Chapter 1

Preliminaries

11. Multilinearity

Let $\left(\mathcal{V}_{i} \mid i \in I\right)$ be a family of linear spaces, we define (see (04.24) of [FDS]), for each $j \in I$ and each $\mathbf{v} \in X_{i \in I} \mathcal{V}_{i}$, the mapping $(\mathbf{v} . j): \mathcal{V}_{j} \rightarrow X_{i \in I} \mathcal{V}_{i}$ by the rule

$$
((\mathbf{v} \cdot j)(\mathbf{u}))_{i}:=\left\{\begin{array}{ccc}
\mathbf{v}_{i} & \text { if } & i \in I \backslash\{j\} \tag{11.1}\\
\mathbf{u} & \text { if } & i=j
\end{array}\right\} \quad \text { for all } \quad \mathbf{u} \in \mathcal{V}_{j}
$$

Definition : Let the family $\left(\mathcal{V}_{i} \mid i \in I\right)$ and \mathcal{W} be linear spaces. We say that the mapping $\mathbf{M}: X_{i \in I} \mathcal{V}_{i} \rightarrow \mathcal{W}$ is multilinear if, for every $\mathbf{v} \in X_{i \in I} \mathcal{V}_{i}$ and every $j \in I$ the mapping $\mathbf{M} \circ(\mathbf{v} \cdot j): \mathcal{V}_{j} \rightarrow \mathcal{W}$ is linear, so that $\mathbf{M} \circ(\mathbf{v} . j) \in \operatorname{Lin}\left(\mathcal{V}_{j}, \mathcal{W}\right)$. The set of all multilinear mappings from $\times_{i \in I} \mathcal{V}_{i}$ to \mathcal{W} is denoted by

$$
\begin{equation*}
\operatorname{Lin}_{I}\left(\times_{i \in I} \mathcal{V}_{i}, \mathcal{W}\right) \tag{11.2}
\end{equation*}
$$

Let linear spaces \mathcal{V} and \mathcal{W} and a set I be given.
Let Perm I be the permutation group, which consists of all invertible mappings from I to itself. For every permutation $\sigma \in \operatorname{Perm} I$ we define a mapping $\mathrm{T}_{\sigma}: \mathcal{V}^{I} \rightarrow \mathcal{V}^{I}$ by

$$
\begin{equation*}
\mathrm{T}_{\sigma}(\mathbf{v})=\mathbf{v} \circ \sigma \quad \text { for all } \quad \mathbf{v} \in \mathcal{V}^{I} \tag{11.3}
\end{equation*}
$$

that is $\left(\mathrm{T}_{\sigma}(\mathbf{v})\right)_{i}:=\mathbf{v}_{\sigma(i)}$ for all $i \in I$. In view of $\mathbf{v} \circ(\sigma \circ \rho)=(\mathbf{v} \circ \sigma) \circ \rho$, we have $\mathrm{T}_{\sigma \circ \rho}=\mathrm{T}_{\rho} \circ \mathrm{T}_{\sigma}$ for all $\sigma, \rho \in$ Perm I. It is not hard to see that, for every multilinear mapping $\mathbf{M}: \mathcal{V}^{I} \rightarrow \mathcal{W}$ and every permutation σ, the composition $\mathbf{M} \circ \mathrm{T}_{\sigma}$ is again a multilinear mapping from \mathcal{V}^{I} to \mathcal{W}, i.e. $\mathbf{M} \circ \mathrm{T}_{\sigma} \in \operatorname{Lin}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)$.

Definition : A multilinear mapping $\mathbf{M}: \mathcal{V}^{I} \rightarrow \mathcal{W}$ is said to be (completely) symmetric if

$$
\mathbf{M} \circ \mathrm{T}_{\sigma}=\mathbf{M} \quad \text { for all } \quad \sigma \in \operatorname{Perm} I
$$

and is said to be (completely) skew if

$$
\mathbf{M} \circ \mathrm{T}_{\sigma}=\operatorname{sgn}(\sigma) \mathbf{M} \quad \text { for all } \quad \sigma \in \operatorname{Perm} I
$$

The set of all (completely) symmetric multilinear mappings and the set of all (completely) skew multilinear mappings from \mathcal{V}^{I} to \mathcal{W} will be denoted by $\operatorname{Sym}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)$ and by $\operatorname{Skew}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)$; respectively.

Both $\operatorname{Sym}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)$ and $\operatorname{Skew}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)$ are subspaces of the linear space $\operatorname{Lin}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)$ with dimensions

$$
\begin{equation*}
\operatorname{dim} \operatorname{Sym}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)=\binom{\operatorname{dim} \mathcal{V}+\# I-1}{\# I} \operatorname{dim} \mathcal{W} \tag{11.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim} \operatorname{Skew}_{I}\left(\mathcal{V}^{I}, \mathcal{W}\right)=\binom{\operatorname{dim} \mathcal{V}}{\# I} \operatorname{dim} \mathcal{W} \tag{11.5}
\end{equation*}
$$

For every $k \in$, we write $\operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right), \operatorname{Sym}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$ and $\operatorname{Skew}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$ for $\operatorname{Lin}_{k!}\left(\mathcal{V}^{k}, \mathcal{W}\right), \operatorname{Sym}_{k]}\left(\mathcal{V}^{k]}, \mathcal{W}\right)$ and $\operatorname{Skew}_{k!}\left(\mathcal{V}^{k]}, \mathcal{W}\right)$; respectively.

In applicatins, we often use the following identifications

$$
\begin{aligned}
\operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) & \cong \operatorname{Lin}_{k-1}\left(\mathcal{V}^{k-1}, \operatorname{Lin}(\mathcal{V}, \mathcal{W})\right) \\
& \cong \operatorname{Lin}\left(\mathcal{V}, \operatorname{Lin}_{k-1}\left(\mathcal{V}^{k-1}, \mathcal{W}\right)\right)
\end{aligned}
$$

and inclusions

$$
\begin{aligned}
\operatorname{Sym}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) & \subset \operatorname{Sym}_{k-1}\left(\mathcal{V}^{k-1}, \operatorname{Lin}(\mathcal{V}, \mathcal{W})\right) \\
\operatorname{Skew}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) & \subset \operatorname{Skew}_{k-1}\left(\mathcal{V}^{k-1}, \operatorname{Lin}(\mathcal{V}, \mathcal{W})\right)
\end{aligned}
$$

In particular, we shall use $\operatorname{Sym}_{2}\left(\mathcal{V}^{2},\right) \cong \operatorname{Sym}\left(\mathcal{V}, \mathcal{V}^{*}\right):=\operatorname{Sym}(\mathcal{V}, \operatorname{Lin}(\mathcal{V})$, and $\operatorname{Skew}_{2}\left(\mathcal{V}^{2},\right) \cong \operatorname{Skew}\left(\mathcal{V}, \mathcal{V}^{*}\right):=\operatorname{Skew}(\mathcal{V}, \operatorname{Lin}(\mathcal{V})$,$) . It can be shown that$ Skew $\left(\mathcal{V}, \mathcal{V}^{*}\right)$ has invertiable mapping if and only if $\operatorname{dim} \mathcal{V}$ is even. (See Prop. 3 of Sect.87, [FDS].)

