal{B}$ of \mathcal{B} is defined to be the union of all the right-connector spaces

$$\operatorname{Con} \mathcal{B} := \bigcup_{x \in \mathcal{M}} \operatorname{Con}_x \mathcal{B} .$$
(34.2)

It is endowed with the structure of a C^{s-1} -flat space bundle over \mathcal{M} as shown below.

If \mathcal{P} is an open subset of \mathcal{M} and $x \in \mathcal{P}$, we can identify $\operatorname{Con}_x \mathcal{A} \cong \operatorname{Con}_x \mathcal{B}$, where $\mathcal{A} := \tau^{<}(\mathcal{P})$, in the same way as was done for the tangent space. Hence we may regard $\operatorname{Con}\mathcal{A}$ as a subset of $\operatorname{Con}\mathcal{B}$.

Note that the family $(\operatorname{Con}_x \mathcal{B} | x \in \mathcal{M})$ is disjoint. The bundle projection $\rho : \operatorname{Con} \mathcal{B} \to \mathcal{M}$ is given by

$$\rho(\mathbf{K}) :\in \left\{ y \in \mathcal{M} \mid \mathbf{K} \in \operatorname{Con}_x \mathcal{B} \right\},$$
(34.3)

and, for every $x \in \mathcal{M}$, the bundle inclusion $\operatorname{in}_x : \operatorname{Con}_x \mathcal{B} \to \operatorname{Con} \mathcal{B}$ at x is

$$\operatorname{in}_x := \mathbf{1}_{\operatorname{Con}_x \mathcal{B} \subset \operatorname{Con} \mathcal{B}} . \tag{34.4}$$

For every $(\chi, \phi) \in \operatorname{Ch}\mathcal{M} \times \operatorname{Ch}(\mathcal{B}, \mathcal{M})$ we define

$$\operatorname{con}^{(\chi,\phi)}:\operatorname{Con}(\operatorname{Dom}\phi)\to(\operatorname{Dom}\chi\cap\mathcal{O}_{\phi})\times\operatorname{Lin}(\mathcal{V}_{\chi},\operatorname{Lin}\mathcal{V}_{\phi})$$
(34.5)

by

$$\operatorname{con}^{(\chi,\phi)}(\mathbf{H}) := \left(z, \phi \rfloor_{z} \mathbf{\Lambda}(\mathbf{A}_{z}^{\phi})(\mathbf{H}) \left(\nabla_{z} \chi^{-1} \times \phi \rfloor_{z}^{-1} \right) \right)$$
where $z := \rho(\mathbf{H})$
(34.6)

for all $\mathbf{H} \in \operatorname{Con}(\operatorname{Dom}\phi)$. It is easily seen that $\operatorname{con}^{(\chi,\phi)}$ is invertible and

$$\operatorname{con}^{(\chi,\phi)}(z,\mathbf{L}) = \mathbf{A}_{z}^{\phi} + \mathbf{I}_{z}\phi \big]_{z}^{-1} \mathbf{L} \left(\nabla_{z}\chi \times \phi \big]_{z} \right)$$
(34.7)

for all $z \in (\text{Dom}\chi \cap \mathcal{O}_{\phi})$ and all $\mathbf{L} \in \text{Lin}(\mathcal{V}_{\chi}, \text{Lin}\mathcal{V}_{\phi})$. Let $(\chi, \phi), (\gamma, \psi) \in \text{Ch}\mathcal{M} \times \text{Ch}(\mathcal{B}, \mathcal{M})$ be given. We easily deduce from (34.7) and (34.6), with (χ, ϕ) replaced by (γ, ψ) and $\mathbf{\Lambda}(\mathbf{A}_{z}^{\psi})(\mathbf{A}_{z}^{\phi}) = -\mathbf{\Gamma}_{z}^{\psi, \phi} = \mathbf{\Gamma}_{z}^{\phi, \psi}$, that

$$(\operatorname{con}^{(\gamma,\psi)} \circ \operatorname{con}^{(\chi,\phi)})(z,\mathbf{L})$$

$$= \left(z, \psi \right]_{z} \Gamma_{z}^{\phi,\psi} (\nabla_{z}\gamma^{-1} \times \psi \right]_{z}^{-1}) + \kappa(z) \mathbf{L} (\nabla_{z}\lambda \times \kappa(z)^{-1})$$

$$\text{ where } \lambda := \gamma \circ \chi^{\leftarrow} \text{ and } \kappa := \psi \diamond \phi \quad (see \ (22.7))$$

$$(34.8)$$

for all $z \in (\text{Dom}\chi \cap \mathcal{O}_{\phi}) \cap (\text{Dom}\gamma \cap \mathcal{O}_{\psi})$ and $\mathbf{L} \in \text{Lin}(\mathcal{V}_{\chi}, \text{Lin}\mathcal{V}_{\phi})$. It is clear that $\operatorname{con}^{(\gamma,\psi)} \circ \operatorname{con}^{(\chi,\phi)}$ is of class C^{s-1} . Since $(\gamma,\psi), (\chi,\phi) \in \operatorname{Ch}\mathcal{M} \times \operatorname{Ch}(\mathcal{B},\mathcal{M})$ were arbitrary, it follows that $\{\operatorname{con}^{(\alpha,\phi)} \mid (\alpha,\phi) \in \operatorname{Ch}\mathcal{M} \times \operatorname{Ch}(\mathcal{B},\mathcal{M})\}$ is a C^{s-1} -bundle atlas of $\operatorname{Con}\mathcal{B}$; it determines the natural structure of a C^{s-1} flat-space bundle over \mathcal{M} .

The mappings ρ and in_x defined by (34.3) and (34.4) are easily seen to be of class C^{s-1} .

Definition: Let \mathcal{O} be an open subset of \mathcal{M} . A cross section on \mathcal{O} of the connector bundle Con \mathcal{B}

$$\mathbf{A}: \mathcal{O} \to \operatorname{Con} \mathcal{B} \tag{34.9}$$

is called a **connection on** \mathcal{O} for the bundle \mathcal{B} . A connection on \mathcal{M} for the bundle \mathcal{B} is simply called a connection for the bundle \mathcal{B} . For every bundle chart ϕ in Ch(\mathcal{B}, \mathcal{M}), the connection \mathbf{A}^{ϕ} on \mathcal{O}_{ϕ} is defined by

$$\mathbf{A}^{\phi}(x) := \mathbf{A}_{x}^{\phi} \qquad \text{for all} \quad x \in \mathcal{O}_{\phi}, \tag{34.10}$$

where \mathbf{A}_{x}^{ϕ} is given by (32.21).

