Chapter 2

Manifolds and Bundles

21. Charts, Atlases and Manifolds

Let a set \mathcal{M} and $r \in^{\sim}$ be given. A chart χ for \mathcal{M} is defined to be a bijection whose domain is included in \mathcal{M} and whose codomain is an open subset of a specified flat space, denote by Pag χ and called the page of χ. The translation space of Pag χ is denoted by

$$
\begin{equation*}
\mathcal{V}_{\chi}:=\operatorname{Pag} \chi-\operatorname{Pag} \chi \tag{21.1}
\end{equation*}
$$

Let f be a mapping whose domain is a subset of \mathcal{M} and whose codomain is an open subset \mathcal{D} of a specified flat space. We say that f is \mathbf{C}^{r}-related to a given chart χ for \mathcal{M} if
(R1) $\chi_{>}(\operatorname{Dom} \chi \cap \operatorname{Dom} f)$ is an open subset of $\operatorname{Pag} \chi$,
(R2) $f \square \chi^{\leftarrow}: \chi_{>}(\operatorname{Dom} \chi \cap \operatorname{Dom} f) \rightarrow \mathcal{D}$ is of class C^{r}.
We say that two charts χ and γ for \mathcal{M} are \mathbf{C}^{r}-compatible if γ is \mathbf{C}^{r}-related to χ and χ is C^{r}-related to γ.
Pitfall: In general, C^{r}-compatibility is not an equivalence relation.
A class \mathfrak{A} of charts for \mathcal{M} is called a \mathbf{C}^{r}-atlas of \mathcal{M} if
(A1) Any two charts in \mathfrak{A} are C^{r}-compatible,
(A2) The domain of the charts in \mathfrak{A} cover \mathcal{M}, i.e.

$$
\begin{equation*}
\mathcal{M}=\bigcup\{\operatorname{Dom} \chi \mid \chi \in \mathfrak{A}\} \tag{21.2}
\end{equation*}
$$

It is clear that a C^{r}-atlas is also a C^{s}-atlas for every $s \in 0 . . r$.
Proposition 1: Let \mathfrak{A} be a C^{r}-atlas for \mathcal{M} and let χ be a chart that is C^{r} compatible with all charts in \mathfrak{A}. If f is a mapping that is C^{r}-related to every chart in \mathfrak{A} then it is also C^{r}-related to χ.

Proof: Let $x \in \operatorname{Dom} \chi \cap \operatorname{Dom} f$ be given. By (A2) we may may choose $\alpha \in \mathcal{A}$ such that $x \in \operatorname{Dom} \alpha$. We put

$$
\begin{equation*}
\mathcal{G}:=\operatorname{Dom} \chi \cap \operatorname{Dom} \alpha \cap \operatorname{Dom} f \tag{21.3}
\end{equation*}
$$

Since α is injective we have

$$
\alpha_{>}(\mathcal{G})=\alpha_{>}(\operatorname{Dom} \chi \cap \operatorname{Dom} \alpha) \cap \alpha_{>}(\operatorname{Dom} f \cap \operatorname{Dom} \alpha)
$$

Since χ and f are both C^{r}-related to α, it follows from (R1) that both $\alpha_{>}(\operatorname{Dom} \chi \cap \operatorname{Dom} \alpha)$ and $\alpha_{>}(\operatorname{Dom} f \cap \operatorname{Dom} \alpha)$ are open subsets of Pag α and hence that $\alpha_{>}(\mathcal{G})$ is also open in Pag α. Since $\alpha \square \chi^{\leftarrow}$ is continuous by (R2), it follows that $\chi_{>}(\mathcal{G})=\left(\alpha \square \chi^{\leftarrow}\right)^{<}\left(\alpha_{>}(\mathcal{G})\right)$ is an open neighborhood of $\chi(x)$ in $\operatorname{Pag} \chi$. Using (0.1) and (0.2) it is easily seen that

$$
\left.\left(f \triangleright \chi^{\leftarrow}\right)\right|_{\chi>(\mathcal{G})}=\left.\left.\left(f \circ \alpha^{\leftarrow}\right)\right|_{\alpha>(\mathcal{G})} \circ\left(\alpha \square \chi^{\leftarrow}\right)\right|_{\chi>(\mathcal{G})} ^{\alpha_{>}(\mathcal{G})} .
$$

Since both $f \square \alpha \leftarrow$ and $\alpha \square \chi^{\leftarrow}$ are of class C^{r} by (R2), it follows from the chain rule that the restriction of $f \square \alpha^{\leftarrow}$ to a neighborhood $\chi_{>}(\mathcal{G})$ of $\chi(x)$ in $\operatorname{Pag} \chi$ is of class C^{r}. Since $x \in \operatorname{Dom} \chi \cap \operatorname{Dom} f$ was arbitrary, it follows that the domain $\chi>(\operatorname{Dom} \chi \cap \operatorname{Dom} f)$ of $f \square \chi^{\leftarrow}$ is open in $\operatorname{Pag} \chi$ and that $f \square \chi^{\leftarrow}$ is of class C^{r}, i.e. that f is C^{r}-related to χ.

We say that a C^{r}-atlas \mathfrak{A} for \mathcal{M} is \mathbf{C}^{r}-saturated if every chart for \mathcal{M} that is C^{r}-compatible with all charts in \mathfrak{A} already belongs to \mathfrak{A}. The following is an immediate consequence of Prop. 1.

Proposition 2: Let \mathfrak{A} be a C^{r}-atlas for \mathcal{M}. Then there is exactly one saturated C^{r}-atlas $\overline{\mathfrak{A}}$ that includes \mathfrak{A}. In fact, $\overline{\mathfrak{A}}$ consists of all charts that are $C^{r}{ }^{\text {- }}$ compatible with all charts in \mathfrak{A}.

Definition: Let $r \in^{\sim}$ be given. A C^{r}-manifold is a set \mathcal{M} endowed with structure by the prescription of a saturated C^{r}-atlas for \mathcal{M}, which is called the chart-class of \mathcal{M} and is denoted by $\mathrm{Ch}^{r} \mathcal{M}$, or if no confusion is likely, simply by $\operatorname{Ch} \mathcal{M}$.

In view of Prop. 2, the structure of a C^{r}-manifold on \mathcal{M} is uniquely determined by specifying a C^{r}-atlas included in $\mathrm{Ch} \mathcal{M}$. Of course, two different such atlases may determine one and the same C^{r}-structure.

Let \mathcal{M} be a C^{r}-manifold with chart-class $\mathrm{Ch}^{r} \mathcal{M}$. Then, for every $s \in 0 . r, \mathcal{M}$ has also the natural structure of a C^{s}-manifold, determined by $\mathrm{Ch}^{r} \mathcal{M}$ regarded as a C^{s}-atlas. Of course, the chart-class $\mathrm{Ch}^{s} \mathcal{M}$ of the C^{s} manifold structure includes $\mathrm{Ch}^{r} \mathcal{M}$, but we have $\mathrm{Ch}^{r} \mathcal{M} \mathrm{Ch}^{s} \mathcal{M}$ if $s<r$.

Examples of manifold

Example 1: Let \mathcal{D} be an open subset of a flat space. Then the singleton $\left\{\mathbf{1}_{\mathcal{D}}\right\}$ is a C^{ω}-atlas of \mathcal{D}. It determines on \mathcal{D} a natural C^{ω}-structure and hence a natural C^{r}-structure for every $r \in$.
Example 2: (Product manifold) Let \mathcal{M} and \mathcal{N} be manifolds of class C^{r}, then the product $\mathcal{M} \times \mathcal{N}$ has the natural structure of a C^{r} manifold.

We now assume that a C^{r}-manifold \mathcal{M} with chart-class $\mathrm{Ch} \mathcal{M}$ is given. We use the notation

$$
\begin{equation*}
\mathrm{Ch}_{x} \mathcal{M}:=\{\chi \in \operatorname{Ch} \mathcal{M} \mid x \in \operatorname{Dom} \chi\} . \tag{21.4}
\end{equation*}
$$

It is easily seen that the spaces $\operatorname{Pag} \chi$ and $\mathcal{V}_{\chi}, \chi \in \mathrm{Ch}_{x} \mathcal{M}$, all have the same dimension. This dimension is called the dimension of \mathcal{M} at x, and is denoted by $\operatorname{dim}_{x} \mathcal{M}$.