Given a number $k \in$ and a multilinear mapping $\mathbf{A} \in \operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$, the mapping $\sum_{\sigma \in \operatorname{Permk}]}(\operatorname{sgn} \sigma) \mathbf{A} \circ \mathrm{T}_{\sigma}: \mathcal{V}^{k} \rightarrow \mathcal{W}$ is a completely skew multilinear mapping. Moreover, it can be easily shown that

$$
\frac{1}{k!} \sum_{\sigma \in \operatorname{Perm} k]}(\operatorname{sgn} \sigma) \mathbf{W} \circ \mathrm{T}_{\sigma}=\mathbf{W}
$$

for all skew multilinear mapping $\mathbf{W} \in \operatorname{Skew}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$.
Definition : Given a number $k \in$, we define the alternating assignment Alt : $\operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) \rightarrow \operatorname{Skew}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$ by

$$
\begin{equation*}
\text { Alt } \mathbf{A}:=\frac{1}{k!} \sum_{\sigma \in \operatorname{Perm} k]}(\operatorname{sgn} \sigma) \mathbf{A} \circ \mathrm{T}_{\sigma} \tag{11.6}
\end{equation*}
$$

for all linear spaces \mathcal{V} and \mathcal{W} and all $\mathbf{A} \in \operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$.
Given $p \in$. We define, for each $i \in(p+1)^{\text {] }}$, a mapping $\operatorname{del}_{i}: \mathcal{V}^{p+1} \rightarrow \mathcal{V}^{p}$ by

$$
\left(\operatorname{del}_{i}(\mathbf{v})\right)_{j}:=\left\{\begin{array}{ccc}
\mathbf{v}_{j} & \text { if } & 1 \leq i \leq j-1 \tag{11.7}\\
\mathbf{v}_{i+1} & \text { if } \quad j \leq i \leq p
\end{array}\right\} \quad \text { for all } \quad \mathbf{v} \in \mathcal{V}^{p+1}
$$

Intuitively, $\operatorname{del}_{i}(\mathbf{v})$ is obtained from \mathbf{v} by deleting the i-th term.
When the alternating assignment Alt restricted to the subspace $\operatorname{Lin}\left(\mathcal{V}, \operatorname{Skew}_{p}\left(\mathcal{V}^{p}, \mathcal{W}\right)\right)$ of $\operatorname{Lin}\left(\mathcal{V}, \operatorname{Lin}_{p}\left(\mathcal{V}^{p}, \mathcal{W}\right)\right) \cong \operatorname{Lin}_{p+1}\left(\mathcal{V}^{p+1}, \mathcal{W}\right)$, we have

$$
\begin{equation*}
(p+1)(\operatorname{Alt} \mathbf{A}) \mathbf{v}=\sum_{i \in(p+1)]}(-1)^{i-1} \mathbf{A}\left(\mathbf{v}_{i}, \operatorname{del}_{i} \mathbf{v}\right) \tag{11.8}
\end{equation*}
$$

for all $\mathbf{v} \in \mathcal{V}^{p+1}$ and all $\mathbf{A} \in \operatorname{Lin}\left(\mathcal{V}, \operatorname{Skew}_{p}\left(\mathcal{V}^{p}, \mathcal{W}\right)\right)$. Similarly, when the alternating assignment Alt restricted to the subspace $\operatorname{Skew}_{p}\left(\mathcal{V}^{p}, \operatorname{Lin}(\mathcal{V}, \mathcal{W})\right)$ of $\operatorname{Lin}\left(\mathcal{V}, \operatorname{Lin}_{p}\left(\mathcal{V}^{p}, \mathcal{W}\right)\right) \cong \operatorname{Lin}_{p+1}\left(\mathcal{V}^{p+1}, \mathcal{W}\right)$, we have

$$
\begin{equation*}
(p+1)(\operatorname{Alt} \mathbf{B}) \mathbf{v}=\sum_{i \in(p+1)^{]}}(-1)^{p+1-i} \mathbf{B}\left(\operatorname{del}_{i} \mathbf{v}, \mathbf{v}_{i}\right) \tag{11.9}
\end{equation*}
$$

for all $\mathbf{v} \in \mathcal{V}^{p+1}$ and all $\mathbf{B} \in \operatorname{Skew}_{p}\left(\mathcal{V}^{p}, \operatorname{Lin}(\mathcal{V}, \mathcal{W})\right)$.
Definition: An algebra is a linear space \mathcal{V} together with a bilinear mapping $\mathbf{B} \in \operatorname{Lin}_{2}\left(\mathcal{V}^{2}, \mathcal{V}\right)$. An algebra \mathcal{V} is called a Lie Alegebra if the bilinear mapping \mathbf{B} is skew-symmetric, i.e. $\mathbf{B} \in \operatorname{Skew}_{2}\left(\mathcal{V}^{2}, \mathcal{V}\right)$, and satisfies Jacobi indetity

$$
\begin{equation*}
\mathbf{B}\left(\mathbf{B}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right), \mathbf{v}_{3}\right)+\mathbf{B}\left(\mathbf{B}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right), \mathbf{v}_{1}\right)+\mathbf{B}\left(\mathbf{B}\left(\mathbf{v}_{3}, \mathbf{v}_{1}\right), \mathbf{v}_{2}\right)=\mathbf{0} \tag{11.10}
\end{equation*}
$$

for all $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathcal{V}$.
By using the inclusion $\operatorname{Skew}_{2}\left(\mathcal{V}^{2}, \mathcal{V}\right) \subset \operatorname{Lin}(\mathcal{V}, \operatorname{Lin}(\mathcal{V}, \mathcal{V}))$ and (11.9), we see taht (11.10) can rewriten as

$$
\begin{equation*}
\operatorname{Alt}(\mathbf{B} \circ \mathbf{B})=\mathbf{0} \tag{11.11}
\end{equation*}
$$

where $(\mathbf{B} \circ \mathbf{B})\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right):=\mathbf{B}\left(\mathbf{B}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right), \mathbf{v}_{3}\right)$ for all $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathcal{V}$.
Remark 1: In the literature the alternating assignment given in (11.6) is often called "skew-symmetric operator" ([B-W]), "complete antisymmetrization" ([F-C]). The symmetric assignment, "symmetric operator" or "complete symmetrization" ${\operatorname{Sym}: \operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) \rightarrow \operatorname{Sym}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) \text { is given by }}^{(1)}$

$$
\begin{equation*}
\operatorname{Sym} \mathbf{M}:=\frac{1}{k!} \sum_{\sigma \in \operatorname{Perm} k]} \mathbf{M} \circ \mathrm{T}_{\sigma} \tag{11.12}
\end{equation*}
$$

for all linear spaces \mathcal{V} and \mathcal{W} and all $\mathbf{M} \in \operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$.
Remark 2: Both assignments given in (11.6) and (11.12) are "natural linear assignments" from a functor to another functor (see (13.16) of Sect.13). More precisely, the alternating assignment is a natural linear assgnment from the functor Ln_{k} to the functor Sk_{k} and the symmetric assignment is a natural linear assgnment from the functor Ln_{k} to the functor Sm_{k} (see Sect. 13).