Definition: The tangent-space of $\operatorname{Con} \mathcal{B}$ at \mathbf{K} is denoted by

$$T_{\kappa}Con \mathcal{B}.$$
 (34.11)

We define the projection mapping of $T_{\kappa}Con\mathcal{B}$ by

$$\mathbf{P}_{\mathbf{\kappa}} := \nabla_{\!\!\mathbf{\kappa}} \rho \in \operatorname{Lin}\left(\mathrm{T}_{\mathbf{\kappa}} \operatorname{Con} \mathcal{B}, \mathrm{T}_{x} \mathcal{M}\right) \tag{34.12}$$

and the injection mapping of $T_{\kappa}Con \mathcal{B}$ by

$$\mathbf{I}_{\kappa} := \nabla_{\!\!\kappa} \mathrm{in}_x \in \mathrm{Lin}\left(\mathrm{Lin}(\mathrm{T}_x\mathcal{M},\mathrm{Lin}\mathcal{B}_x),\mathrm{T}_{\kappa}\mathrm{Con}\,\mathcal{B}\right)$$
(34.13)

where ρ and in_x are defined by (34.3) and (34.4).

It is clear from (34.5) that

$$\dim (\operatorname{Con} \mathcal{B}) = \dim (\mathrm{T}_{\kappa} \operatorname{Con} \mathcal{B}) = n + nm^2.$$
(34.14)

Proposition 1: The projection mapping $\mathbf{P}_{\mathbf{K}}$ is surjective, the injection mapping $\mathbf{I}_{\mathbf{K}}$ is injective, and we haveNull $\mathbf{P}_{\mathbf{K}} = \operatorname{Rng} \mathbf{I}_{\mathbf{K}}$ (34.15)*i.e.* $\operatorname{Lin}(\operatorname{T}_{x}\mathcal{M},\operatorname{Lin}\mathcal{B}_{x}) \xrightarrow{\mathbf{I}_{\mathbf{K}}} \operatorname{T}_{\mathbf{K}}\operatorname{Con}\mathcal{B} \xrightarrow{\mathbf{P}_{\mathbf{K}}} \operatorname{T}_{x}\mathcal{M}$ (34.16)*is a short exact sequence.*

The short exact sequence (34.16) is of the form (15.1) and hence all of the results in Sect.15 can be used here.

Proposition 2: For each
$$(\chi, \phi) \in \operatorname{Ch}_{x} \mathcal{M} \times \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$$
, let
 $\mathbf{A}_{\mathbf{\kappa}}^{(\chi,\phi)} \in \operatorname{Lin}(\mathbf{T}_{x}\mathcal{M}, \mathbf{T}_{\mathbf{\kappa}}\operatorname{Con}\mathcal{B})$
be defined by $\mathbf{A}_{\mathbf{\kappa}}^{(\chi,\phi)} := \mathbf{A}_{\mathbf{\kappa}}^{\operatorname{con}^{(\chi,\phi)}}$ in terms of the notation (32.21); i.e.
 $\mathbf{A}_{\mathbf{\kappa}}^{(\chi,\phi)} := (\nabla_{\mathbf{\kappa}}\operatorname{con}^{(\chi,\phi)})^{-1} \circ \operatorname{ins}_{1}.$ (34.17)

Then $\mathbf{A}_{\mathbf{K}}^{(\chi,\phi)}$ is a linear right-inverse of $\mathbf{P}_{\mathbf{K}}$; i.e. $\mathbf{P}_{\mathbf{K}}\mathbf{A}_{\mathbf{K}}^{(\chi,\phi)} = \mathbf{1}_{\mathrm{T}_{x}\mathcal{M}}$.

Proposition 3: If $(\gamma, \psi), (\chi, \phi) \in \operatorname{Ch}_x \mathcal{M} \times \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$, with $\mathbf{A}_x^{\phi} = \mathbf{K} = \mathbf{A}_x^{\psi}$, then

$$\mathbf{A}_{\mathbf{K}}^{(\chi,\psi)} - \mathbf{A}_{\mathbf{K}}^{(\chi,\psi)} = \mathbf{I}_{\mathbf{K}} \mathbf{\Gamma}_{\mathbf{K}}^{(\chi,\psi),(\gamma,\psi)}$$
(34.18)

$$\Lambda(\mathbf{A}_{\mathbf{\kappa}}^{(\chi,\phi)}) - \Lambda(\mathbf{A}_{\mathbf{\kappa}}^{(\gamma,\psi)}) = -\mathbf{\Gamma}_{\mathbf{\kappa}}^{(\chi,\phi),(\gamma,\psi)}\mathbf{P}_{\mathbf{\kappa}}$$

where $\mathbf{\Gamma}_{\mathbf{K}}^{(\chi,\phi),(\gamma,\psi)} := \mathbf{\Gamma}_{\mathbf{K}}^{\mathrm{con}^{(\chi,\phi)},\mathrm{con}^{(\gamma,\psi)}}$ in terms of the notation (32.25) is given by

$$\mathbf{\Gamma}_{\mathbf{\kappa}}^{(\chi,\phi),(\gamma,\psi)}(\mathbf{t},\mathbf{t}') = (\psi \rfloor_{x})^{-1} \big(\nabla_{\gamma(x)}^{(2)}(\psi \diamond \phi) (\nabla_{x} \gamma \,\mathbf{t}, \nabla_{x} \gamma \,\mathbf{t}') \big) \phi \big]_{x}$$
(34.19)

for all $\mathbf{t}, \mathbf{t}' \in \mathrm{T}_x \mathcal{M}$. We have $\mathbf{I}_{\mathbf{K}}^{(\chi,\phi),(\gamma,\psi)} \in \mathrm{Sym}_2(\mathrm{T}_x \mathcal{M}^2, \mathrm{Lin}\mathcal{B}_x)$. Here, the notation (22.7) is used.