The C^{r}-manifold \mathcal{M} is endowed with a natural topology, namely the coarsest topology that renders all $\chi \in \operatorname{Ch} \mathcal{M}$ continuous. A subset \mathcal{P} of \mathcal{M} is open if and only if, for each $\chi \in \operatorname{Ch} \mathcal{M}$, the image $\chi_{>}(\mathcal{P} \cap \operatorname{Dom} \chi)$ is an open subset of $\operatorname{Pag} \chi$. Given $x \in \mathcal{M}$, one can construct a neighborhood-basis \mathfrak{B}_{x} of x in \mathcal{M} in the following manner: Choose a chart $\chi \in \mathrm{Ch}_{x} \mathcal{M}$ and a neighborhood-basis $\mathfrak{N}_{\chi(x)}$ of $\chi(x)$ in $\operatorname{Pag} \chi$. Then put

$$
\begin{equation*}
\mathfrak{B}_{x}:=\left\{\chi^{<}(\mathcal{N} \cap \operatorname{Cod} \chi) \mid \mathcal{N} \in \mathfrak{N}_{\chi(x)}\right\} \tag{21.5}
\end{equation*}
$$

Pitfall: The natural topology of \mathcal{M} need not be separating.
Let \mathcal{P} be an open subset of \mathcal{M}. Then \mathcal{P} has the natural structure of a C^{r}-manifold whose chart-class $\operatorname{Ch} \mathcal{P}$ is

$$
\begin{equation*}
\operatorname{Ch} \mathcal{P}:=\{\chi \in \operatorname{Ch} \mathcal{M} \mid \operatorname{Dom} \chi \subset \mathcal{P}\} \tag{21.6}
\end{equation*}
$$

The natural topology of \mathcal{P} as a C^{r}-manifold concides with the topology of \mathcal{P} induced by the topology of \mathcal{M}.

Let f be a mapping whose domain is an open subset of \mathcal{M} and whose codomain is an open subset \mathcal{D} of a specified flat space \mathcal{E} with translation space $\mathcal{V}:=\mathcal{E}-\mathcal{E}$. We say that f is of class C^{s}, with $s \in 0 . r$, if it is C^{s}-related to every chart $\chi \in \operatorname{Ch} \mathcal{M}$, i.e. if $f \square \chi^{\leftarrow}$ is of class C^{s} for all charts $\chi \in \operatorname{Ch} \mathcal{M}$. (Since $\operatorname{Dom} f$ is open, $\operatorname{Dom} f \square \chi^{\leftarrow}=\chi_{>}(\operatorname{Dom} \chi \cap \operatorname{Dom} f)$ is automatically open in $\operatorname{Pag} \chi$ when $\chi \in \operatorname{Ch} \mathcal{M}$.) It follows from Prop. 1 that f is of class C^{s} if $f \square \chi^{\leftarrow}$ is of class C^{s} for every chart χ in some C^{r}-atlas included in $\mathrm{Ch} \mathcal{M}$. If f is of class C^{s} with $s \geq 1$ and if $\chi \in \operatorname{Ch} \mathcal{M}$, we define the gradient

$$
\nabla_{\chi} f: \operatorname{Dom} \chi \cap \operatorname{Dom} f \rightarrow \operatorname{Lin}\left(\mathcal{V}_{\chi}, \mathcal{V}\right)
$$

of f in the chart χ by

$$
\begin{equation*}
\left(\nabla_{\chi} f\right)(x):=\nabla_{\chi(x)}\left(f \square \chi^{\leftarrow}\right) \quad \text { for all } \quad x \in \operatorname{Dom} \chi \cap \operatorname{Dom} f \tag{21.7}
\end{equation*}
$$

More generally, for every $s \in 1 . . r$, the gradient of order s

$$
\nabla_{\chi}^{(s)} f: \operatorname{Dom} \chi \cap \operatorname{Dom} f \rightarrow \operatorname{Sym}_{s}\left(\left(\mathcal{V}_{\chi}\right)^{s}, \mathcal{V}\right)
$$

of f in the chart χ defined by

$$
\begin{equation*}
\left(\nabla_{\chi}^{(s)} f\right)(x):=\nabla_{\chi(x)}^{(s)}\left(f \square \chi^{\leftarrow}\right) \quad \text { for all } \quad x \in \operatorname{Dom} \chi \cap \operatorname{Dom} f \tag{21.8}
\end{equation*}
$$

The following transformation rules are easy concequences of the rules of calculus.
Proposition 3: Let f be a mapping of class $C^{1}, x \in \operatorname{Dom} f$ and $\chi, \gamma \in \mathrm{Ch}_{x} \mathcal{M}$. Then

$$
\begin{equation*}
\left(\nabla_{\gamma} f\right)(x)=\left(\nabla_{\chi} f\right)(x)\left(\nabla_{\gamma} \chi\right)(x) \tag{21.9}
\end{equation*}
$$

If f is also of class C^{2}, then

$$
\begin{equation*}
\left(\nabla_{\gamma}^{(2)} f\right)(x)=\left(\nabla_{\chi}^{(2)} f\right)(x) \circ\left(\nabla_{\gamma} \chi(x) \times \nabla_{\gamma} \chi(x)\right)+\left(\nabla_{\chi} f\right)(x) \nabla_{\gamma}^{(2)} \chi(x) \tag{21.10}
\end{equation*}
$$

In the case when $f:=\gamma$ the formulas (21.7) and (21.8) reduce to

$$
\left(\nabla_{\gamma} \gamma\right)(x)=\mathbf{1}_{\mathcal{V}_{\gamma}} \quad \text { and } \quad\left(\nabla_{\gamma}^{(2)} \gamma\right)(x)=\mathbf{0}
$$

Hence Prop. 3 has the following consequence:
Proposition 4: Let $x \in \mathcal{M}$ and $\chi, \gamma \in \mathrm{Ch}_{x} \mathcal{M}$ be given. If $r \geq 1$, then $\left(\nabla_{\chi} \gamma\right)(x) \in \operatorname{Lin}\left(\mathcal{V}_{\chi}, \mathcal{V}_{\gamma}\right)$ is invertible and

$$
\begin{equation*}
\left(\nabla_{\chi} \gamma\right)(x)^{-1}=\left(\nabla_{\gamma} \chi\right)(x) \tag{21.11}
\end{equation*}
$$

If $r \geq 2$, we also have

$$
\begin{equation*}
\left(\nabla_{\gamma}^{(2)} \chi\right)(x)=-\left(\nabla_{\gamma} \chi\right)(x)\left(\left(\nabla_{\chi}^{(2)} \gamma\right)(x) \circ\left(\nabla_{\gamma} \chi(x) \times \nabla_{\gamma} \chi(x)\right)\right) \tag{21.12}
\end{equation*}
$$

If the manifold \mathcal{M} is itself the underlying manifold of an open subset of a flat space (see Example 1 above), then a mapping f is of class C^{s} as described above if and only if it is of class C^{s} in the ordinary sence (see Notations).

Let f be a mapping whose domain is a neighborhood of a given point $x \in \mathcal{M}$ and whose codomain is an open subset of a specified flat space. We say that f is differentiable at x if $f \square \chi \leftarrow$ is differentiable at $\chi(x)$ for some, and hence all, $\chi \in \mathrm{Ch}_{x} \mathcal{M}$. If this is the case, (21.7) remains meaningful for the given $x \in \mathcal{M}$ and the transformation formula (21.9) remains valid. The concept of " s times differentiable at x " when $s \in 0 . . r$ is defined in a similar way.

More generally, let C^{r}-manifolds \mathcal{M} and \mathcal{M}^{\prime} be given. Let g be a mapping whose domain and codomain are open subsets of \mathcal{M} and \mathcal{M}^{\prime}, respectively. We say that g is of class C^{s} with $s \in 0 . . r$ if $\chi^{\prime} \square g \square \chi^{\leftarrow}$ is of class C^{s} in the ordinary sense for all $\chi \in \operatorname{Ch} \mathcal{M}$ and all $\chi^{\prime} \in \operatorname{Ch} \mathcal{M}^{\prime}$.

Definition: Let \mathcal{M} be a C^{r}-manifold and let \mathcal{P} be a subset of \mathcal{M}. We say that \mathcal{P} is a submanifold of \mathcal{M} if for each point $x \in \mathcal{P}$ there is a chart $\chi \in \mathrm{Ch}_{x} \mathcal{M}$ such that $\chi_{>}(\mathcal{P} \cap \operatorname{Dom} \chi)$ is an open subset of a flat \mathcal{F}_{χ} of $\operatorname{Pag} \chi$.

Let \mathcal{P} be a C^{r} submanifold of the manifold \mathcal{M}. We left it the readers to show that \mathcal{P} has the natural structure of a C^{r} manifold. The natural topology of \mathcal{P} as a C^{r}-manifold concides with the topology of \mathcal{P} induced by the topology of \mathcal{M}, i.e. \mathcal{P} a topological subspace of \mathcal{M}.