12. Isocategories, isofunctors and Natural Assignments

An isocategory* ${ }^{*}$ is given by the specification of a class $O B J$ whose members are called objects, a class ISO whose members are called ISOmorphisms,
(i) a rule that associates with each $\phi \in \mathrm{ISO}$ a pair $(\operatorname{Dom} \phi, \operatorname{Cod} \phi)$ of objects, called the domain and codomain of ϕ,
(ii) a rule that associates with each $\mathcal{A} \in O B J$ a member of ISO denoted by $1_{\mathcal{A}}$ and called the identity of \mathcal{A},
(iii) a rule that associates with each pair (ϕ, ψ) in ISO such that $\operatorname{Cod} \phi=\operatorname{Dom} \psi$ a member of ISO denoted by $\psi \circ \phi$ and called the composite of ϕ and ψ, with $\operatorname{Dom}(\psi \circ \phi)=\operatorname{Dom} \phi$ and $\operatorname{Cod}(\psi \circ \phi)=\operatorname{Cod} \psi$.
(iv) a rule that associates with each $\phi \in$ ISO a member of ISO denoted by $\phi \leftarrow$ and called the inverse of ϕ.
subject to the following three axioms:
(I1) $\phi \circ 1_{\operatorname{Dom} \phi}=\phi=1_{\operatorname{Cod} \phi} \circ \phi$ for all $\phi \in \operatorname{ISO}$,
(I2) $\chi \circ(\psi \circ \phi)=(\chi \circ \psi) \circ \phi$ for all $\phi, \psi, \chi \in$ ISO such that $\operatorname{Cod} \phi=\operatorname{Dom} \psi$ and $\operatorname{Cod} \psi=\operatorname{Dom} \chi$.
(I3) $\phi^{\leftarrow} \circ \phi=1_{\operatorname{Dom} \phi}$ and $\phi \circ \phi^{\leftarrow}=1_{\operatorname{Cod} \phi}$ for all $\phi \in$ ISO.
Given $\phi \in$ ISO, one writes $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ or $\mathcal{A} \xrightarrow{\phi} \mathcal{B}$ to indicate that $\operatorname{Dom} \phi=\mathcal{A}$ and $\operatorname{Cod} \phi=\mathcal{B}$.

There is one to one correspondence between an object $\mathcal{A} \in O B J$ and the corresponding identity $1_{\mathcal{A}} \in$ ISO. For this reason, we will usually name an isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO^{\prime} with object-classes $O B J$ and $O B J^{\prime}$ be given. We can then form the product-isocategory ISO $\times \mathrm{ISO}^{\prime}$ whose objectclass $O B J \times O B J^{\prime}$ consists of pairs $\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ with $\mathcal{A} \in O B J, \mathcal{A}^{\prime} \in O B J^{\prime}$ and ISOmorphism-class ISO $\times \mathrm{ISO}^{\prime}$ consists of pairs (ϕ, ϕ^{\prime}) with $\phi \in \mathrm{ISO}, \phi^{\prime} \in \mathrm{ISO}^{\prime}$ and the following
(a) For every $\left(\phi, \phi^{\prime}\right) \in \operatorname{ISO} \times \operatorname{ISO}^{\prime}, \operatorname{Dom}\left(\phi, \phi^{\prime}\right):=\left(\operatorname{Dom} \phi, \operatorname{Dom} \phi^{\prime}\right)$ and $\operatorname{Cod}\left(\phi, \phi^{\prime}\right):=\left(\operatorname{Cod} \phi, \operatorname{Cod} \phi^{\prime}\right)$.

[^0](b) Composition in ISO $\times \mathrm{ISO}^{\prime}$ is defined by termwise composition, i.e. by $\left(\psi, \psi^{\prime}\right) \circ\left(\phi, \phi^{\prime}\right):=\left(\psi \circ \phi, \psi^{\prime} \circ \phi^{\prime}\right)$ for all $\phi, \psi \in$ ISO and $\phi^{\prime}, \psi^{\prime} \in \mathrm{ISO}^{\prime}$ such that $\operatorname{Dom}\left(\psi, \psi^{\prime}\right)=\operatorname{Cod}\left(\phi, \phi^{\prime}\right)$.
(c) The identity of a given pair $\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \in O B J \times O B J^{\prime}$ is defined to be $1_{\left(\mathcal{A}, \mathcal{A}^{\prime}\right)}=\left(1_{\mathcal{A}}, 1_{\mathcal{A}^{\prime}}\right)$.

The product of an arbitary family of isocategories can be defined in a similar manner. In particular, if a isocategory ISO and an index set I are given, one can form the I-power-isocategory ISO^{I} of ISO; its ISOmorphism-class consists of all families in ISO indexed on I. In the case when I is of the form $I:=n^{\text {] }}$, we $w^{w i t e} \mathrm{ISO}^{n}:=\mathrm{ISO}^{n 〕}$ for short. For example, we write $\mathrm{ISO}^{2}:=\mathrm{ISO} \times \mathrm{ISO}$. We identify ISO^{1} with ISO and ISO^{m+n} with $\mathrm{ISO}^{m} \times \mathrm{ISO}^{n}$ for all $m, n \in$ in the obvious manner. The isocategory ISO^{0} is the trival one whose only object is \emptyset and whose only ISOmorphism is 1_{\emptyset}.

A functor Φ is given by the specification of:
(i) a pair $(\operatorname{Dom} \Phi, \operatorname{Cod} \Phi)$ of categories, called the domain-category and codomain-category of Φ,
(ii) a rule that associates with every $\phi \in \operatorname{Dom} \Phi$ a member of $\operatorname{Cod} \Phi$ denoted by $\Phi(\phi)$,
subject to the following conditions:
(F1) We have $\operatorname{Cod} \Phi(\phi)=\operatorname{Dom} \Phi(\psi)$ and $\Phi(\psi \circ \phi)=\Phi(\psi) \circ \Phi(\phi)$ for all $\phi, \psi \in \operatorname{Dom} \Phi$ such that $\operatorname{Cod} \phi=\operatorname{Dom} \psi$.
(F2) For every identity $1_{\mathcal{A}}$ in $\operatorname{Dom} \Phi$, where \mathcal{A} belongs to the objectclass of $\operatorname{Dom} \Phi, \Phi\left(1_{\mathcal{A}}\right)$ is an identity in $\operatorname{Cod} \Phi$.
An isofunctor is a functor whose domain-category and codomain-category are isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO^{\prime} with object-classes $O B J$ and $O B J^{\prime}$ be given. We say that Φ is an isofunctor from ISO to ISO^{\prime} and we write ISO $\xrightarrow{\Phi} \mathrm{ISO}^{\prime}$ or $\Phi: \mathrm{ISO} \longrightarrow \mathrm{ISO}^{\prime}$ to indicate that $\mathrm{ISO}=\operatorname{Dom} \Phi$ and $\mathrm{ISO}^{\prime}=\operatorname{Cod} \Phi$. By (F2), we can associate with each $\mathcal{A} \in O B J$ exactly one object in $O B J^{\prime}$, denoted by $\Phi(\mathcal{A})$, such that

$$
\begin{equation*}
\Phi\left(1_{\mathcal{A}}\right)=1_{\Phi(\mathcal{A})} \tag{12.1}
\end{equation*}
$$

It easily follows from (I3), (F1) and (F2) that every isofunctor Φ satisfies

$$
\begin{equation*}
\Phi\left(\phi^{\leftarrow}\right)=(\Phi(\phi))^{\leftarrow} \quad \text { for all } \quad \phi \in \operatorname{Dom} \Phi \tag{12.2}
\end{equation*}
$$

One can construct new isofunctors from given isofunctors in the same way as new mappings are constructed from given mappings. (See, for example, Sect. 03
and 04, [FDS].) Thus, if Φ and Ψ are isofunctors such that $\operatorname{Cod} \Phi=\operatorname{Dom} \Psi$, one can define the composite isofunctor $\Psi \circ \Phi: \operatorname{Dom} \Phi \rightarrow \operatorname{Cod} \Psi$ by

$$
\begin{equation*}
(\Psi \circ \Phi)(\phi):=\Psi(\Phi(\phi)) \quad \text { for all } \quad \phi \in \operatorname{Dom} \Phi \tag{12.3}
\end{equation*}
$$