Proof: Let $(\gamma, \psi), (\chi, \phi) \in \operatorname{Ch}_x \mathcal{M} \times \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$, with $\mathbf{A}_x^{\phi} = \mathbf{K} = \mathbf{A}_x^{\psi}$, be given. Then, we have $\nabla_x(\psi \diamond \phi) = \mathbf{\Lambda}(\mathbf{A}_x^{\phi})(\mathbf{K}) = \mathbf{0}$. It follows from (34.6) that

$$\operatorname{con}^{(\chi,\phi)} \rfloor_{x}(\mathbf{K}) = \mathbf{0}.$$
(34.20)

Using (34.8), (34.20) and (33.25), we obtain

(

$$\begin{aligned} & (\cos^{(\gamma,\psi)} \circ \cos^{(\chi,\phi)} \stackrel{\leftarrow}{\to})(z, \cos^{(\chi,\phi)}]_{x}(\mathbf{K})) \\ &= \left(z, \nabla_{z}(\psi \diamond \phi) \left(\nabla_{z} \gamma^{-1} \times (\phi]_{z} \circ \psi]_{z}^{-1})\right)\right). \end{aligned} (34.21)$$

Taking the gradient of (34.21) with respect to z at x and observing $\nabla_x(\psi \diamond \phi) = \mathbf{0}$, we have

$$ev_{2} \Big(\nabla_{x} \big((\operatorname{con}^{(\gamma,\psi)} \Box \operatorname{con}^{(\chi,\phi)} \big) \big(\cdot, \operatorname{con}^{(\chi,\phi)} \big|_{x} (\mathbf{K}) \big) \big) \mathbf{t} \Big) \\
= \big(\big(\nabla_{\gamma(x)}^{(2)} (\psi \diamond \phi) \big) \nabla_{x} \gamma \, \mathbf{t} \big) (\mathbf{1}_{\mathcal{V}_{\gamma}} \times (\phi \big|_{x} \circ \psi \big|_{x}^{-1})) \tag{34.22}$$

for all $\mathbf{t} \in T_x \mathcal{M}$. Using (34.22), (34.6) with (χ, ϕ) replaced by (γ, ψ) and applying Prop. 3 in Sect. 32 with ϕ replaced by $\operatorname{con}^{(\chi,\phi)}$ and ψ replaced by $\operatorname{con}^{(\gamma,\psi)}$, we obtain the desired result (34.19).

If $\phi, \psi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$, with $\mathbf{A}_x^{\phi} = \mathbf{K} = \mathbf{A}_x^{\psi}$, we have $\mathbf{\Gamma}_x^{\phi,\psi} = \mathbf{0}$ by (33.25). It follows from (21.9) that the right hand side of (34.19) does not depend on the manifold charts $\chi, \gamma \in \operatorname{Ch}_x \mathcal{M}$. In particular, when $\psi = \phi$ we have $\mathbf{A}_{\mathbf{K}}^{(\chi,\phi)} = \mathbf{A}_{\mathbf{K}}^{(\gamma,\phi)}$ for all manifold charts $\chi, \gamma \in \operatorname{Ch}_x \mathcal{M}$.

By using the definition of the gradient

$$\nabla_{x} \mathbf{A}^{\phi} = (\nabla_{\!\mathbf{K}} \mathrm{con}^{\chi,\phi})^{-1} \nabla_{\!\chi(x)} \big(\mathrm{con}^{\chi,\phi} \, {}_{^{\mathrm{o}}} \, \mathbf{A}^{\phi} \, {}_{^{\mathrm{o}}} \, \chi^{\leftarrow} \big) \nabla_{\!x} \chi$$

and (34.6), we can easily seen that for every bundle chart $\phi \in Ch_x(\mathcal{B}, \mathcal{M})$ with $\mathbf{A}_x^{\phi} = \mathbf{K}$

$$\nabla_{\!\!x} \mathbf{A}^{\phi} = \mathbf{A}_{\mathbf{K}}^{(\chi,\phi)} \quad \text{for all} \quad \chi \in \mathrm{Ch}_{x} \mathcal{M}. \tag{34.23}$$

for all bundle charts $\phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$ with $\mathbf{A}_x^{\phi} = \mathbf{K}$.

Proof: The assertion follows from (34.23) together with (34.18) and (34.19).

Definition: The bracket $\mathbf{B}_{\kappa} \in \operatorname{Skw}_2(T_{\kappa} \operatorname{Con} \mathcal{B}^2, T_x \mathcal{M})$ of $T_{\kappa} \operatorname{Con} \mathcal{B}$ is defined by

$$\mathbf{B}_{\mathbf{K}} := \mathbf{B}_{\mathcal{F}_{\mathbf{K}}} \tag{34.25}$$

where $\mathbf{B}_{\mathcal{F}_{\mathbf{K}}}$ is defined as in (15.5).

Definition: Let $\mathbf{A} : \mathcal{M} \to \operatorname{Con} \mathcal{B}$ be a connection which is differentiable at x. The curvature of \mathbf{A} at x, denoted by

$$\mathbf{R}_x(\mathbf{A}) \in \operatorname{Skw}_2(\operatorname{T}_x \mathcal{M}^2, \operatorname{Lin} \mathcal{B}_x),$$
 (34.26)

is defined by

$$\mathbf{R}_{x}(\mathbf{A}) := \mathbf{T}_{\mathcal{F}_{\mathbf{A}(x)}}(\nabla_{x}\mathbf{A})$$
(34.27)

where $\mathbf{T}_{\mathcal{F}_{\mathbf{A}(x)}}$ is defined as in (15.8).

If \mathbf{A} is differentiable, then the mapping $\mathbf{R}(\mathbf{A}) : \mathcal{M} \to \operatorname{Skw}_2(\operatorname{Tan}\mathcal{M}^2, \operatorname{Lin}\mathcal{B})$ defined by

$$\mathbf{R}(\mathbf{A})(x) := \mathbf{R}_x(\mathbf{A})$$
 for all $x \in \mathcal{M}$

is called the **curvature field** of the connection **A**.

A fomula for the curvature field $\mathbf{R}(\mathbf{A})$ in terms of covariant gradients will be given in Prop. 5. If the connection \mathbf{A} is of class \mathbf{C}^p , with $p \in 1..s - 1$, then $\nabla \mathbf{A}$ is of class \mathbf{C}^{p-1} , and so is the curvature field $\mathbf{R}(\mathbf{A})$.

More generally, if $\phi, \psi \in Ch_x(\mathcal{B}, \mathcal{M})$, without assuming that $\mathbf{A}_x^{\phi} = \mathbf{K} = \mathbf{A}_x^{\psi}$, then Eq. (34.19) must be replaced by

$$\mathbf{\Gamma}_{\mathbf{K}}^{(\chi,\phi),(\gamma,\psi)}(\mathbf{t},\mathbf{t}') = -\mathbf{\Gamma}_{x}^{\phi,\psi}(\mathbf{t})\mathbf{\Gamma}_{x}^{\phi}(\mathbf{K})(\mathbf{t}') + \mathbf{\Gamma}_{x}^{\phi}(\mathbf{K})(\mathbf{t}')\mathbf{\Gamma}_{x}^{\phi,\psi}(\mathbf{t}) + \mathbf{\Gamma}_{x}^{\phi}(\mathbf{K})\mathbf{\Gamma}_{x}^{\chi,\gamma}(\mathbf{t},\mathbf{t}')
- \mathbf{\Gamma}_{x}^{\phi,\psi}(\mathbf{t}')\mathbf{\Gamma}_{x}^{\phi,\psi}(\mathbf{t}) + (\psi \rfloor_{x})^{-1} \big(\nabla_{\gamma}^{(2)}(\psi \diamond \phi) \big)(x) (\nabla_{x}\gamma \,\mathbf{t}, \nabla_{x}\gamma \,\mathbf{t}')\phi \big]_{x}$$
(34.28)