Let $f: \mathcal{S} \rightarrow \mathcal{M}$ be a C^{s} mapping from a manifold \mathcal{S} to another manifold \mathcal{M}. The mapping f is called a C^{s} immersion at $x \in \mathcal{S}$ if there exists an open neighborhood \mathcal{N}_{x} of x (in \mathcal{S}) such that the restriction $\left.f\right|_{\mathcal{N}_{x}}$ is injective and $f_{>}\left(\mathcal{N}_{x}\right)$ is a submanifold of \mathcal{M}. We say that f is an immersion if it is an immersion at every $y \in \mathcal{S}$. If f is an immersion, the domain \mathcal{S} called an immersed manifold of \mathcal{M}. However, being an immersion is a "local property" and hence the range $\operatorname{Rng} f:=f_{>}(\mathcal{S})$ of f may not be a submanifold of \mathcal{M}. For example (see [L]):

Figue11.1

An injective immersion f from manifold \mathcal{A} to manifold \mathcal{B} is an imbedding if the range $\operatorname{Rng} f:=f_{>}(\mathcal{A})$ is a submanifold of \mathcal{B}. The domain of an imbedding is called an imbedded manifold of its codomain manifold. It is clear that for every submanifold \mathcal{P} of a given manifold \mathcal{M} the inclusion $\mathbf{1}_{\mathcal{P} \subset \mathcal{M}}$ is an imbedding.

Remark: Let \mathcal{A} and \mathcal{B} be topological spaces and $f: \mathcal{A} \rightarrow \mathcal{B}$ be an injection. We say that f is an imbedding if the topology of \mathcal{A} is induced by f from the topology of \mathcal{B}.

More details on submanifolds

22. Bundles

We assume that $r \in^{\sim}$ with $r \geq 2$ and a C^{r}-manifold \mathcal{M} are given. Let a number $s \in 0 . . r$ be given and let $\tau: \mathcal{B} \rightarrow \mathcal{M}$ be a surjective mapping from a given set \mathcal{B} to the manifold \mathcal{M}.

Let a concrete isocategory ISO with object class $O B J$ be given with the following properties:
(i) Each set in $O B J$ has the natural structure of a C^{s}-manifold.
(ii) Every isomorphism in ISO is a C^{s}-diffeomorphism.

The most inportant special cases are (1) the isocategory of LIS consisting of all linear isomorphisms, whose object class $L S$ consist of all (finite dimensional) linear spaces and (2) the isocategory of FIS consisting of all flat isomorphisms, whose object class $F S$ consist of all flat spaces. The object sets in $L S$ and $F S$ have the natural structure of C^{ω}-manifolds and the isomorphisms in LIS and FIS are C^{ω}-diffeomorphisms.

Definition: An ISO-bundle chart for \mathcal{B} (for τ) is a bijection

$$
\phi: \tau^{<}\left(\mathcal{O}_{\phi}\right) \rightarrow \mathcal{O}_{\phi} \times \mathcal{V}_{\phi}
$$

where \mathcal{O}_{ϕ} is an open subset of \mathcal{M} and \mathcal{V}_{ϕ} is a set in OBJ such that the diagram

$$
\begin{array}{ccc}
\tau<\left(\mathcal{O}_{\phi}\right) & \stackrel{\phi}{\longrightarrow} & \mathcal{O}_{\phi} \times \mathcal{V}_{\phi} \\
\left.\tau\right|_{\tau<\left(\mathcal{O}_{\phi}\right)} ^{\mathcal{O}_{\phi}} \searrow & & \tag{22.1}\\
& & \downarrow^{\mathrm{ev}_{1}}
\end{array} .
$$

is commutative, i.e. $\mathrm{ev}_{1} \circ \phi=\left.\tau\right|_{\tau<\left(\mathcal{O}_{\phi}\right)} ^{\mathcal{O}_{\phi}}$.
Notation: For every $y \in \mathcal{M}$, we denote $\mathcal{B}_{y}:=\tau^{<}(\{y\})$ and for every ISO-bundle chart ϕ we use the following notations

$$
\begin{equation*}
\phi\rfloor_{y}:=\mathrm{ev}_{2} \circ \phi \circ\left(\mathbf{1}_{\mathcal{B}_{y} \subset \tau<\left(\mathcal{O}_{\phi}\right)}\right): \mathcal{B}_{y} \rightarrow \mathcal{V}_{\phi} \tag{22.2}
\end{equation*}
$$

for all $y \in \mathcal{O}_{\phi}$, i.e. we have the following commutative diagram

Put (22.1) and (22.2) together, we have the following commutative diagram

Let ϕ and ψ be ISO-bundle charts for \mathcal{B}. We say that ϕ and ψ are $C^{s_{-}}$ compatible if

$$
\begin{equation*}
\psi \square \phi^{\leftarrow}:\left(\mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}\right) \times \mathcal{V}_{\phi} \rightarrow\left(\mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}\right) \times \mathcal{V}_{\psi} \tag{22.3}
\end{equation*}
$$

is a C^{s}-diffeomophism such that, for every $y \in \mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}$, the mapping

$$
\begin{equation*}
\left.\psi\rfloor_{y} \circ \phi\right\rfloor_{y}^{\leftarrow}: \mathcal{V}_{\phi} \rightarrow \mathcal{V}_{\psi} \tag{22.4}
\end{equation*}
$$

belongs to ISO.
A class \mathfrak{A} of ISO-bundle charts for \mathcal{B} is called a C^{s} ISO-bundle atlas for \mathcal{B} if
(BA1) every two ISO-bundle charts in \mathfrak{A} are C^{s}-compatiable,
(BA2) for every $x \in \mathcal{M}$ there is a bundle chart $\phi \in \mathfrak{A}$ with $x \in \mathcal{O}_{\phi}$; i.e. we have

$$
\mathcal{M}=\bigcup_{\phi \in \mathfrak{A}} \mathcal{O}_{\phi}
$$

Proposition 1: Let \mathfrak{A} be a ISO-bundle atlas for \mathcal{B} and let ϕ be a ISO-bundle chart that is C^{s}-compatible with all ISO-bundle charts in \mathfrak{A}. If ψ is a ISObundle chart that is C^{s}-compatible with every ISO-bundle chart in \mathfrak{A} then it is also C^{s}-compatible with ϕ.

Proof: Let $x \in \mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}$ be given. By (BA2), we may choose a ISO-bundle chart $\theta \in \mathfrak{A}$ such that $x \in \mathcal{O}_{\theta}$. Put $\mathcal{O}:=\mathcal{O}_{\phi} \cap \mathcal{O}_{\psi} \cap \mathcal{O}_{\theta}$. Since both ϕ and ψ are C^{s}-compatible with θ, we see that the restriction

$$
\left.\psi \triangleright \phi^{\leftarrow}\right|_{\phi(\tau<\{\mathcal{O}\})}=\left.\left.\left(\psi \square \theta^{\leftarrow}\right)\right|_{\theta(\tau<\{\mathcal{O}\})} \circ\left(\theta \square \phi^{\leftarrow}\right)\right|_{\phi(\tau<\{\mathcal{O}\})} ^{\theta\left(\tau^{<}\{\mathcal{O}\}\right)}
$$

on $\phi\left(\tau^{<}\{\mathcal{O}\}\right)$ is a C^{s}-diffeomorphism and the induced mapping

$$
\left.\left.\left.\left.\left.\psi\rfloor_{x} \circ \phi\right\rfloor_{x}^{\leftarrow}=(\psi\rfloor_{x} \circ \theta\right\rfloor_{x}^{\leftarrow}\right) \circ(\theta\rfloor_{x} \circ \phi\right\rfloor_{x}^{\leftarrow}\right)
$$

is a ISO-isomorphism. Since $x \in \mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}$ was arbitrary, we conclude that ψ and ϕ are C^{s}-compatible.

We say that a ISO-bundle atlas \mathfrak{A} of \mathcal{B} is C^{s}-saturated if every ISO-bundle chart for \mathcal{B} that is C^{s}-compatible with all ISO-bundle charts in \mathfrak{A} already belongs to \mathfrak{A}. The following is an immediate consequence of Prop. 1 .

Proposition 2: Let \mathfrak{A} be a C^{s} ISO-bundle atlas for \mathcal{B}. Then there is exactly one C^{s}-saturated ISO-bundle atlas $\overline{\mathfrak{A}}$ that includes \mathfrak{A}. In fact, $\overline{\mathfrak{A}}$ consists of all ISO-bundle charts that are C^{s}-compatible with all ISO-bundle charts in \mathcal{B}.