Also, given isofunctors Φ and Ψ, one can define the product-isofunctor

$$
\Phi \times \Psi: \operatorname{Dom} \Phi \times \operatorname{Dom} \Psi \longrightarrow \operatorname{Cod} \Phi \times \operatorname{Cod} \Psi
$$

of Φ and Ψ by

$$
\begin{equation*}
(\Phi \times \Psi)(\phi, \psi):=(\Phi(\phi), \Psi(\psi)) \tag{12.4}
\end{equation*}
$$

for all $\phi \in \operatorname{Dom} \Phi$ and all $\psi \in \operatorname{Dom} \Psi$.
Product-isofunctors of arbitrary families of isofunctors are defined in a similar way. In particular, if a isofunctor Φ and an index set I are given, we define the I-power-isofunctor $\Phi^{\times I}:(\operatorname{Dom} \Phi)^{I} \rightarrow(\operatorname{Cod} \Phi)^{I}$ of Φ by

$$
\begin{equation*}
\Phi^{\times I}\left(\phi_{i} \mid i \in I\right)=\left(\Phi\left(\phi_{i}\right) \mid i \in I\right) \tag{12.5}
\end{equation*}
$$

for all families $\left(\phi_{i} \mid i \in I\right)$ in $\operatorname{Dom} \Phi$. We write $\Phi^{\times n}:=\Phi^{\times n^{]}}$when $n \in$.
We now assume that an isocategory ISO with object-class $O B J$ is given.
The identity-isofunctor Id : ISO \rightarrow ISO of ISO is defined by

$$
\begin{equation*}
\operatorname{Id}(\phi)=\phi \quad \text { for all } \quad \phi \in \mathrm{ISO} \tag{12.6}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\operatorname{Id}(\mathcal{A})=\mathcal{A} \quad \text { for all } \quad \mathcal{A} \in O B J \tag{12.7}
\end{equation*}
$$

If I is an index set, then the identity-isofunctor of ISO^{I} is $\mathrm{Id}^{\times I}$. In particular, the identity-isofunctor of ISO \times ISO is Id $\times \mathrm{Id}$.

Given an object $\mathcal{C} \in O B J$. The trivial-isofunctor $\operatorname{Tr}_{\mathcal{C}}:$ ISO \rightarrow ISO for \mathcal{C} is defined by

$$
\begin{equation*}
\operatorname{Tr}_{\mathcal{C}}(\phi)=1_{\mathcal{C}} \quad \text { for all } \quad \phi \in \mathrm{ISO} \tag{12.8}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\operatorname{Tr}_{\mathcal{C}}(\mathcal{A})=\mathcal{C} \quad \text { for all } \quad \mathcal{A} \in O B J \tag{12.9}
\end{equation*}
$$

One often needs to consider a variety of "accounting isofunctors" whose domain and codomain isocategories are obtained from ISO by product formation. For example, the switch-isofunctor $\mathrm{Sw}: \mathrm{ISO}^{2} \rightarrow \mathrm{ISO}^{2}$ is defined by

$$
\begin{equation*}
\mathrm{Sw}(\phi, \psi):=(\psi, \phi) \quad \text { for all } \quad \phi, \psi \in \mathrm{ISO} \tag{12.10}
\end{equation*}
$$

Given any index set I, the equalization-isofunctor $\mathrm{Eq}_{I}: \mathrm{ISO} \rightarrow \mathrm{ISO}^{I}$ is defined by

$$
\begin{equation*}
\operatorname{Eq}_{I}(\phi):=(\phi \mid i \in I) \quad \text { for all } \quad \phi \in \mathrm{ISO} \tag{12.11}
\end{equation*}
$$

We write $\mathrm{Eq}_{n}:=\mathrm{Eq}_{n]}$ when $n \in$.
Let a index set I and a family $\left(\Phi_{i} \mid i \in I\right)$ of isofunctors, with $\operatorname{Dom} \Phi_{i}=$ ISO for all $i \in I$, be given. We then identify the family $\left(\Phi_{i} \mid i \in I\right)$ with the termwise-formation isofunctor

$$
\left(\Phi_{i} \mid i \in I\right): \mathrm{ISO} \rightarrow \underset{i \in I}{\times} \operatorname{Cod} \Phi_{i}
$$

defined by

$$
\left(\Phi_{i} \mid i \in I\right):=\underset{i \in I}{\times} \Phi_{i} \circ \mathrm{Eq}_{I}
$$

so that

$$
\begin{equation*}
\left(\Phi_{i} \mid i \in I\right)(\phi)=\underset{i \in I}{\times} \Phi_{i}(\phi), \quad \text { for all } \quad \phi \in \mathrm{ISO} \tag{12.12}
\end{equation*}
$$

In particular, if $I=2^{3}$, we then identify the pair $\left(\Phi_{1}, \Phi_{2}\right)$ with the pairformation isofunctor $\left(\Phi_{1}, \Phi_{2}\right): \operatorname{ISO} \rightarrow \operatorname{Cod} \Phi_{1} \times \operatorname{Cod} \Phi_{2}$.

Let isofunctors Φ and Ψ, both from ISO to ISO^{\prime}, be given. A natural assignment α form Φ to Ψ is a rule that associates with each object \mathcal{F} of ISO a mapping

$$
\alpha_{\mathcal{F}}: \Phi(\mathcal{F}) \rightarrow \Psi(\mathcal{F})
$$

such that

$$
\begin{equation*}
\Psi(\chi) \circ \alpha_{\operatorname{Dom} \chi}=\alpha_{\operatorname{Cod} \chi} \circ \Phi(\chi) \quad \text { for all } \quad \chi \in \mathrm{ISO} \tag{12.13}
\end{equation*}
$$

i.e. the diagram

is commutative. We write $\alpha: \Phi \longrightarrow \Psi$ to indicate that Φ is the domain isofunctor, denoted by $\operatorname{Dmf}_{\alpha}$, and Ψ is the codomain isofunctor, denoted by $\operatorname{Cdf}_{\alpha}$.

One can construct new natural assignments from given ones in the same way as new mappings from given ones. Let natural assignments $\alpha: \Phi \rightarrow \Psi$ and $\beta: \Psi \rightarrow \Theta$ be given. We can define the composite assignment $\beta \circ \alpha: \Phi \rightarrow \Theta$, by assigning to each object \mathcal{F} of $\operatorname{Dom} \Phi=\operatorname{Dom} \Psi$ the map$\operatorname{ping}(\beta \circ \alpha)_{\mathcal{F}}:=\beta_{\mathcal{F}} \circ \alpha_{\mathcal{F}}$. If α, β are natural assignment, one can define the product-assignment $\alpha \times \beta$ by assigning to each pair $(\mathcal{F}, \mathcal{G})$ of objects the mapping $(\alpha \times \beta)_{(\mathcal{F}, \mathcal{G})}:=\alpha_{\mathcal{F}} \times \beta_{\mathcal{G}}$.

Given a natural assignment $\alpha: \Phi \rightarrow \Psi$ and a isofunctor Θ such that $\operatorname{Cod} \Theta=\operatorname{Dom} \Phi=\operatorname{Dom} \Psi$, one can define the composite assignment
$\alpha \circ \Theta: \Phi \circ \Theta \rightarrow \Psi \circ \Theta$ by assigning to each object \mathcal{F} of $\operatorname{Dom} \Phi=\operatorname{Dom} \Psi$ the mapping $(\alpha \circ \Theta)_{\mathcal{F}}:=\alpha_{\Theta(\mathcal{F})}$.

13. Tensor Functors

We say that an isocategory ISO is concrete if ISO consists of mappings, the object-class $O B J$ consists of sets, and if domain and codomain, composition, identity and inverse have the meanning they are usually given for sets and mappings. (See, e.g. Sect. $01-04$ of [FDS]).