for all $\mathbf{t}, \mathbf{t}' \in T_x \mathcal{M}$. If one of those two bundle charts, say ϕ , satisfies $\mathbf{A}_x^{\phi} = \mathbf{K}$, then it follows from (34.28), $\mathbf{\Gamma}_x^{\phi}(\mathbf{K}) = \mathbf{0}$ and $-\mathbf{\Gamma}_x^{\phi,\psi} = \mathbf{\Gamma}_x^{\psi}(\mathbf{K})$ that

$$\mathbf{\Gamma}_{\mathbf{K}}^{(\chi,\phi),(\gamma,\psi)}(\mathbf{t},\mathbf{t}') = -\mathbf{\Gamma}_{x}^{\psi}(\mathbf{K})\mathbf{t}'\mathbf{\Gamma}_{x}^{\psi}(\mathbf{K})\mathbf{t} + (\psi \rfloor_{x})^{-1} \big(\nabla_{\gamma}^{(2)}(\psi \diamond \phi)\big)(x)(\nabla_{x}\gamma \,\mathbf{t},\nabla_{x}\gamma \,\mathbf{t}')\phi \big]_{x}$$
(34.29)

for all $\mathbf{t}, \mathbf{t}' \in T_x \mathcal{M}$.

Proposition 5: Let $\mathbf{A} : \mathcal{M} \to \operatorname{Con} \mathcal{B}$ be a connection that is differentiable at $x \in \mathcal{M}$. The curvature of \mathbf{A} at x is given by

$$\begin{aligned} \left(\mathbf{R}_{x}(\mathbf{A}) \right)(\mathbf{s},\mathbf{t}) &= \left(\nabla_{x}^{\gamma,\psi} \mathbf{\Gamma}^{\psi}(\mathbf{A}) \right)(\mathbf{s},\mathbf{t}) - \left(\nabla_{x}^{\gamma,\psi} \mathbf{\Gamma}^{\psi}(\mathbf{A}) \right)(\mathbf{t},\mathbf{s}) \\ &+ \left(\mathbf{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{s} \mathbf{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{t} - \mathbf{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{t} \mathbf{\Gamma}_{x}^{\psi}(\mathbf{A}(x)) \mathbf{s} \right) \end{aligned}$$
(34.30)

for all $(\gamma, \psi) \in \operatorname{Ch}_x \mathcal{M} \times \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$ and all $\mathbf{s}, \mathbf{t} \in \operatorname{T}_x \mathcal{M}$.

Proof: Let a bundle chart $(\gamma, \psi) \in \operatorname{Ch}_x \mathcal{M} \times \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$ be given. It follows from (42.6) and $\Lambda(\mathbf{A}_z^{\psi})(\mathbf{A}(z)) = -\mathbf{\Gamma}_z^{\psi}(\mathbf{A}(z))$ that

$$\operatorname{con}^{(\gamma,\psi)} \circ \mathbf{A}(z) = \left(z, -\psi \rfloor_{z} \mathbf{\Gamma}_{z}^{\psi}(\mathbf{A}(z)) \left(\nabla_{z} \gamma^{-1} \times \psi \rfloor_{z}^{-1} \right) \right)$$
(34.31)

In view of (32.29), we have

$$\begin{aligned} \mathbf{\Lambda}(\mathbf{A}_{\mathbf{A}(x)}^{(\gamma,\psi)})(\nabla_{x}\mathbf{A}) &= \operatorname{con}^{(\gamma,\psi)} \big]_{x}^{-1} \left(\operatorname{ev}_{2} \circ \nabla_{\mathbf{A}(x)} \left(\operatorname{con}^{(\gamma,\psi)} \right) \right) \left(\nabla_{x}\mathbf{A} \right) \\ &= \operatorname{con}^{(\gamma,\psi)} \big]_{x}^{-1} \operatorname{ev}_{2} \circ \left(\nabla_{x} \left(\operatorname{con}^{(\gamma,\psi)} \circ \mathbf{A} \right) \right) \\ &= \nabla_{x} \left(z \mapsto -\psi \big]_{x}^{-1} \psi \big]_{z} \mathbf{\Gamma}_{z}^{\psi} (\mathbf{A}(z)) (\nabla_{z}\gamma^{-1} \nabla_{x}\gamma \times \psi \big]_{z}^{-1} \psi \big]_{x} \right) \right) \end{aligned}$$
(34.32)

By using

$$\mathbf{A}_x^{\gamma} = \nabla_{\!\!x}(z \mapsto \nabla_{\!\!z} \gamma^{-1} \nabla_{\!\!x} \gamma) \quad , \quad \mathbf{A}_x^{\psi} = \nabla_{\!\!x}(z \to \psi \big]_z^{-1} \psi \big]_x)$$

and (42.38), we observe that

$$\begin{split} \mathbf{\Lambda}(\mathbf{A}_{\mathbf{A}(x)}^{(\gamma,\psi)})(\nabla_{\!x}\mathbf{A}) &= \nabla_{\!x} \Big(z \mapsto -\psi \big\rfloor_x^{-1} \psi \big\rfloor_z \mathbf{\Gamma}_z^{\psi}(\mathbf{A}(z))(\nabla_{\!z}\gamma^{-1}\nabla_{\!x}\gamma \times \psi \big\rfloor_z^{-1} \psi \big\rfloor_x) \Big) \\ &= - \big(\Box_x \mathbf{\Gamma}^{\psi}(\mathbf{A}) \big) (\mathbf{A}_x^{\gamma}, \mathbf{A}_x^{\psi}) \\ &= - \nabla_x^{\gamma,\psi} \mathbf{\Gamma}^{\psi}(\mathbf{A}). \end{split}$$

Together with (42.27) and (42.29), we prove (34.12).