Let \mathfrak{A} be a saturated ISO-atlas for \mathcal{B} and let ϕ be a ISO-bundle chart in \mathfrak{A}. On each fibre $\mathcal{B}_{x}, x \in \mathcal{O}_{\phi}$, we can transport the ISO-structure of \mathcal{V}_{ϕ} by means of $\phi\rfloor_{x}: \mathcal{B}_{x} \rightarrow \mathcal{V}_{\phi}$. The result is independent of the choice of ϕ, since every pair of bundle charts ϕ and ψ in \mathfrak{A} are compatible and hence $\left.\psi\rfloor_{x} \circ \phi\right\rfloor_{x}^{\leftarrow}: \mathcal{V}_{\phi} \rightarrow \mathcal{V}_{\psi}$ is a ISO-isomorphism.

Definition: $A C^{s}$ ISO-bundle over \mathcal{M} is a set \mathcal{B} and a mapping $\tau: \mathcal{B} \rightarrow \mathcal{M}$ endowed with structure by the prescription of a saturated C^{s} ISO-bundle atlas for \mathcal{B}, which is called the bundle structure for \mathcal{B} and is denoted by $\mathrm{Ch}^{s}(\mathcal{B}, \mathcal{M})$, or if no confusion is likely, simply by $\operatorname{Ch}(\mathcal{B}, \mathcal{M})$. We denote the ISO-bundle by $(\mathcal{B}, \tau, \mathcal{M})$ or simply by \mathcal{B}.

The mapping τ is called the bundle-projection. For every $x \in \mathcal{M}$, $\mathcal{B}_{x}:=\tau^{<}(\{x\})$ is called the fiber over x and the inclusion mapping of \mathcal{B}_{x} in \mathcal{B} is called the bundle inclusion at x. Right inverses of τ are called cross sections of \mathcal{B}. We also use the following notation

$$
\begin{equation*}
\mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M}):=\left\{\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M}) \mid x \in \mathcal{O}_{\phi}\right\} . \tag{22.5}
\end{equation*}
$$

As explained above, for every $x \in \mathcal{M}$, the fiber \mathcal{B}_{x} is naturally endowed with the structure of a ISO-set in such a way that $\phi\rfloor_{x}: \mathcal{B}_{x} \rightarrow \mathcal{V}_{\phi}$ is in ISO (is an isomorphism) for all $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$. Thus the dimension of \mathcal{B}_{x} can be obtained from all $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$.

Locally (relative to \mathcal{M}), the manifold structure of the bundle manifold \mathcal{B} is completely determined by the manifold structure of the base manifold \mathcal{M} and the manifold structures of \mathcal{V}_{ϕ} for a single $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$. Every bundle chart ϕ in $\operatorname{Ch}(\mathcal{B}, \mathcal{M})$ transports the manifold structure from $\mathcal{O}_{\phi} \times \mathcal{V}_{\phi}$ to $\tau^{<}\left(\mathcal{O}_{\phi}\right)$, and hence a manifold chart can be easily obtained from ϕ.

Let $\mathbf{b} \in \mathcal{B}$ be given and put $x:=\tau(\mathbf{b})$. The dimension of \mathcal{B} at \mathbf{b} can be obtained from the codomain of each bundle chart $\phi \in \operatorname{Ch}_{x}(\mathcal{B}, \mathcal{M})$. We have

$$
\operatorname{dim}_{\mathbf{b}} \mathcal{B}=m+n
$$

where $\operatorname{dim}_{x} \mathcal{M}=m$ and $\operatorname{dim}_{\mathbf{b}} \mathcal{B}_{x}=n$.
Let ISO-bundles $\left(\mathcal{B}^{\prime}, \tau^{\prime}, \mathcal{M}^{\prime}\right)$ and $(\mathcal{B}, \tau, \mathcal{M})$ be given. We say that $\left(\mathcal{B}^{\prime}, \tau^{\prime}, \mathcal{M}^{\prime}\right)$ is a ISO-subbundle of $(\mathcal{B}, \tau, \mathcal{M})$ provided \mathcal{B}^{\prime} is a submanifold of $\mathcal{B}, \mathcal{M}^{\prime}$ is a submanifold of \mathcal{M} and $\tau^{\prime}=\left.\tau\right|_{\mathcal{B}^{\prime}} ^{\mathcal{M}^{\prime}}$ such that, for each bundle chart $\varphi \in \operatorname{Ch}\left(\mathcal{B}^{\prime}, \mathcal{M}^{\prime}\right)$, we have $\varphi=\left.\phi\right|_{\operatorname{Dom} \varphi} ^{\operatorname{Cod} \varphi}$ for some bundle chart $\phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$.

It is easily seen that for every open subset \mathcal{P} of $\mathcal{M},\left(\tau^{<}(\mathcal{P}),\left.\tau\right|_{\tau<(\mathcal{P})} ^{\mathcal{P}}, \mathcal{P}\right)$ is an open subbundle of $(\mathcal{B}, \tau, \mathcal{M})$.

Definition: A cross section on \mathcal{O} of \mathcal{B}, where \mathcal{O} is an open submanifold of \mathcal{M}, is a mapping $\mathbf{s}: \mathcal{O} \rightarrow \mathcal{B}$ such that $\tau \circ \mathbf{s}=\mathbf{1}_{\mathcal{O} \subset \mathcal{M}}$. For every $p \in 0$..s, we denote the collection of all C^{p} cross sections of \mathcal{B} by $\operatorname{Sec}^{p} \mathcal{B}$.

If ISO is the category DIF_{s} that consists of all C^{s}-diffeomorphisms between C^{s} manifolds, we call \mathcal{B} a C^{s}-bundle. If ISO $=$ FIS, we call \mathcal{B} a flat-space bundle. If ISO $=$ LIS, we call \mathcal{B} a linear-space bundle.

Proposition 3: Let \mathcal{D} be an open subset of a flat space \mathcal{E} and let \mathcal{V}, \mathcal{W} be linear spaces. Let $F: \mathcal{D} \rightarrow \operatorname{Lin}(\mathcal{V}, \mathcal{W})$ be given. If $f: \mathcal{D} \times \mathcal{V} \rightarrow \mathcal{W}$ is defined by

$$
\begin{equation*}
f(x, \mathbf{v}):=F(x) \mathbf{v} \quad \text { for all } \quad(x, \mathbf{v}) \in \mathcal{D} \times \mathcal{V} \tag{22.6}
\end{equation*}
$$

then f is of class $C^{p}, p \in$, if and only if F is of class C^{p}.
Proof: The assertion follows from the Partial Gradient Theorem [FDS].
If \mathcal{B} is a linear-space bundle, then it follows from (22.3), (22.4) and Prop. 3 that for every pair of bundle charts $\phi, \psi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$, the mapping

$$
\psi \diamond \phi: \mathcal{O}_{\phi} \cap \mathcal{O}_{\psi} \rightarrow \operatorname{Lin}\left(\mathcal{V}_{\phi}, \mathcal{V}_{\psi}\right)
$$

defined by

$$
\begin{equation*}
\left.(\psi \diamond \phi)(x):=\psi\rfloor_{x} \circ \phi\right\rfloor_{x}^{-1} \quad \text { for all } \quad x \in \mathcal{O}_{\phi} \cap \mathcal{O}_{\psi} \tag{22.7}
\end{equation*}
$$

is of class C^{s}.

Before closing this section, we give two examples of constructing a new bundle from given ones. We omit the details.