Examples of concrete isocategory

The following are some concrete isocategories to be used in this book:
(A) The category FIS whose object-class $F S$ consists of all finite dimensional flat spaces over and whose ISOmorphism-class FIS consists of all flat isomorphism from one such space onto another or itself.
(B) Fix a field and we consider the concrete isocategory whose object-class $L S$ consists of all finite dimensional linear spaces over and whose ISOmorphismclass LIS consists of all linear isomorphism from one such space onto another or itself.
(C) Given $s \in$, the category DIF s whose object-class $D F$ consists of all C^{s} manifolds and whose ISOmorphism-class DIF s consists of all diffeomorphism from one such manifold onto another or itself.

From now on, in this section, we will deal only with LIS and the categories obtained from it by product formation, such as LIS ${ }^{m} \times \operatorname{LIS}^{n}$ when $m, n \in$. We use the term tensor functor of degree $n \in$ for functor from LIS ${ }^{n}$ to LIS. (Under this definition, composition of tensor functors is somewhat strange: the second one of those functors must be of degree $1!!!!!!!!!!!!!)$

Examples of tensor functor

Here is a list of important tensor functors used in linear algebra and differential geometry:
(1) The product-space functor $\operatorname{Pr}:$ LIS $^{2} \rightarrow$ LIS. It is defined by

$$
\begin{equation*}
\operatorname{Pr}(\mathbf{A}, \mathbf{B}):=\mathbf{A} \times \mathbf{B} \quad \text { for all } \quad(\mathbf{A}, \mathbf{B}) \in \operatorname{LIS}^{2} \tag{13.1}
\end{equation*}
$$

We have $\operatorname{Pr}(\mathcal{V}, \mathcal{W}):=\mathcal{V} \times \mathcal{W}($ the product-space of \mathcal{V} and $\mathcal{W})$ for all $\mathcal{V}, \mathcal{W} \in L S$.
(2) Given $k \in$, the k-lin-map-functor $\operatorname{Lin}_{k}: \operatorname{LIS}^{k} \times$ LIS \rightarrow LIS. It assigns to each list $\left(\mathcal{V}_{i} \mid i \in k^{]}\right)$in $L S$ and each $\mathcal{W} \in L S$ the linear space

$$
\begin{equation*}
\operatorname{Lin}_{k}\left(\left(\mathcal{V}_{i} \mid i \in k^{\jmath}\right), \mathcal{W}\right):=\operatorname{Lin}_{k}\left(\underset{i \in k]}{\times} \mathcal{V}_{i}, \mathcal{W}\right) \tag{13.2}
\end{equation*}
$$

of all k-multilinear mappings from $\times_{i \in k]} \mathcal{V}_{i}$ to \mathcal{W}, and it assigns to every list $\left(\mathbf{A}_{i} \mid i \in k^{l}\right)$ in LIS and each $\mathbf{B} \in$ LIS the linear mapping

$$
\begin{equation*}
\operatorname{Lin}_{k}\left(\left(\mathbf{A}_{i} \mid i \in k^{l}\right), \mathbf{B}\right) \tag{13.3}
\end{equation*}
$$

from $\operatorname{Lin}_{k}\left(X_{i \in k]} \operatorname{Dom} \mathbf{A}_{i}, \operatorname{Dom} \mathbf{B}\right)$ to $\operatorname{Lin}_{k}\left(X_{i \in k]} \operatorname{Cod} \mathbf{A}_{i}, \operatorname{Cod} \mathbf{B}\right)$ defined by

$$
\begin{equation*}
\operatorname{Lin}_{k}\left(\left(\mathbf{A}_{i} \mid i \in k^{\jmath}\right), \mathbf{B}\right) \mathbf{T}:=\mathbf{B} \mathbf{T} \circ \underset{i \in k]}{\times} \mathbf{A}_{i}^{-1} \tag{13.4}
\end{equation*}
$$

for all $\mathbf{T} \in \operatorname{Lin}\left(\times_{i \in k]} \operatorname{Dom} \mathbf{A}_{i}, \operatorname{Dom} \mathbf{B}\right)$.
When $k=1, \operatorname{Lin}_{1}:$ LIS \times LIS \rightarrow LIS is called the lin-map-functor and abreviated by Lin $:=\operatorname{Lin}_{1}$.
(3) Given $k \in$, the k-multilin-functor $\operatorname{Ln}_{k}: \operatorname{LIS}^{2} \rightarrow$ LIS. It is defined by

$$
\begin{equation*}
\operatorname{Ln}_{k}:=\operatorname{Lin}_{k} \circ\left(\mathrm{Eq}_{k} \times \mathrm{Id}\right) \tag{13.5}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{Ln}_{k}(\mathbf{A}, \mathbf{B}) \mathbf{T}:=\mathbf{B T} \circ\left(\mathbf{A}^{-1}\right)^{\times k} \tag{13.6}
\end{equation*}
$$

for all $\mathbf{A}, \mathbf{B} \in \operatorname{LIS}$ and all $\mathbf{T} \in \operatorname{Lin}_{k}\left((\operatorname{Dom} \mathbf{A})^{k}, \operatorname{Dom} \mathbf{B}\right)$. and

$$
\begin{equation*}
\operatorname{Ln}_{k}(\mathcal{V}, \mathcal{W}):=\operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) \tag{13.7}
\end{equation*}
$$

for all $\mathcal{V}, \mathcal{W} \in L S$
There are two very important "subfunctors" (see $[\mathrm{E}-\mathrm{M}]$), Sm_{k} and Sk_{k}, given in following. The symmetric- k-multilin-functor $\mathrm{Sm}_{k}:$ LIS $^{2} \rightarrow$ LIS assigns to every pair of linear spaces $(\mathcal{V}, \mathcal{W}) \in L S^{2}$ the linear sapce

$$
\begin{equation*}
\operatorname{Sm}_{k}(\mathcal{V}, \mathcal{W}):=\operatorname{Sym}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right) \tag{13.8}
\end{equation*}
$$

of all symmetric k-multilinear mappings from \mathcal{V}^{k} to \mathcal{W}. It is clear that

$$
\begin{equation*}
\operatorname{Sm}_{k}(\mathbf{A}, \mathbf{B}) \mathbf{T}:=\mathbf{B T} \circ\left(\mathbf{A}^{-1}\right)^{\times k} \tag{13.9}
\end{equation*}
$$

for all $\mathbf{A}, \mathbf{B} \in \operatorname{LIS}$ and all $\mathbf{T} \in \operatorname{Sym}_{k}\left((\operatorname{Dom} \mathbf{A})^{k}\right.$, Dom B). The skew- k-multilinfunctor $\mathrm{Sk}_{k}:$ LIS $^{2} \rightarrow$ LIS is defined in the same manner as Sm_{k}, except that $\operatorname{Sym}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$ in (13.8) is replaced by the linear space $\operatorname{Skew}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$ of all skew k-multilinear mappings from \mathcal{V}^{k} to \mathcal{W}.
(4) Given $n \in$, the k-linform-functor Lnf_{k}, the k-symform-functor Smf_{k}, the k-skewform-functor Skf_{k}, all from LIS to LIS. They are defined by

$$
\begin{equation*}
\operatorname{Lnf}_{k}:=\operatorname{Ln}_{k} \circ(\mathrm{Id}, \operatorname{Tr}), \operatorname{Smf}_{k}:=\operatorname{Sm}_{k} \circ(\mathrm{Id}, \operatorname{Tr}), \operatorname{Skf}_{k}:=\operatorname{Sk}_{k} \circ(\mathrm{Id}, \operatorname{Tr}) . \tag{13.10}
\end{equation*}
$$

Given $\mathcal{V} \in L S$, we have

$$
\begin{equation*}
\operatorname{Lnf}_{k}(\mathcal{V}):=\operatorname{Lin}_{k}\left(\mathcal{V}^{k},\right) \tag{13.11}
\end{equation*}
$$

the space of all k-multilinear forms on \mathcal{V}^{k}. We have

$$
\begin{equation*}
\operatorname{Lnf}_{k}(\mathbf{A}) \boldsymbol{\omega}:=\boldsymbol{\omega} \circ\left(\mathbf{A}^{-1}\right)^{\times k} \quad \text { for all } \quad \boldsymbol{\omega} \in \operatorname{Lin}_{k}\left((\operatorname{Dom} \mathbf{A})^{k},\right) \tag{13.12}
\end{equation*}
$$

and all $\mathbf{A} \in$ LIS. The formulas (13.11) and (13.12) remain valid if Lin is replaced by Sym or Skew and Lnf by Smf or Skf correspondingly.