Remark : When the linear-space bundle \mathcal{B} is the tangent bundle $T\mathcal{M}$, we have

$$\begin{aligned} \left(\mathbf{R}_x(\mathbf{A}) \right)(\mathbf{s}, \mathbf{t}) &= \left(\nabla_x^{\chi} \mathbf{\Gamma}^{\chi}(\mathbf{A}) \right)(\mathbf{s}, \mathbf{t}) - \left(\nabla_x^{\chi} \mathbf{\Gamma}^{\chi}(\mathbf{A}) \right)(\mathbf{t}, \mathbf{s}) \\ &+ \left(\mathbf{\Gamma}_x^{\chi}(\mathbf{A}(x)) \mathbf{s} \mathbf{\Gamma}_x^{\chi}(\mathbf{A}(x)) \mathbf{t} - \mathbf{\Gamma}_x^{\chi}(\mathbf{A}(x)) \mathbf{t} \mathbf{\Gamma}_x^{\chi}(\mathbf{A}(x)) \mathbf{s} \right) \end{aligned}$$
(34.33)

for all manifold chart $\chi \in Ch_x \mathcal{M}$ and all $\mathbf{s}, \mathbf{t} \in T_x \mathcal{M}$.

If a transport $\mathbf{T} : \mathcal{M} \to \text{Tlis}_x \mathcal{M}$ from x is differentiable at y, we define the **connector-gradient**, $\nabla_y \mathbf{T} \in \text{Lin}(\mathcal{T}_y, \mathcal{S}_y)$, of \mathbf{T} at y by

$$\nabla_{y} \mathbf{T} := \nabla_{y} \left(z \mapsto \mathbf{T}(z) \mathbf{T}(y)^{-1} \right). \tag{34.34}$$

Theorem : A connection $\mathbf{A} : \mathcal{M} \to \operatorname{Con}\mathcal{B}$ is curvature-free if and only if, locally \mathbf{A} agrees with \mathbf{A}^{ϕ} for some bundle chart $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$. In other word, for every $x \in \mathcal{M}$, there is an open neighbourhood \mathcal{N}_x of x and a transport $\mathbf{T} : \mathcal{N}_x \to \operatorname{Tlis}_x \mathcal{M}$ from x such that $\nabla \mathbf{T} = \mathbf{A}|_{\mathcal{N}_x}$

35. Parallelisms, Geodesics

Let a connector $\mathbf{K} \in \operatorname{Con} \mathcal{B}$ be given and put $x := \rho(\mathbf{K})$.

We now apply the results of Sect. 32 by replacing the ISO-bundle there by the flat-space bundle $\operatorname{Con} \mathcal{B}$ and $\mathbf{b} \in \mathcal{B}$ there by **K**.

Definition: The shift bundle S \mathcal{B} of $(\mathcal{B}, \tau, \mathcal{M})$ is defined to be the union of all the shift spaces of \mathcal{B} :

$$S\mathcal{B} := \bigcup_{y \in \mathcal{M}} S_y \mathcal{B}.$$
 (35.1)

It is endowed with the structure of a C^{r-2} -manifold.

We defined the mapping $\sigma : S\mathcal{B} \to \mathcal{M}$ by

$$\sigma(\mathbf{s}) :\in \{ y \in \mathcal{M} \mid \mathbf{s} \in S_y \mathcal{B} \},$$
(35.2)

and every $y \in \mathcal{M}$ the mapping $in_y : S_y \mathcal{B} \to S \mathcal{B}$ by

$$\operatorname{in}_y := \mathbf{1}_{\mathrm{S}_y \mathcal{B} \subset \mathrm{S} \mathcal{B}} \,. \tag{35.3}$$

We define the **projection** $\mathbf{P} : S\mathcal{B} \to T\mathcal{M}$ by

 $\mathbf{P}(\mathbf{s}) := \mathbf{P}_{\sigma(\mathbf{s})} \mathbf{s} \quad \text{for all} \quad \mathbf{s} \in S\mathcal{B}$ (35.4)

and the **injection** \mathbf{I} : Lin $\mathcal{B} \to S\mathcal{B}$ by

 $\mathbf{I}(\mathbf{L}) := \mathbf{I}_{\tau^{\mathrm{Ln}}(\mathbf{L})} \, \mathbf{L} \qquad \text{for all} \qquad \mathbf{L} \in \mathrm{Lin} \, \mathcal{B} \tag{35.5}$

where Ln is the lineon functor (see Sect.13) and

$$\operatorname{Lin} \mathcal{B} := \operatorname{Ln}(\mathcal{B}) = \bigcup_{y \in \mathcal{M}} \operatorname{Lin} \mathcal{B}_y.$$
(35.6)

We have

 $pt(\mathbf{P}(\mathbf{s})) = \sigma(\mathbf{s})$ for all $\mathbf{s} \in S\mathcal{B}$ (35.7)

and

$$\sigma(\mathbf{I}\,\mathbf{L}) = \tau^{\mathrm{Ln}}(\mathbf{L}) \qquad \text{for all} \qquad \mathbf{L} \in \mathrm{Lin}\,\mathcal{B}. \tag{35.8}$$

It is easily seen that **P** and **I** are of class C^{r-2} .

We now fix $x \in \mathcal{M}$ and consider the bundle $\text{Tlis}_x \mathcal{B}$ of transfer-isomorphism from x as defined by (32.2). A mapping of the type

$$\mathbf{T}: [0, d] \to \mathrm{Tlis}_x \mathcal{B} \quad \text{with} \quad \mathbf{T}(0) = \mathbf{1}_{\mathcal{B}_x} ,$$
 (35.9)

where $d \in {}^{\times}$, will be called a **transfer-process** of \mathcal{B} from x. If **T** is differentiable at a given $t \in [0, d]$, we defined the **shift-derivative** $\operatorname{sd}_t \mathbf{T} \in \operatorname{S}_{\pi_x(\mathbf{T}(t))}\mathcal{B}$ at t of **T** by

$$\operatorname{sd}_t \mathbf{T} := \partial_t \left(s \mapsto \mathbf{T}(s)\mathbf{T}(t)^{-1} \right) .$$
 (35.10)

We have

$$\sigma\left(\mathrm{sd}_{t}\mathbf{T}\right) = \pi_{x}\left(\mathbf{T}(t)\right) , \qquad (35.11)$$

when π_x is defined by (32.3). If **T** is differentiable, we define the **shift-derivative** (-process) sd**T** : $[0, d] \rightarrow S\mathcal{B}$ by

$$(\operatorname{sd}\mathbf{T})(t) := \operatorname{sd}_t\mathbf{T}$$
 for all $t \in [0, d]$. (35.12)

If **T** is of class C^s , $s \in 1..(r-2)$, then sd**T** is of class C^{s-1} .