Examples :

(1) Trivial bundles : $\mathcal{M} \times \mathcal{G}$, where $\mathcal{G} \in O B J$. The fiber $\mathcal{B}_{x}=\{x\} \times \mathcal{G}$ at $x \in \mathcal{M}$ is \mathcal{G} tagged with x.
(2) Fiber-product bundles : Let two bundles $(\mathcal{A}, \alpha, \mathcal{M})$ and $(\mathcal{B}, \beta, \mathcal{M})$ over the same base manifold \mathcal{M} be given. Put

$$
\begin{array}{lrrl}
\mathcal{A} \times_{\mathcal{M}} \mathcal{B}:=\bigcup_{x \in \mathcal{M}} \mathcal{A}_{x} \times \mathcal{B}_{x} & & \mathcal{A} \times_{\mathcal{M}} \mathcal{B} & \xrightarrow{\mathrm{ev}_{2}} \\
\alpha \times_{\mathcal{M}} \beta:=\alpha \circ \mathrm{ev}_{1}=\beta \circ \mathrm{ev}_{2} & ; & \mathrm{ev}_{1} \mid & \\
& & \mathcal{A} & \downarrow \tag{22.8}\\
& & & \mathcal{M}
\end{array}
$$

The bundle $\left(\mathcal{A} \times_{\mathcal{M}} \mathcal{B}, \alpha \times_{\mathcal{M}} \beta, \mathcal{M}\right)$ is called the fiber-product bundle of $(\mathcal{A}, \alpha, \mathcal{M})$ and $(\mathcal{B}, \beta, \mathcal{M})$. The bundle projection $\alpha \times_{\mathcal{M}} \beta: \mathcal{A} \times_{\mathcal{M}} \mathcal{B} \rightarrow \mathcal{M}$ is given by

$$
\begin{equation*}
\alpha \times_{\mathcal{M}} \beta(\mathbf{v}): \in\left\{y \mid \mathbf{v} \in \mathcal{A}_{y} \times \mathcal{B}_{y}\right\} . \tag{22.9}
\end{equation*}
$$

Let bundle charts $\phi \in \operatorname{Ch}(\mathcal{A}, \mathcal{M})$ and $\psi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})$ be given. The mapping

$$
\begin{equation*}
\phi \times_{\mathcal{M}} \psi:\left(\tau_{1} \times_{\mathcal{M}} \tau_{2}\right)^{<}\left(\mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}\right) \rightarrow\left(\mathcal{O}_{\phi} \cap \mathcal{O}_{\psi}\right) \times\left(\mathcal{V}_{\phi} \times \mathcal{V}_{\psi}\right) \tag{22.10}
\end{equation*}
$$

given by

$$
\begin{equation*}
\left.\left.\phi \times_{\mathcal{M}} \psi(\mathbf{v})=\left(y,(\phi\rfloor_{y} \times \psi\right\rfloor_{y}\right) \mathbf{v}\right) \quad \text { for all } \quad \mathbf{v} \in \mathcal{A} \times_{\mathcal{M}} \mathcal{B} \tag{22.11}
\end{equation*}
$$

is a bundle chart for $\left(\mathcal{A} \times_{\mathcal{M}} \mathcal{B}, \phi \times_{\mathcal{M}} \psi, \mathcal{M}\right)$.

23. The tangent bundle

Let $r \epsilon^{\sim}$, a C^{r}-manifold \mathcal{M}, and a point $x \in \mathcal{M}$ be given.
Definition: The tangent space of \mathcal{M} at x is defined to be

$$
\mathrm{T}_{x} \mathcal{M}:=\left\{\begin{array}{l|l}
\mathbf{t} \in \underset{\alpha \in \mathrm{Ch}_{x} \mathcal{M}}{X} \mathcal{V}_{\alpha} & (23.2) \text { holds } \tag{23.1}
\end{array}\right\},
$$

where the condition (23.2) is given by

$$
\begin{equation*}
\mathbf{t}_{\gamma}=\nabla_{\chi} \gamma(x) \mathbf{t}_{\chi} \quad \text { for all } \quad \chi, \gamma \in \mathrm{Ch}_{x} \mathcal{M} . \tag{23.2}
\end{equation*}
$$

$\mathrm{T}_{x} \mathcal{M}$ is endowed with the natural structure of a linear space as shown below and $\operatorname{dim} \mathrm{T}_{x} \mathcal{M}=\operatorname{dim}_{x} \mathcal{M}$.

For every $\chi \in \mathrm{Ch}_{x} \mathcal{M}$, define the evaluation mapping $\mathrm{ev}_{\chi}: \mathrm{T}_{x} \mathcal{M} \rightarrow \mathcal{V}_{\chi}$ by

$$
\mathrm{ev}_{\chi}(\mathbf{t}):=\mathbf{t}_{\chi} \quad \text { for all } \quad \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}
$$

It follows from (21.10) that the evaluation mapping ev_{χ} is invertible and that its inverse $\mathrm{ev}_{\chi}^{\leftarrow}: \mathcal{V}_{\chi} \rightarrow \mathrm{T}_{x} \mathcal{M}$ is given by

$$
\left(\mathrm{ev}_{\chi}^{\leftarrow}\right)(\mathbf{u})=\left(\nabla_{\chi} \alpha(x) \mathbf{u} \mid \alpha \in \mathrm{Ch}_{x} \mathcal{M}\right) \quad \text { for all } \quad \mathbf{u} \in \mathcal{V}_{\chi}
$$

Hence we have

$$
\begin{equation*}
\mathrm{ev}_{\chi} \circ \mathrm{ev}_{\gamma}^{\leftarrow}=\nabla_{\gamma} \chi(x) \in \operatorname{Lis}\left(\mathcal{V}_{\gamma}, \mathcal{V}_{\chi}\right) \tag{23.3}
\end{equation*}
$$

for all $\gamma, \chi \in \mathrm{Ch}_{x} \mathcal{M}$. It follows from that the linear-space structure on $\mathrm{T}_{x} \mathcal{M}$ obtained from that of \mathcal{V}_{χ} by ev_{χ} does not depend on the choice of $\chi \in \mathrm{Ch}_{x} \mathcal{M}$ and hence is intrinsic to $\mathrm{T}_{x} \mathcal{M}$. We consider $\mathrm{T}_{x} \mathcal{M}$ to be endowed with this structure.

Let f be a mapping whose domain \mathcal{D} is a neighborhood of x in \mathcal{M} and whose codomain is an open subset of a flat space with translation space \mathcal{V}. It follows from (23.3) and (21.7) that

$$
\nabla_{\chi} f(x) \circ \mathrm{ev}_{\chi} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathcal{V}\right)
$$

is the same for all $\chi \in \mathrm{Ch}_{x} \mathcal{M}$. Hence we may define the gradient of f at x by

$$
\begin{equation*}
\nabla_{x} f:=\nabla_{\chi} f(x) \circ \mathrm{ev}_{\chi} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathcal{V}\right) \tag{23.4}
\end{equation*}
$$

for all $\chi \in \mathrm{Ch}_{x} \mathcal{M}$. In particular, if we put $f:=\chi$ we get $\nabla_{x} \chi=\mathrm{ev}_{\chi}$ and hence

$$
\begin{equation*}
\left(\nabla_{x} \chi\right) \mathbf{t}=\mathbf{t}_{\chi} \quad \text { for all } \quad \chi \in \mathrm{Ch}_{x} \mathcal{M} \tag{23.5}
\end{equation*}
$$

Also, if f is given as above, we have

$$
\begin{equation*}
\nabla_{x} f=\nabla_{\chi} f(x) \nabla_{x} \chi \quad \text { for all } \quad \chi \in \mathrm{Ch}_{x} \mathcal{M} \tag{23.6}
\end{equation*}
$$

Let \mathcal{P} be an open neighborhood of x in \mathcal{M}. By (21.6) we have $\mathrm{Ch}_{x} \mathcal{P} \subset$ $\mathrm{Ch}_{x} \mathcal{M}$ and the mapping

$$
\left(\left.\mathbf{t} \mapsto \mathbf{t}\right|_{\mathrm{Ch}_{x} \mathcal{P}}\right): \mathrm{T}_{x} \mathcal{M} \rightarrow \mathrm{~T}_{x} \mathcal{P}
$$

is a natural bijection; we use it to identify

$$
\begin{equation*}
\mathrm{T}_{x} \mathcal{P} \cong \mathrm{~T}_{x} \mathcal{M} \tag{23.7}
\end{equation*}
$$

Definition: The tangent bundle $\mathrm{T} \mathcal{M}$ of \mathcal{M} is defined to be the union of all the tangent spaces of \mathcal{M} :

$$
\begin{equation*}
\mathrm{T} \mathcal{M}:=\bigcup_{x \in \mathcal{M}} \mathrm{~T}_{x} \mathcal{M} \tag{23.8}
\end{equation*}
$$

It is endowed with the natural structure of a C^{r-1}-linear-space bundle as shown below.

In view of the identifications (23.7) we may regard TP as a subset of $\mathrm{T} \mathcal{M}$ when \mathcal{P} is an open subset of \mathcal{M}.