When $k=1$, we have $\operatorname{Lnf}_{1}=\operatorname{Smf}_{1}=\operatorname{Skf}_{1}$ which is called the dualityfunctor and denoted by Dl : LIS \rightarrow LIS.
(5) The lineon-functor $\mathrm{Ln}:$ LIS \rightarrow LIS. It is defined by

$$
\begin{equation*}
\mathrm{Ln}:=\operatorname{Lin} \circ \mathrm{Eq}_{2} \tag{13.13}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{Ln}(\mathcal{V}):=\operatorname{Lin}(\mathcal{V}, \mathcal{V}) \quad \text { for all } \quad \mathcal{V} \in L S \tag{13.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Ln}(\mathbf{A}) \mathbf{T}:=\mathbf{A T A}^{-1} \quad \text { for all } \quad \mathbf{A} \in \operatorname{LIS} \text { and } \mathbf{T} \in \operatorname{Ln}(\operatorname{Dom} \mathbf{A}) . \tag{13.15}
\end{equation*}
$$

It is clear that $\operatorname{Lin}_{1}=\operatorname{Ln}_{1}$, however, $\operatorname{Ln}_{1} \neq \operatorname{Ln}$! Notation?

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W], §3.2) the use of the term "tensor" is limited to tensor functors of the form $\mathbf{T}_{s}^{r}:=\operatorname{Lin} \circ\left(\operatorname{Lnf}_{s}, \operatorname{Lnf}_{r}\right):$ LIS \rightarrow LIS with $r, s \in$, or to tensor functors that are naturally equivalent to one of this form. Given $\mathcal{V} \in L S$ a member of the linear space $\mathbf{T}_{s}^{r}(\mathcal{V})$ is called a "tensor of contravariant order r and covariant order s."

Let a family of tensor functors $\left(\Phi_{i} \mid i \in k^{\prime}\right)$ and a tensor functor Ψ with $\operatorname{Dom} X_{i \in k]} \Phi_{k}=\operatorname{LIS}^{k}=\operatorname{Dom} \Psi$ be given. We say that a natural assignment $\beta: \times_{i \in k]} \Phi_{k} \rightarrow \Psi$ is a k-linear assignment if, for every $\mathcal{F} \in L S^{k}$, the mapping

$$
\begin{equation*}
\beta_{\mathcal{F}}: \underset{i \in k]}{\times} \Phi_{i}\left(\mathcal{F}_{i}\right) \rightarrow \Psi(\mathcal{F}) \tag{13.16}
\end{equation*}
$$

is k-linear.
The following are examples for bilinear natural assignments.
(6) Given $k \in$, the alternating assgnment Alt : $\mathrm{Ln}_{k} \rightarrow \mathrm{Sk}_{k}$ it assigns each pair $(\mathcal{V}, \mathcal{W}) \in L S^{2}$ the mapping

$$
\begin{equation*}
\operatorname{Alt}_{(v, w)} \mathbf{A}:=\sum_{\sigma \in \operatorname{Perm} k]}(\operatorname{sgn} \sigma) \mathbf{A} \circ \mathrm{T}_{\sigma} \tag{13.17}
\end{equation*}
$$

where Perm $k^{]}$is the permutation group of $k^{]}$and T_{σ} is defined as in (11.3), for all $\mathbf{A} \in \operatorname{Lin}_{k}\left(\mathcal{V}^{k}, \mathcal{W}\right)$.
(7) The tensor product tpr : Id $\times \mathrm{Id} \rightarrow$ Lin $\circ(\mathrm{Dl} \times \mathrm{Id}) \circ \mathrm{Sw}$ assigns each pair $(\mathcal{V}, \mathcal{W}) \in L S^{2}$ the mapping

$$
\begin{equation*}
\operatorname{tpr}_{(\mathcal{V}, \mathcal{W})}: \mathcal{V} \times \mathcal{W} \rightarrow \operatorname{Lin}\left(\mathcal{W}^{*}, \mathcal{V}\right) \tag{13.18}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\operatorname{tpr}_{(\mathcal{V}, \mathcal{W})}(\mathbf{v}, \mathbf{w}):=\mathbf{v} \otimes \mathbf{w} \quad \text { for all } \quad \mathbf{v} \in \mathcal{V} \text { and } \mathbf{w} \in \mathcal{W} \tag{13.19}
\end{equation*}
$$

where $\mathbf{v} \otimes \mathbf{w}$ is the tensor product defined according to Def. 1 of Sect. 25, [FDS], with the identification $\mathcal{W} \cong \mathcal{W}^{* *}$.

We use $\mathbf{v} \otimes \mathbf{w} \in \operatorname{Lin}\left(\mathcal{W}^{*}, \mathcal{V}\right)$ but others use $\mathbf{v} \otimes \mathbf{w} \in \operatorname{Lin}\left(\mathcal{V}^{*}, \mathcal{W}\right)$ (see e.g. $[\mathrm{B}-\mathrm{W}])$. Our definition of \otimes bring up the switch functor Sw here!!!!!!!!!!!!!!!!!!!!!!

The wedge product wpr : $\mathrm{Id} \times \mathrm{Id} \rightarrow \operatorname{Lin} \circ(\mathrm{Dl} \times \mathrm{Id}) \circ \mathrm{Sw}$ is defined by

$$
\begin{equation*}
\operatorname{wpr}_{(\mathcal{V}, \mathcal{W})}(\mathbf{v}, \mathbf{w}):=\mathbf{v} \wedge \mathbf{w} \quad \text { for all } \quad \mathbf{v} \in \mathcal{V} \text { and } \mathbf{w} \in \mathcal{W} \tag{13.20}
\end{equation*}
$$

where $\mathbf{v} \wedge \mathbf{w}$ is the wedge product defined according to (12.9) of Sect. 12, [FDS], Vol.2, with the identification $\mathcal{W} \cong \mathcal{W}^{* *}$.

We have wpr $=\frac{1}{2}$ Alt \circ tpr. Need more development!!!!!!!!!!!!!!!!!!!

We now assume that the field relative to which $L S$ and LIS are defined in above is the field of real number. Given $\mathcal{V}, \mathcal{W} \in L S$, the set

$$
\begin{equation*}
\operatorname{Lis}(\mathcal{V}, \mathcal{W}):=\{\mathbf{A} \in \operatorname{LIS} \mid \operatorname{Dom} \mathbf{A}=\mathcal{V}, \operatorname{Cod} \mathbf{A}=\mathcal{W}\} \tag{13.21}
\end{equation*}
$$

is then an open subset of the linear space $\operatorname{Lin}(\mathcal{V}, \mathcal{W})$. (See, for example, the Differentiation Theorem for Inversion Mappings in Sect. 68 of [FDS].).