Proposition 1: Let $\mathbf{T} : [0,d] \to \text{Tlis}_x \mathcal{B}$ be a transfer-process of \mathcal{B} from x and put

$$p := \pi_x \circ \mathbf{T} = \sigma \circ (\mathrm{sd}\mathbf{T}) : [0, d] \to \mathcal{M}.$$
(35.13)

Then p is differentiable and

$$\mathbf{P} \circ (\mathrm{sd}\mathbf{T}) = p^{\cdot} \ . \tag{35.14}$$

Proof: Let $t \in [0, d]$ be given and put y := p(t). Then $\mathbf{T}(s)\mathbf{T}(t)^{-1} \in \text{Tlis}_{u}\mathcal{B}$ and

$$\pi_y\left(\mathbf{T}(s)\mathbf{T}(t)^{-1}\right) = \pi_x\left(\mathbf{T}(s)\right) = p(s)$$

for all $s \in [0, d]$. Differentiation with respect to s at t, using (35.10), (32.10), and the chain rule, gives $\mathbf{P}_{y}(\mathrm{sd}_{t}\mathbf{T}) = p^{\cdot}(t)$. Since $t \in [0, d]$ was arbitrary, (35.14) follows.

Proposition 2: Let **T** be a differentiable transfer-process from x and let p be defined as in Prop. 1. Assume, moreover, that $\phi \in \operatorname{Ch}_x(\mathcal{B}, \mathcal{M})$ is a chart such that $\operatorname{Rng} p \subset \mathcal{O}_{\phi}$. If we define $\mathbf{H} : [0,d] \to \operatorname{Lis}\mathcal{B}_x$ and $\mathbf{V} : [0,d] \to \operatorname{Lin}\mathcal{B}_x$ by

$$\mathbf{H}(t) := (\phi \rfloor_{\boldsymbol{y}}) \mathbf{T}(t) \tag{35.15}$$

and

$$\mathbf{V}(t) := \phi \big|_{y} \left(\mathbf{\Lambda}(\mathbf{A}_{y}^{\phi})(\mathrm{sd}_{t}\mathbf{T}) \right) (\phi \big|_{y})^{-1}$$
(35.16)

when y := p(t) and $t \in [0, d]$, then

$$\mathbf{H} = \mathbf{V}\mathbf{H} \quad , \quad \mathbf{H}(0) = \mathbf{1}_{\mathcal{B}_x} \quad . \tag{35.17}$$

Proof: Let $t \in [0, d]$ be given and put y := p(t). Using (32.6) with x replaced by y and **T** by $\mathbf{T}(s)\mathbf{T}(t)^{-1}$, we obtain from (35.15) that

$$\operatorname{tlis}_{y}^{\phi}(\mathbf{T}(s)\mathbf{T}(t)^{-1}) = \left(p(s) , \phi \rfloor_{y} \mathbf{H}(s)\mathbf{H}(t)^{-1}(\phi \rfloor_{y})^{-1} \right) \text{ for all } s \in [0,d].$$

In view of (31.30) with ϕ replaced by tlis^{ϕ} and (35.10) we conclude that

$$\left(\nabla_{\mathbf{I}_{\mathbf{T}_{y}}} \operatorname{tlis}_{y}^{\phi}\right)(\operatorname{sd}_{t}\mathbf{T}) = \left(p^{\cdot}(t), \phi \right]_{y}(\mathbf{H}^{\cdot}\mathbf{H}^{-1})(t)(\phi \right]_{y})^{-1}.$$

Comparing this result with (31.29) and (35.16), and using the injectivity of $\nabla_{\mathbf{I}_{\mathbf{T}_x}} \operatorname{tlis}_y^{\phi}$, we obtain $(\mathbf{H}^{\cdot}\mathbf{H}^{-1})(t) = \mathbf{V}(t)$. Since $t \in [0, d]$ was arbitrary, (35.17)₁ follows. Since both $\phi \rfloor_x = \mathbf{1}_{\mathcal{B}_x}$ and $\mathbf{T}(0) = \mathbf{1}_{\mathcal{B}_x}$, (35.17)₂ is a direct consequence of (35.15).

Theorem on Shift-Processes: Let $\mathbf{U} : [0,d] \to S\mathcal{B}$, with $d \in \times$, be a continuous shift-process of \mathcal{B} such that $p := \sigma \circ \mathbf{U}$ is differentiable and

$$\mathbf{P} \circ \mathbf{U} = p^{\cdot} : [0, d] \to \operatorname{Tan} \mathcal{M} .$$
 (35.18)

Then there exists exactly one transfer-process $\mathbf{T} : [0,d] \to \mathrm{Tlis}_x \mathcal{B}$ of \mathcal{B} from x := p(0), of class C^1 , such that $\mathrm{sd}\mathbf{T} = \mathbf{U}$.

Proof: Assume first that $\phi \in Ch(\mathcal{B}, \mathcal{M})$ can be chosen such that $\operatorname{Rng} p \subset \operatorname{Dom} \chi$. Define $\overline{\mathbf{V}} : [0, d] \to \operatorname{Lin} \mathcal{V}_{\phi}$ by

$$\overline{\mathbf{V}}(t) := (\phi \rfloor_y) \left(\mathbf{\Lambda}(\mathbf{A}_y^{\phi}) \mathbf{U}(t) \right) (\phi \rfloor_y)^{-1} \quad \text{when} \quad y := p(t).$$
(35.19)

Since U is continuous, so is $\overline{\mathbf{V}}$. Let $\overline{\mathbf{H}} : [0, d] \to \operatorname{Lin} \mathcal{V}_{\phi}$ be the unique solution of the initial value problem

?
$$\overline{\mathbf{H}}$$
 , $\overline{\mathbf{H}} = \overline{\mathbf{V}} \overline{\mathbf{H}}$, $\overline{\mathbf{H}}(0) = \mathbf{1}_{\mathcal{V}_{\phi}}$. (35.20)

This solution is of class C^1 .

Now, if **T** is a process that satisfies the conditions, then $\overline{\mathbf{V}}$, as defined by (35.19), coincides with **V**, as defined by (35.16). Therefore, by Prop. 2, we have $\mathbf{H} = \overline{\mathbf{H}}$ and hence **T** must be given by

$$\mathbf{T}(t) = (\phi \rfloor_{p(t)})^{-1} \overline{\mathbf{H}}(t) \phi \rfloor_x \quad \text{for all} \quad t \in [0, d].$$
(35.21)

On the other hand, if we define **T** by (35.21) and then **H** and **V** by (35.15) and (35.16), we have $\pi_x \circ \mathbf{T} = p$, $\overline{\mathbf{H}} = \mathbf{H}$, and $\overline{\mathbf{V}} = \mathbf{V}$. Thus, using (31.30) with ϕ replaced by tlis^{ϕ}_u and (35.19), we conclude that

$$(\nabla_{\mathbf{l}_{\mathcal{B}_y}} \operatorname{tlis}_y^{\phi})(\operatorname{sd}_t \mathbf{T}) = (\nabla_{\mathbf{l}_{\mathcal{B}_y}} \operatorname{tlis}_y^{\phi})(\mathbf{U}(t)) \quad \text{when} \quad y := p(t)$$

for all $t \in [0, d]$. Since $\nabla_{\mathbf{I}_{\mathcal{B}_y}} \operatorname{tlis}_y^{\phi}$ is injective for all $y \in \mathcal{M}$, we conclude that $\mathbf{U} = \operatorname{sd} \mathbf{T}$.