Let \mathcal{D} be an open subset of a flat space \mathcal{E} with translation space $\mathcal{V}:=\mathcal{E}-\mathcal{E}$. Then the singleton $\left\{\mathbf{1}_{\mathcal{D}}\right\}$ is a C^{ω}-atlas of \mathcal{D}. It determines on \mathcal{D} a natural C^{ω} manifold structure and hence a natural C^{r}-manifold structure for every $r \in$. Given $x \in \mathcal{D}$, the linear isomorphism $\mathrm{ev}_{\mathbf{1}_{\mathcal{D}}}: \mathrm{T}_{x} \mathcal{D} \rightarrow \mathcal{V}$ will be used for the identification

$$
\begin{equation*}
\mathrm{T}_{x} \mathcal{D} \cong\{x\} \times \mathcal{V} \tag{23.9}
\end{equation*}
$$

Let f be a mapping whose domain is an open neighborhood of x and whose codomain is an open subset of a flat space \mathcal{E}^{\prime} with translation space \mathcal{V}^{\prime}. If f is differentiable at $x \in \mathcal{D}$ then the gradient $\nabla_{x} f$ in the ordinary sense of (23.4) belongs to $\operatorname{Lin}\left(\{x\} \times \mathcal{V}, \mathcal{V}^{\prime}\right)$ when the identification (23.9) is used. No confusion is likely because we have

$$
\begin{equation*}
\nabla_{x} f(x, \mathbf{v})=\nabla_{x} f \mathbf{v} \quad \text { for all } \quad \mathbf{v} \in \mathcal{V} \tag{23.10}
\end{equation*}
$$

when $\nabla_{x} f$ is used with both meanings.
If \mathcal{D} is the underlying manifold of an open subset of a flat space, then (23.9) gives rise to the idetification

$$
\begin{equation*}
\mathrm{TD} \cong \mathcal{D} \times \mathcal{V} \tag{23.11}
\end{equation*}
$$

Note that the family $\left(\mathrm{T}_{x} \mathcal{M} \mid x \in \mathcal{M}\right)$ is disjoint. The bundle projection $\mathrm{pt}: \mathrm{T} \mathcal{M} \rightarrow \mathcal{M}$ of the tangent bundle is given by

$$
\begin{equation*}
\operatorname{pt}(\mathbf{t}): \in\left\{x \in \mathcal{M} \mid \mathbf{t} \in \mathrm{T}_{x} \mathcal{M}\right\} . \tag{23.12}
\end{equation*}
$$

Every manifold chart $\chi \in \mathrm{Ch} \mathcal{M}$ induces a bundle chart for $\mathrm{T} \mathcal{M}$ as shown in the following. We define the tangent-bundle chart

$$
\begin{equation*}
\operatorname{tgt}_{\chi}: \operatorname{pt}^{<}(\operatorname{Dom} \chi) \rightarrow \operatorname{Dom} \chi \times \mathcal{V}_{\chi} \tag{23.13}
\end{equation*}
$$

by

$$
\begin{equation*}
\operatorname{tgt}_{\chi}(\mathbf{t})=\left(z,\left(\nabla_{z} \chi\right) \mathbf{t}\right) \quad \text { where } \quad z:=\operatorname{pt}(\mathbf{t}) \tag{23.14}
\end{equation*}
$$

It is easily seen that $\operatorname{tgt}_{\chi}$ is invertible and that

$$
\begin{equation*}
\operatorname{tgt}_{\chi}^{\leftarrow}(z, \mathbf{u})=\left(\nabla_{z} \chi\right)^{-1} \mathbf{u} \tag{23.15}
\end{equation*}
$$

for all $z \in \operatorname{Dom} \chi$ and all $\mathbf{u} \in \mathcal{V}_{\chi}$. Let $\chi, \gamma \in \operatorname{Ch} \mathcal{M}$ be given. It follows from (21.7) and (23.6) that

$$
\begin{equation*}
\nabla_{\chi(z)}\left(\gamma \circ \chi^{\leftarrow}\right)=\left(\nabla_{\chi} \gamma\right)(z)=\left(\nabla_{z} \gamma\right)\left(\nabla_{z} \chi\right)^{-1} \tag{23.16}
\end{equation*}
$$

for all $z \in \operatorname{Dom} \gamma \cap \operatorname{Dom} \chi$. Hence, by (23.14) and (23.15) with χ replaced by γ, we have

$$
\begin{equation*}
\left(\operatorname{tgt}_{\gamma} \square \operatorname{tgt}_{\chi}^{\leftarrow}\right)(z, \mathbf{u})=\left(z, \nabla_{\chi(z)}\left(\gamma \square \chi^{\leftarrow}\right) \mathbf{u}\right) \tag{23.17}
\end{equation*}
$$

for all $z \in \operatorname{Dom} \gamma \cap \operatorname{Dom} \chi$ and all $\mathbf{u} \in \mathcal{V}_{\chi}$. It is clear that $\operatorname{tgt}_{\gamma}$ $\operatorname{tgt}_{\chi} \leftarrow$ is of class C^{r-1}. Since $\chi, \gamma \in \mathrm{Ch} \mathcal{M}$ were arbitrary, it follows from (23.17) that

$$
\left\{\operatorname{tgt}_{\alpha} \mid \alpha \in \operatorname{Ch} \mathcal{M}\right\}
$$

is a C^{r-1} bundle-atlas of $\mathrm{T} \mathcal{M}$. We consider TM has being endowed with the C^{r-1} linear space bundle structure determined by this atlas.

It is also easily seen that $\left\{\left(\alpha \times \mathbf{1}_{\mathcal{V}_{\alpha}}\right) \circ \operatorname{tgt}_{\alpha} \mid \alpha \in \operatorname{Ch} \mathcal{M}\right\}$ is a C^{r-1} manifoldatlas of $\mathrm{T} \mathcal{M}$. If $\chi \in \mathrm{Ch} \mathcal{M}$ then the page of the manifold chart $\left(\chi \times \mathbf{1}_{\mathcal{V}_{\chi}}\right) \circ \operatorname{tgt}_{\chi}$ is

$$
\begin{equation*}
\operatorname{Pag}\left(\left(\chi \times \mathbf{1}_{\mathcal{V}_{\chi}}\right) \circ \operatorname{tgt}_{\chi}\right)=\operatorname{Pag} \chi \times \mathcal{V}_{\chi} \tag{23.18}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\mathcal{V}_{\left(\chi \times \mathbf{1}_{\chi}\right)+\operatorname{tgt}_{\chi}}=\left(\mathcal{V}_{\chi}\right)^{2} \tag{23.19}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{t}} \mathrm{TM}=2 \operatorname{dim}_{\mathrm{pt}(\mathbf{t})} \mathcal{M} \quad \text { for all } \quad \mathbf{t} \in \mathrm{T} \mathcal{M} \tag{23.20}
\end{equation*}
$$

It is easily seen that the bundle projection $\mathrm{pt}: \mathrm{T} \mathcal{M} \rightarrow \mathcal{M}$ defined by (23.12) is of class C^{r-1}.

Let $r \in$ and C^{r}-manifolds \mathcal{M} and \mathcal{M}^{\prime} be given. Let g be a mapping whose domain and codomain are open subsets of \mathcal{M} and \mathcal{M}^{\prime}, respectively. We say that g is of class C^{s} with $s \in 0 . . r$ if $\chi^{\prime} \square g \square \chi^{\leftarrow}$ is of class C^{s} in the ordinary sense for all $\chi \in \operatorname{Ch} \mathcal{M}$ and all $\chi^{\prime} \in \operatorname{Ch} \mathcal{M}^{\prime}$. This is the case if and only if $\chi^{\prime} \square g$ is of class C^{s} in the sense of Sect. 21 for all $\chi^{\prime} \in \mathrm{Ch} \mathcal{M}^{\prime}$. Also, g is of class C^{s} if $\chi^{\prime} \square g \square \chi^{\leftarrow}$ is of class C^{s} for all χ in some atlas included in $\mathrm{Ch} \mathcal{M}$ and for all
χ^{\prime} in some atlas included in $\mathrm{Ch} \mathcal{M}^{\prime}$. The notion of differentiablity of g is defined in a similar way.