Let a tensor functor Φ be given. For every pair of objects $(\mathcal{V}, \mathcal{W})$ of $\operatorname{Dom} \Phi$, we define the mapping

$$
\begin{equation*}
\Phi_{(\mathcal{V}, \mathcal{W})}: \operatorname{Lis}(\mathcal{V}, \mathcal{W}) \rightarrow \operatorname{Lis}(\Phi(\mathcal{V}), \Phi(\mathcal{W})) \tag{13.22}
\end{equation*}
$$

by

$$
\begin{equation*}
\Phi_{(\mathcal{V}, \mathcal{W})}(\mathbf{A}):=\Phi(\mathbf{A}) \quad \text { for all } \quad \mathbf{A} \in \operatorname{Lis}(\mathcal{V}, \mathcal{W}) \tag{13.23}
\end{equation*}
$$

Indeed, we can view (13.22) as a bilinear assignment from $\operatorname{Lin}=\mathrm{Ln}_{1}$ to Lin $\circ(\Phi \times \Phi)$. The one to be used in (13.27)

$$
\Phi_{(\mathcal{V}, \mathcal{V})}: \operatorname{Lis}(\mathcal{V}) \rightarrow \operatorname{Lis}(\Phi(\mathcal{V}))
$$

is a linear assignment from Ln to $\operatorname{Ln} \circ \Phi$ and hence whose gradient is also a linear assignment from Ln to $\mathrm{Ln} \circ \Phi!!!!!!!!!!!!!!!!$

We say that the tensor functor Φ is analytic if $\Phi_{(\mathcal{V}, \mathcal{W})}$ is an analytic mapping for every pair of objects $(\mathcal{V}, \mathcal{W})$ of $\operatorname{Dom} \Phi$. We say that a natural assignment $\alpha: \Phi \rightarrow \Psi$ is an analytic assignment if the mapping $\alpha_{\mathcal{F}}: \Phi(\mathcal{F}) \rightarrow \Psi(\mathcal{F})$ is an analytic mapping for every object \mathcal{F} of $\operatorname{Dom} \Phi$. All the tensor functors listed in above are in fact analytic. (The fact that they are of class C^{∞} can easily be inferred from the results of Ch. 6 of [FDS]. Proofs that they are analytic can be inferred, for example, from the results that will be presented in Ch. 2 of Vol. 2 of [FDS].)

Theorem : Let an analytic tensor functor Φ be given and associate with each $\mathcal{V} \in \operatorname{Dom} \Phi$ the mapping

$$
\begin{equation*}
\Phi_{\mathcal{V}}^{\bullet}: \operatorname{Ln}(\mathcal{V}) \rightarrow \operatorname{Ln}(\Phi(\mathcal{V})) \tag{13.24}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\Phi_{\mathcal{\nu}}^{\bullet}:=\nabla_{\mathbf{1}_{\mathcal{V}}} \Phi_{(\mathcal{V}, \mathcal{\nu})} \tag{13.25}
\end{equation*}
$$

(The gradient-notation used here is explained in [FDS], Sect.63.) Then Φ^{\bullet} is a linear assignment from Ln to $\operatorname{Ln} \circ \Phi$. We call Φ^{\bullet} the derivative of Φ.

Proof: Let a pair of objects $(\mathcal{V}, \mathcal{W})$ of $\operatorname{Dom} \Phi$ and $\mathbf{A} \in \operatorname{Lis}(\mathcal{V}, \mathcal{W})$ be given. It follows from (13.23), from axiom (F1), and from (12.2) that

$$
\begin{equation*}
\Phi_{(\mathcal{w}, \mathcal{w})}\left(\mathbf{A L A}^{-1}\right)=\Phi(\mathbf{A}) \Phi_{(v, \nu)}(\mathbf{L}) \Phi(\mathbf{A})^{-1} \tag{13.26}
\end{equation*}
$$

for all $\mathbf{L} \in \operatorname{Lis}(\mathcal{V}, \mathcal{V})$. By (13.15) we may write (13.26) as

$$
\begin{equation*}
\left(\Phi_{(\mathcal{w}, \mathcal{w})} \circ \operatorname{Ln}(\mathbf{A})\right)(\mathbf{L})=\left(\operatorname{Ln}(\Phi(\mathbf{A})) \circ \Phi_{(\mathcal{v}, \mathcal{\nu})}\right)(\mathbf{L}) \tag{13.27}
\end{equation*}
$$

for all $\mathbf{L} \in \operatorname{Lis}(\mathcal{V}, \mathcal{V})$. Taking the gradient of (13.27) with respect to \mathbf{L} at $\mathbf{L}:=\mathbf{1}_{\mathcal{V}}$ yields

$$
\begin{equation*}
\Phi_{\mathcal{W}}^{\bullet} \circ \operatorname{Ln}(\mathbf{A})=(\operatorname{Ln} \circ \Phi)(\mathbf{A}) \circ \Phi_{\mathcal{V}}^{\bullet} \tag{13.28}
\end{equation*}
$$

In view of (12.13) it follows that Φ^{\bullet} is a natural assignment from Ln to $\operatorname{Ln} \circ \Phi$. The linearity of Φ^{\bullet} follows from the definition of gradient.

We now list the derivatives of a few analytic tensor functors. The formulas given are valid for every $\mathcal{V} \in L S$.
(6) $\operatorname{Ln}_{\mathcal{V}}^{\bullet}: \operatorname{Ln}(\mathcal{V}) \rightarrow \operatorname{Ln}(\operatorname{Ln}(\mathcal{V}))$ is given by

$$
\begin{equation*}
\left(\operatorname{Ln}_{\mathcal{V}}^{\bullet} \mathbf{L}\right) \mathbf{M}=\mathbf{L M}-\mathbf{M L} \quad \text { for all } \quad \mathbf{L}, \mathbf{M} \in \operatorname{Ln}(\mathcal{V}) \tag{13.29}
\end{equation*}
$$

(This formula is an easy consequence of (13.15) and, [FDS] (68.9).).
(7) Let $k \in$ be given. In order to describe

$$
\begin{equation*}
\left(\operatorname{Lnf}_{k}\right)_{\mathcal{V}}^{\bullet}: \operatorname{Ln}(\mathcal{V}) \rightarrow \operatorname{Ln}\left(\operatorname{Lin}_{k}\left(\mathcal{V}^{k},\right)\right) \tag{13.30}
\end{equation*}
$$

we define, for every $\mathbf{L} \in \operatorname{Ln}(\mathcal{V})$ and every $j \in k^{l}, D_{j}(\mathbf{L}) \in(\operatorname{Ln}(\mathcal{V}))^{k}$ by

$$
\left(D_{j}(\mathbf{L})\right)_{i}:=\left\{\begin{array}{ccc}
\mathbf{L} & \text { if } & i=j \tag{13.31}\\
\mathbf{1}_{\mathcal{V}} & \text { if } & i \neq j
\end{array}\right\} \quad \text { for all } \quad i \in k^{1}
$$

We then have

$$
\begin{equation*}
\left(\left(\operatorname{Lnf}_{k}\right)_{\mathcal{V}}^{\bullet} \mathbf{L}\right) \boldsymbol{\omega}=-\sum_{j \in k]} \boldsymbol{\omega} \circ D_{j}(\mathbf{L}) \quad \text { for all } \quad \boldsymbol{\omega} \in \operatorname{Lin}_{k}\left(\mathcal{V}^{k},\right) \tag{13.32}
\end{equation*}
$$

and all $\mathbf{L} \in \operatorname{Ln}(\mathcal{V})$. The formula (13.32) remains valid if Lnf is replaced by Smf or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition (13.25) immediately lead to the following

Chain Rule for Analytic Tensor Functors

Let Φ and Ψ be analytic tensor functors. Then the composite functor $\Psi \circ \Phi$ is also an analytic tensor functor and we have

$$
\begin{equation*}
(\Psi \circ \Phi)^{\bullet}=\left(\Psi^{\bullet} \circ \Phi\right) \circ \Phi^{\bullet} \tag{13.33}
\end{equation*}
$$

where the composite assignments on the right are explained in the end of Sect.12.