There need not be a single bundle chart $\phi \in Ch(\mathcal{B}, \mathcal{M})$ such that $\operatorname{Rng} p \subset$ Dom χ . However, since $\operatorname{Rng} p$ is a compact subset of \mathcal{M} , we can find a finite set $\mathfrak{F} \subset Ch\mathcal{M}$ such that

$$\operatorname{Rng} p \subset \bigcup_{\chi \in \mathfrak{F}} \operatorname{Dom} \chi.$$

We can then determine a strictly isotone list $(a_i | i \in (m+1)^{\lceil})$ in such that $a_0 = 0, a_m = d$ and such that, for each $i \in m^{\lceil}, p_{>}([a_i, a_{i+1}])$ is included in a single chart belonging to \mathfrak{F} . By applying the result already proved, for each $i \in m^{\lceil}$, to the case when **U** is replaced by

$$(t \mapsto \mathbf{U}(a_i + t)) : [0, a_{i+1} - a_i] \to S\mathcal{B},$$

one easily sees that the assertion of the theorem is valid in general.

We assume now that a continuous connection \mathbf{C} is prescribed.

Let $d \in {}^{\times}$ and a process $p : [0,d] \to \mathcal{M}$ of class C^1 be given and put x := p(0). We define the shift process $\mathbf{U} : [0,d] \to S\mathcal{B}$ by

$$\mathbf{U}(t) := \mathbf{C}(p(t))p^{\cdot}(t) \quad \text{for all} \quad t \in [0, d].$$
(35.22)

Clearly, **U** is continuous and, since $\mathbf{P}_{y}\mathbf{C}(y) = \mathbf{1}_{T_{y}}$ for all $y \in \mathcal{M}$, (35.18) is valid. Hence, by the Theorem on Shift Processes there is a unique transfer process $\mathbf{T}: [0, d] \to \text{Tlis}_{x}\mathcal{B}$ of class C^{1} such that

$$\mathrm{sd}\mathbf{T} = (\mathbf{C} \circ p)p^{\cdot} . \tag{35.23}$$

This process is called the **parallelism along** p for the connection **C**.

Let $\mathbf{H} : [0, d] \to \mathbf{\Phi}(\mathcal{B})$ be a process on $\mathbf{\Phi}(\mathcal{B})$ and put $p := \tau \circ \mathbf{H}$. We say that \mathbf{H} is a **parallel process** for \mathbf{C} if $\mathbf{H}(0) \neq \mathbf{0}$ and if

$$\mathbf{H}(t) = \mathbf{\Phi}(\mathbf{T}(t))\mathbf{H}(0) \quad \text{for all} \quad t \in [0, d] \quad (35.24)$$

n	2
4	J

where \mathbf{T} is the parallelism along p for \mathbf{C} .

Let $\mathbf{H} : [0, d] \to \mathbf{\Phi}(\mathcal{B})$ be a process on $\mathbf{\Phi}(\mathcal{B})$ and let \mathbf{T} be the parallelism along $p := \tau^{\mathbf{\Phi}} \circ \mathbf{H}$ for the connection \mathbf{C} . Given $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$ that satisfies $\operatorname{Rng} p \subset \mathcal{O}_{\phi}$. Define $(\mathbf{H}^{\phi})^{\bullet} : [0, d] \to \tau^{<}(\operatorname{Rng} p)$ and $(\mathbf{H}^{T})^{\bullet} : [0, d] \to \tau^{<}(\operatorname{Rng} p)$ by

for all $t \in [0, d]$.

Proposition 3: A process $\mathbf{H} : [0,d] \to \mathbf{\Phi}(\mathcal{B})$ is parallel with respect to \mathbf{C} if and only if \mathbf{H} is of class C^1 and satisfies the differential equation

$$\mathbf{0} = \left(\mathbf{H}^{T}\right)^{\bullet} = \left(\mathbf{H}^{\phi}\right)^{\bullet} + \boldsymbol{\Phi}^{\bullet}\left(\left(\boldsymbol{\Gamma}^{\phi}(\mathbf{C}) \circ p\right) p^{\bullet}\right)\mathbf{H}.$$
 (35.26)

We assume now that the linear space bundle \mathcal{B} is the tangent bundle $T\mathcal{M}$ and that a continuous connection $\mathbf{C}: \mathcal{M} \to \text{Con}T\mathcal{M}$ for $T\mathcal{M}$ is prescribed.

We say that $p: [0, d] \to \mathcal{M}$ is a **geodesic process** for **C** if $p^{\bullet}(0) \neq \mathbf{0}$ and if

$$\mathbf{T}(t)p^{\bullet}(0) = p^{\bullet}(t) \quad \text{for all} \quad t \in [0, d],$$
(35.28)

where **T** is the parallelism along p for **C**, i.e. p^{\bullet} is parallel with respect to the parallelism **T**.

Let $p: [0, d] \to \mathcal{M}$ be a process of class C^1 such that $p^{\bullet}(0) \neq \mathbf{0}$ and given $\chi \in \operatorname{Ch}\mathcal{M}$ that satisfies $\operatorname{Rng} p \subset \operatorname{Dom} \chi$. Define $\overline{p}: [0, d] \to \operatorname{Cod} \chi$ by $\overline{p} := \chi \circ p$ and $\overline{\Gamma}: \operatorname{Cod} \chi \to \operatorname{Lin}_2(\mathcal{V}^2_{\chi}, \mathcal{V}_{\chi})$ by

$$\overline{\mathbf{\Gamma}}(z) := \nabla_{\!\!y} \chi \, \mathbf{\Gamma}_{\!y}^{\chi}(\mathbf{C}(y)) \circ (\nabla_{\!\!y} \chi^{-1} \times \nabla_{\!\!y} \chi^{-1}) \quad \text{when} \quad y := \chi^{\leftarrow}(z), \qquad (35.29)$$

where $\Gamma_{\!\!u}^{\chi}$ is defined by (33.3).