Assume that g is differentiable at $x \in \mathcal{M}$. It follows from (23.16) that

$$
\begin{equation*}
\nabla_{x} g:=\left(\nabla_{g(x)} \chi^{\prime}\right)^{-1} \nabla_{\chi(x)}\left(\chi^{\prime} \circ g \square \chi^{\leftarrow}\right) \nabla_{x} \chi \tag{23.21}
\end{equation*}
$$

does not depend on the choice of $\chi \in \mathrm{Ch}_{x} \mathcal{M}$ and $\chi^{\prime} \in \operatorname{Ch}_{g(x)} \mathcal{M}^{\prime}$. We call

$$
\begin{equation*}
\nabla_{x} g \in \operatorname{Lin}\left(\mathrm{~T}_{x} \mathcal{M}, \mathrm{~T}_{g(x)} \mathcal{M}^{\prime}\right) \tag{23.22}
\end{equation*}
$$

the gradient of g at x. Appropriate versions of the chain rule apply to gradients in this sense. If \mathcal{M}^{\prime} is an open subset of a flat space \mathcal{E}^{\prime} with translation space \mathcal{V}^{\prime}, then the gradient $\nabla_{x} g$ in the sense of (23.22) is related to the gradient $\nabla_{x} g$ in the sense of (23.4) by

$$
\begin{equation*}
\left(\nabla_{x} g\right) \mathbf{t}=\left(g(x),\left(\nabla_{x} g\right) \mathbf{t}\right) \quad \text { for all } \quad \mathbf{t} \in \mathrm{T}_{x} \mathcal{M} \tag{23.23}
\end{equation*}
$$

when the identification $\mathrm{T}_{g(x)} \mathcal{M}^{\prime} \cong\{g(x)\} \times \mathcal{V}^{\prime}$ is used.
Definition: A mapping $\mathbf{h}: \mathcal{M} \rightarrow \mathrm{T} \mathcal{M}$ is called a vector-field on \mathcal{M} if it is a right-inverse of pt , i.e. if

$$
\begin{equation*}
\mathbf{h}(x) \in \mathrm{T}_{x} \mathcal{M} \quad \text { for all } \quad x \in \mathcal{M} \tag{23.24}
\end{equation*}
$$

If \mathbf{h} and \mathbf{k} are vector-fields, then $\mathbf{h}+\mathbf{k}$ is the vector-field defined by valuewise addition, i.e. by $(\mathbf{h}+\mathbf{k})(x):=\mathbf{h}(x)+\mathbf{k}(x)$ for all $x \in \mathcal{M}$. If \mathbf{h} is a vectorfield and f a real-valued function on \mathcal{M} (often called a "scalar-field"), then $f \mathbf{h}$ is defined by value-wise sacalar multiplication, i.e. by $(f \mathbf{h})(x):=f(x) \mathbf{h}(x)$ for all $x \in \mathcal{M}$.

The set of all real-valued functions of class $\mathrm{C}^{s}, s \in 0 .(r-1)$, on \mathcal{M} will be denoted by $\mathrm{C}^{s}(\mathcal{M})$. The set of all vector-fields of class $\mathrm{C}^{s}, s \in 0 \ldots(r-1)$, on \mathcal{M} will be denoted by $\mathfrak{X}^{s}(\mathrm{~T} \mathcal{M})$. Using value-wise addition and mutiplication, $\mathrm{C}^{s}(\mathcal{M})$ acquires the natural structure of a commutative algebra over . The constants form a subalgebra of $\mathrm{C}^{s}(\mathcal{M})$ that is isomorphic to . Using valuewise addition and mutiplication, $\mathfrak{X}^{s}(\mathrm{TM})$ acquires the natural structure of a $\mathrm{C}^{s}(\mathcal{M})$-module.

Let $\mathbf{h}: \mathcal{M} \rightarrow \mathrm{T} \mathcal{M}$ be a vector-field and $\chi \in \operatorname{Ch} \mathcal{M}$. Define $\mathbf{h}^{\chi}: \operatorname{Dom} \chi \rightarrow \mathcal{V}_{\chi}$ by

$$
\begin{equation*}
\mathbf{h}^{\chi}(y):=\left(\nabla_{y} \chi\right) \mathbf{h}(y) \quad \text { foa all } \quad y \in \operatorname{Dom} \chi \tag{23.25}
\end{equation*}
$$

Given $x \in \operatorname{Dom} \chi$, we define

$$
\begin{equation*}
\nabla_{x}^{\chi} \mathbf{h}:=\left(\nabla_{x} \chi\right)^{-1} \nabla_{x} \mathbf{h}^{\chi} \in \operatorname{Lin~}_{x} \mathcal{M} \tag{23.26}
\end{equation*}
$$

It is easily seen from $\left(\nabla_{x} \chi\right)^{-1} \nabla_{x} \mathbf{h}^{\chi}=\left(\nabla_{x} \chi\right)^{-1}\left(\nabla_{\chi} \mathbf{h}^{\chi}(x)\right) \nabla_{x} \chi$ that $\nabla_{x}^{\chi} \mathbf{h}$ is simply the ordinary gradient of \mathbf{h}^{χ} in the chart χ, transported from $\operatorname{Lin} \mathcal{V}_{\chi}$ to $\operatorname{Lin} \mathrm{T}_{x} \mathcal{M}$ by $\nabla_{x} \chi$.

A continuous mapping $p: J \rightarrow \mathcal{M}$ from some genuine interval $J \in$ into the manifold \mathcal{M} will be called a process. If p is differentiable at a given $t \in J$, then

$$
\begin{equation*}
\partial_{t} p:=\left(\nabla_{p(x)} \chi\right)^{-1} \partial_{t}(\chi \square p) \tag{23.27}
\end{equation*}
$$

does not depend on the choice of $\chi \in \operatorname{Ch}_{p(t)} \mathcal{M}$. We call $\partial_{t} p \in \mathrm{~T}_{p(t)} \mathcal{M}$ the derivative of p at t. If p is differentiable, we define the derivative (-process) $p: J \rightarrow \mathrm{~T} \mathcal{M}$ by

$$
\begin{equation*}
p \cdot(t):=\partial_{t} p \quad \text { for all } \quad t \in J \tag{23.28}
\end{equation*}
$$

24. Tensor Bundles

We now assume that a number $s \in^{\sim}$ and a C^{s} linear-space bundle $(\mathcal{B}, \tau, \mathcal{M})$ are given.

With each analytic tensor functor $\boldsymbol{\Phi}$ one can construct what is called the associated $\boldsymbol{\Phi}$-bundle of \mathcal{B}

$$
\begin{equation*}
\Phi(\mathcal{B}):=\bigcup_{y \in \mathcal{M}} \Phi\left(\mathcal{B}_{y}\right) \tag{24.1}
\end{equation*}
$$

It has the natural structure of a C^{s} linear-space bundle over \mathcal{M}. For every open subset \mathcal{P} of \mathcal{M}, we also use the following notation

$$
\begin{equation*}
\mathbf{\Phi}\left(\tau^{<}(\mathcal{P})\right):=\bigcup_{y \in \mathcal{P}} \mathbf{\Phi}\left(\mathcal{B}_{y}\right) \tag{24.2}
\end{equation*}
$$

We define the bundle projection $\tau^{\boldsymbol{\Phi}}: \boldsymbol{\Phi}(\mathcal{B}) \rightarrow \mathcal{M}$ of the bundle $\boldsymbol{\Phi}(\mathcal{B})$ by

$$
\begin{equation*}
\tau^{\boldsymbol{\Phi}}(\mathbf{v}): \in\left\{y \in \mathcal{M} \mid \mathbf{v} \in \Phi\left(\mathcal{B}_{y}\right)\right\} \tag{24.3}
\end{equation*}
$$

For every bundle chart $\phi: \tau^{<}\left(\mathcal{O}_{\phi}\right) \rightarrow \mathcal{O}_{\phi} \times \mathcal{V}_{\phi}$, we have

$$
\left.\phi(\mathbf{v})=(y, \phi\rfloor_{y}(\mathbf{t})\right) \quad \text { where } \quad y:=\tau(\mathbf{t})
$$

We define the mapping

$$
\begin{equation*}
\mathbf{\Phi}(\phi): \mathbf{\Phi}\left(\pi^{<}\left(\mathcal{O}_{\phi}\right)\right) \rightarrow \mathcal{O}_{\phi} \times \mathbf{\Phi}\left(\mathcal{V}_{\phi}\right) \tag{24.4}
\end{equation*}
$$

by

$$
\begin{equation*}
\left.(\boldsymbol{\Phi}(\phi))(\mathbf{v}):=\left(y, \boldsymbol{\Phi}(\phi\rfloor_{y}\right) \mathbf{v}\right) \quad \text { when } \quad y:=\tau^{\boldsymbol{\Phi}}(\mathbf{v}) \tag{24.5}
\end{equation*}
$$

It follows from the analyticity of the mapping $(\mathbf{L} \mapsto \mathbf{\Phi}(\mathbf{L}))$ that

$$
\{\boldsymbol{\Phi}(\phi) \mid \phi \in \operatorname{Ch}(\mathcal{B}, \mathcal{M})\}
$$

is a C^{s}-bundle-atlas of $\boldsymbol{\Phi}(\mathcal{B})$. It determines the C^{s} linear-space bundle structure of $\left(\boldsymbol{\Phi}(\mathcal{B}), \tau^{\boldsymbol{\Phi}}, \mathcal{M}\right)$.

The bundle projection $\tau^{\boldsymbol{\Phi}}: \boldsymbol{\Phi}(\mathcal{B}) \rightarrow \mathcal{M}$ defined by (24.3) is easily seen to be of class C^{s}.

Notation: For every $p \in 0 . . s$, we denote the collection of all C^{p} cross sections of $\boldsymbol{\Phi}(\mathcal{B})$ by $\mathfrak{X}^{p}(\mathbf{\Phi}(\mathcal{B}))$. The collection of all differentiable cross sections of $\boldsymbol{\Phi}(\mathcal{B})$ is denoted by $\mathfrak{X}(\boldsymbol{\Phi}(\mathcal{B}))$.

In the special case $\mathcal{B}=\mathrm{T} \mathcal{M}$, we call $\boldsymbol{\Phi}(\mathrm{T} \mathcal{M})$ the tansor bundle of \mathcal{M} of type $\boldsymbol{\Phi}$. A cross section of the tensor bundle $\boldsymbol{\Phi}(\mathrm{TM})$ is called a tensor-field of type $\boldsymbol{\Phi}$. When $\boldsymbol{\Phi}:=\mathrm{Dl}$ is the duality functor (see Sect.13), we call $\mathrm{Dl}(\mathrm{TM})$ the cotangent bundle of \mathcal{M} which will be denoted by $\mathrm{T}^{*} \mathcal{M}$.

Remark: Let \mathcal{M} be a C^{∞}-manifold. With every $\mathbf{h} \in \mathfrak{X}^{\infty}(\mathrm{T} \mathcal{M})$ we can then associate a mapping $\boldsymbol{h}^{\nabla}: \mathrm{C}^{\infty}(\mathcal{M}) \rightarrow \mathrm{C}^{\infty}(\mathcal{M})$ defined by

$$
\begin{equation*}
\mathbf{h}^{\nabla}(f):=(\nabla f) \mathbf{h} \quad \text { for all } \quad f \in \mathrm{C}^{\infty}(\mathcal{M}) \tag{24.6}
\end{equation*}
$$

where the gradient ∇f of f is the covector field of class C^{∞} given by $\nabla f(x):=\nabla_{x} f$ for all $x \in \operatorname{Dom} f$. It is clear that \mathbf{h}^{∇} is -linear. By using the product rule $\nabla f g=f \nabla g+g \nabla f$, we have

$$
\begin{equation*}
\mathbf{h}^{\nabla}(f g)=f \mathbf{h}^{\nabla}(g)+g \mathbf{h}^{\nabla}(f) \quad \text { for all } \quad f, g \in \mathbf{C}^{\infty}(\mathcal{M}) \tag{24.7}
\end{equation*}
$$

This shows that \mathbf{h}^{∇} is a derivation of the module $\mathrm{C}^{\infty}(\mathcal{M})$. One can prove that every derivation of $\mathrm{C}^{\infty}(\mathcal{M})$ can be obtained in this manner. (The proof is fairly difficult.)

Let a cross section section $\mathbf{H}: \mathcal{M} \rightarrow \boldsymbol{\Phi}(\mathcal{B})$ be given. For every bundle chart $\phi \in \mathrm{Ch}_{x}(\mathcal{B}, \mathcal{M})$ we define the mapping

$$
\mathbf{H}^{\phi}: \mathcal{O}_{\phi} \rightarrow \boldsymbol{\Phi}\left(\mathcal{V}_{\phi}\right)
$$

by

$$
\begin{equation*}
\left.\mathbf{H}^{\phi}(y):=\boldsymbol{\Phi}(\phi\rfloor_{y}\right) \mathbf{H}(y), \quad \text { for all } \quad y \in \mathcal{O}_{\phi} \tag{24.8}
\end{equation*}
$$

Given $x \in \mathcal{O}_{\phi}$, we define

$$
\begin{equation*}
\left.\nabla_{x}^{\phi} \mathbf{H}:=\boldsymbol{\Phi}(\phi\rfloor_{x}^{-1}\right) \nabla_{x} \mathbf{H}^{\phi} \in \operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \boldsymbol{\Phi}\left(\mathcal{B}_{x}\right)\right) \tag{24.9}
\end{equation*}
$$

When $\boldsymbol{\Phi}=\mathrm{Id}$ and $\mathcal{B}=\mathrm{T} \mathcal{M}$, we have $\nabla_{x}^{\operatorname{tgt}_{\chi}} \mathbf{h}=\nabla_{x}^{\chi} \mathbf{h}$ for all $\chi \in \mathrm{Ch} \mathcal{M}$ and all $x \in \operatorname{Dom} \chi$.

One defines value-wise addition of cross sections of $\boldsymbol{\Phi}(\mathcal{B})$ and value-wise scalar multiplication of a real function on \mathcal{M} and a cross section of $\boldsymbol{\Phi}(\mathcal{B})$ in the obvious manner. $\mathfrak{X}^{p} \boldsymbol{\Phi}(\mathcal{B})$ has the natural structure of a $\mathrm{C}^{p}(\mathcal{M})$-module, where $\mathrm{C}^{p}(\mathcal{M})$ is the ring of all real-valued functions of class C^{p} on \mathcal{M}.

Let $\left(\mathcal{L}_{1}, \tau_{1}, \mathcal{M}\right)$ and $\left(\mathcal{L}_{2}, \tau_{2}, \mathcal{M}\right)$ be linear-space bundles over \mathcal{M} and let $\mathcal{L}_{1} \times \mathcal{L}_{\mathcal{M}}$ be the fiber product bundle of \mathcal{L}_{1} and \mathcal{L}_{2}. For every tensor bifunctor Υ, it follows form (24.5) that for each bundle chart $\phi_{1} \in \operatorname{Ch}\left(\mathcal{L}_{1}, \mathcal{M}\right)$ and each buhdle chart $\phi_{2} \in \operatorname{Ch}\left(\mathcal{L}_{2}, \mathcal{M}\right)$

$$
\begin{equation*}
\left.\left.\mathbf{\Upsilon}\left(\phi_{1} \times_{\mathcal{M}} \phi_{2}\right)(\mathbf{v})=\left(y, \mathbf{\Upsilon}(\varphi\rfloor_{y} \times \phi\right\rfloor_{y}\right) \mathbf{v}\right) \tag{24.10}
\end{equation*}
$$

where $y:=\left(\tau_{1} \times_{\mathcal{M}} \tau_{2}\right)^{\Upsilon}(\mathbf{v})($ see 24.3$)$.
Let a cross section $\mathbf{H}: \mathcal{M} \rightarrow \mathbf{\Upsilon}\left(\mathcal{L}_{1} \times \mathcal{L}_{\mathcal{M}}\right)$ be given. For each bundle chart $\phi_{1} \in \operatorname{Ch}\left(\mathcal{L}_{1}, \mathcal{M}\right)$ and each buhdle chart $\phi_{2} \in \operatorname{Ch}\left(\mathcal{L}_{2}, \mathcal{M}\right)$, we define the mapping

$$
\mathbf{H}^{\phi_{1}, \phi_{2}}: \mathcal{O}_{\phi} \rightarrow \mathbf{\Upsilon}\left(\mathcal{V}_{\phi_{1}} \times \mathcal{V}_{\phi_{2}}\right)
$$

by

$$
\begin{equation*}
\left.\mathbf{H}^{\phi_{1}, \phi_{2}}(y):=\boldsymbol{\Phi}(\phi\rfloor_{y}\right) \mathbf{H}(y), \quad \text { for all } \quad y \in \mathcal{O}_{\phi_{1}} \cap \mathcal{O}_{\phi_{2}} \tag{24.11}
\end{equation*}
$$

Given $x \in \mathcal{O}_{\phi_{1}} \cap \mathcal{O}_{\phi_{2}}$, we define

$$
\begin{equation*}
\left.\left.\nabla_{x}^{\phi_{1}, \phi_{2}} \mathbf{H}:=\mathbf{\Upsilon}\left(\phi_{1}\right\rfloor_{x}^{-1} \times \phi_{2}\right\rfloor_{x}^{-1}\right) \nabla_{x} \mathbf{H}^{\phi_{1}, \phi_{2}} \tag{24.12}
\end{equation*}
$$

which is in $\operatorname{Lin}\left(\mathrm{T}_{x} \mathcal{M}, \mathbf{\Upsilon}\left(\mathcal{L}_{1 x} \times \mathcal{L}_{2 x}\right)\right)$.