Proposition 4: The process p is a geodedic process if and only if \overline{p} is of class C^2 and satisfies the differential equation

$$\overline{p}^{\bullet\bullet} + \left(\overline{\Gamma} \circ \overline{p}\right) \left(\overline{p}^{\bullet}, \overline{p}^{\bullet}\right) = \mathbf{0} .$$
(35.30)

Geodesic Deviations: Study the derivative of (35.26)???

36. Holonomy

Let a continuous connection $\mathbf{C} : \mathcal{M} \to \operatorname{Con}\mathcal{B}$ be given. For every C^1 process $p : [0, d_p] \to \mathcal{M}$ there is exactly one parallelism $\mathbf{T}_p : [0, d_p] \to \operatorname{Tlis}_x \mathcal{B}$ from x := p(0) along p for the connection \mathbf{C} . The **reverse process** $p^- : [0, d_p] \to \mathcal{M}$ of $p : [0, d_p] \to \mathcal{M}$ is given by

$$p^{-}(t) := p(d_p - t) \quad \text{for all} \quad t \in [0, d_p].$$

Proposition 1: Let $p^-: [0, d_p] \to \mathcal{M}$ be the reverse process of a C^1 process $p: [0, d_p] \to \mathcal{M}$. We have

$$\mathbf{T}_{p^{-}}(t) = \mathbf{T}_{p}(d_{p} - t)\mathbf{T}_{p}^{-1}(d_{p}) \quad \text{for all} \quad t \in [0, d_{p}].$$
(36.1)

Let C¹ processes $p: [0, d_p] \to \mathcal{M}$ and $, q: [0, d_q] \to \mathcal{M}$ with $q(0) = p(d_p)$ be given. We define the **continuation process** $q * p: [0, d_p + d_q] \to \mathcal{M}$ of p with q by

$$(q * p)(t) := \begin{cases} p(t) & t \in [0, d_p], \\ q(t - d_p) & t \in [d_p, d_p + d_q]. \end{cases}$$
(36.2)

If in addition that $q^{\bullet}(0) = p^{\bullet}(d_p)$, then the continuation process q * p is of class C^1 and

$$\mathbf{T}_{q*p}(t) = \begin{cases} \mathbf{T}_p(t) & t \in [0, d_p], \\ \mathbf{T}_q(t - d_p)\mathbf{T}_p(d_p) & t \in [d_p, d_p + d_q]. \end{cases}$$
(36.3)

<u>Definition</u>: For every pair of C^1 processes $p : [0, d_p] \to \mathcal{M}$ and $, q : [0, d_q] \to \mathcal{M}$ with $q(0) = p(d_p)$ be given. We define the piecewise parallelism (along q * p)

$$\mathbf{T}_{q*p}: [0, d_p + d_q] \to \mathrm{Tlis}_x \mathcal{B} \quad \text{where} \quad x := p(0)$$

by

$$\mathbf{T}_{q*p}(t) := \begin{cases} \mathbf{T}_p(t) & t \in [0, d_p], \\ \mathbf{T}_q(t - d_p) \mathbf{T}_p(d_p) & t \in [d_p, d_p + d_q]. \end{cases}$$
(36.4)

In view of (36.1), if $q := p^-$ we have $\mathbf{T}_{p^-}(t - d_p)\mathbf{T}_p(d_p) = \mathbf{T}_p(2d_p - t)$ and hence $\mathbf{f} \mathbf{T}_p(t)$ $t \in [0, d_p].$

$$\mathbf{T}_{-p*p}(t) := \begin{cases} \mathbf{T}_p(t) & t \in [0, d_p], \\ \mathbf{T}_p(2d_p - t) & t \in [d_p, 2d_p]. \end{cases}$$
(36.5)

In particular, $\mathbf{T}_{p^-*p}(2d_p) = \mathbf{T}_{-p*p}(0) = \mathbf{1}_{\mathcal{B}_x}$.

Let \mathcal{O} be an open neighboorhood of $x \in \mathcal{M}$ and let $\mathcal{L}(\mathcal{O}, x)$ be the set of all piecewise C^1 loops $p : [0, d_p] \to \mathcal{M}$ at x with $\operatorname{Rng} p \subset \mathcal{O}$. It is easily seen that $(\mathcal{L}(\mathcal{O}, x), *)$ is a group. We also use the following notation

$$\mathcal{H}(\mathcal{O}, x) := \{ \mathbf{T}_p(d_p) \, | \, p \in \mathcal{L}(\mathcal{O}, x) \}.$$
(36.6)

Proposition 3: For every $q, p \in \mathcal{L}(\mathcal{O}, x)$, we have

$$\mathbf{T}_{q*p}(d_p + d_q) = \mathbf{T}_q(d_q)\mathbf{T}_p(d_p).$$
(36.7)

Hence $\mathcal{H}(\mathcal{O}, x)$ is a subgroup of $\text{Lis}\mathcal{B}_x$, which is called the holonomy group on \mathcal{O} of the connection \mathbf{C} at x.

Let $\mathbf{T} : \mathcal{M} \to \text{Tlis}_x \mathcal{M}$ be a transport from $x \in \mathcal{M}$ of class C¹. For every differentiable process $\lambda : [0,1] \to \mathcal{M}$, we see that $\mathbf{T} \circ \lambda : [0,1] \to \text{Tlis}_x \mathcal{M}$ is a transfer process from x and

$$\operatorname{sd}\mathbf{T} = ((\nabla \mathbf{T}) \circ \lambda)\lambda^{\bullet}$$

Hence $\mathbf{T} \circ \lambda$ is the parallelism along λ for the connection $\nabla \mathbf{T}$. For every $t \in [0, 1]$, $(\mathbf{T} \circ \lambda)(t) = \mathbf{T}(\lambda(t))$ depends on, of course, only on the point $y := \lambda(t)$, not on the process λ . When λ is closed, beginning and ending at $\lambda(0) = x = \lambda(1)$, then

$$(\mathbf{T} \circ \lambda)(1) = \mathbf{T}(x) = \mathbf{1}_{\mathcal{B}_x}.$$

The following theorem is a immediated consequence of the above discussion and the Theorem of Sect.34.

Theorem : A continuous connection $\mathbf{C} : \mathcal{M} \to \operatorname{Con}\mathcal{B}$ is curvature-free; i.e. $\mathbf{R}(\mathbf{C}) = \mathbf{0}$ if and only if locally the holonomy groups are $\mathcal{H}(\mathcal{O}, x) = \{\mathbf{1}_{\mathcal{B}_x}\}$ for some open subset set \mathcal{O} of \mathcal{M} and all $x \in \mathcal{M}$.

Question ?: Does there exist a connection C such that $\mathcal{H}(\mathcal{O}, x) = \text{Lis}\mathcal{B}_x$ for some x?