For example, (13.33) shows that, for each $\mathcal{V} \in L S$,

$$
(\operatorname{Ln} \circ \operatorname{Ln})_{\mathcal{V}}^{\bullet}: \operatorname{Ln}(\mathcal{V}) \rightarrow \operatorname{Ln}(\operatorname{Ln}(\operatorname{Ln}(\mathcal{V})))
$$

is given by

$$
\begin{equation*}
(\operatorname{Ln} \circ \mathrm{Ln})_{\mathcal{V}}^{\bullet}=\operatorname{Ln}_{\mathrm{Ln}(\mathcal{V})}^{\bullet} \operatorname{Ln}_{\mathcal{V}}^{\bullet} \tag{13.34}
\end{equation*}
$$

In view of (13.29.) above, (13.34) gives

$$
\begin{align*}
\left(\left((\operatorname{Ln} \circ \mathrm{Ln})_{\mathcal{V}}^{\bullet} \mathbf{L}\right) \mathbf{K}\right) \mathbf{M} & =\left(\left(\operatorname{Ln}_{\mathcal{V}}^{\bullet} \mathbf{L}\right) \mathbf{K}-\mathbf{K}\left(\operatorname{Ln}_{\mathcal{V}}^{\bullet} \mathbf{L}\right)\right) \mathbf{M} \tag{13.35}\\
& =\mathbf{L}(\mathbf{K M})-(\mathbf{K M}) \mathbf{L}-\mathbf{K}(\mathbf{L M}-\mathbf{M L})
\end{align*}
$$

for all $\mathcal{V} \in L S$, all $\mathbf{K} \in \operatorname{Ln}(\operatorname{Ln}(\mathcal{V}))$, and all $\mathbf{L}, \mathbf{M} \in \operatorname{Ln}(\mathcal{V})$.

If Φ and Ψ are analytic tensor functors so is $\operatorname{Pr} \circ(\Phi, \Psi)$ and we have

$$
\begin{equation*}
(\operatorname{Pr} \circ(\Phi, \Psi))_{\mathcal{V}}^{\bullet}=\left(\Phi_{\mathcal{V}}^{\bullet} \mathbf{L}\right) \times \mathbf{1}_{\Psi(\mathcal{V})}+\mathbf{1}_{\Psi(\mathcal{V})} \times\left(\Phi_{\mathcal{V}}^{\bullet} \mathbf{L}\right) \tag{13.36}
\end{equation*}
$$

for all $\mathcal{V} \in L S$ and all $\mathbf{L} \in \operatorname{Ln}(\mathcal{V})$.

Let α be an analytic assignment of degree $n \in$. If we associate with each $\mathcal{V} \in L S$ the mapping $(\nabla \alpha)_{\mathcal{V}}:=\nabla\left(\alpha_{\mathcal{V}}\right)$, the gradient of the mapping $\alpha_{\mathcal{V}}$, then $\nabla \alpha$ is again an analytic assignment of degree n and we have $\operatorname{Dmf}_{\nabla \alpha}=\operatorname{Dmf}_{\alpha}$ and $\operatorname{Cdf}_{\nabla \alpha}=\operatorname{Lin} \circ\left(\operatorname{Dmf}_{\alpha}, \operatorname{Cdf}_{\alpha}\right)$. We call $\nabla \alpha$ the gradient of α.

Let tensor functors Φ_{1}, Φ_{2}, Ψ, all of degree $n \in$ but not necessarily analytic, be given. Each bilinear assignment $\beta: \operatorname{Pr} \circ\left(\Phi_{1}, \Phi_{2}\right) \rightarrow \Psi$ is then analytic and its gradient $\nabla \beta: \operatorname{Pr} \circ\left(\Phi_{1}, \Phi_{2}\right) \rightarrow \operatorname{Lin} \circ\left(\operatorname{Pr} \circ\left(\Phi_{1}, \Phi_{2}\right), \Psi\right)$ is given by

$$
\begin{equation*}
\left((\nabla \beta)_{\mathcal{V}}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)\right)\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\beta_{\mathcal{V}}\left(\mathbf{v}_{1}, \mathbf{u}_{2}\right)+\beta_{\mathcal{V}}\left(\mathbf{u}_{1}, \mathbf{v}_{2}\right) \tag{13.37}
\end{equation*}
$$

for all $\mathcal{V} \in L S$, all $\mathbf{v}_{1}, \mathbf{u}_{1} \in \Phi_{1}(\mathcal{V})$, and all $\mathbf{v}_{2}, \mathbf{u}_{2} \in \Phi_{2}(\mathcal{V})$.

If α is an analytic assignment of degree $n \in$ and if Φ is any isofunctor from LIS k to LIS^{n} with $k \in$, then $\alpha \circ \Phi$ is an analytic assignment of degree k and we have $\nabla(\alpha \circ \Phi)=(\nabla \alpha) \circ \Phi$.

14. Short Exact Sequences

Let a pair (\mathbf{I}, \mathbf{P}) of mappings be given such that $\operatorname{Cod} \mathbf{I}=\operatorname{Dom} \mathbf{P}$. We often write

$$
\begin{equation*}
\mathcal{U} \xrightarrow{\mathbf{I}} \mathcal{V} \xrightarrow{\mathbf{P}} \mathcal{W} \quad \text { or } \quad \mathcal{W} \quad \stackrel{\mathbf{P}}{\leftrightarrows} \quad \mathcal{V} \quad \mathbf{I} \quad \mathcal{U} \tag{14.1}
\end{equation*}
$$

to indicate that $\mathcal{U}=\operatorname{Dom} \mathbf{I}, \mathcal{V}=\operatorname{Cod} \mathbf{I}=\operatorname{Dom} \mathbf{P}$ and $\operatorname{Cod} \mathbf{P}=\mathcal{W}$. If \mathcal{U}, \mathcal{V} and \mathcal{W} are linear spaces and if \mathbf{I} is injective linear mapping, \mathbf{P} is surjective linear mapping with

$$
\operatorname{Rng} \mathbf{I}=\operatorname{Null} \mathbf{P}
$$

we say that (\mathbf{I}, \mathbf{P}), or (14.1), is a short exact sequence *. In the literature, a short exact sequence is often expressed as

$$
\mathbf{0} \longrightarrow \mathcal{U} \xrightarrow{\mathbf{I}} \mathcal{V} \xrightarrow{\mathbf{P}} \mathcal{W} \longrightarrow 0
$$

$$
\text { Let a short exact sequence } \mathcal{U} \xrightarrow{\mathbf{I}} \mathcal{V} \xrightarrow{\mathbf{P}} \mathcal{W} \text { be given. }
$$

Notation: The set of all linear right-inverses of \mathbf{P} is denoted by

$$
\begin{equation*}
\operatorname{Riv}(\mathbf{P}):=\left\{\mathbf{K} \in \operatorname{Lin}(\mathcal{W}, \mathcal{V}) \mid \mathbf{P K}=\mathbf{1}_{\mathcal{W}}\right\} \tag{14.2}
\end{equation*}
$$

and the set of all linear left-inverses of \mathbf{I} is denoted by

$$
\begin{equation*}
\operatorname{Liv}(\mathbf{I}):=\left\{\mathbf{D} \in \operatorname{Lin}(\mathcal{V}, \mathcal{U}) \mid \mathbf{D I}=\mathbf{1}_{\mathcal{U}}\right\} \tag{14.3}
\end{equation*}
$$

Proposition 1: There is a bijection $\boldsymbol{\Lambda}: \operatorname{Riv}(\mathbf{P}) \rightarrow \operatorname{Liv}(\mathbf{I})$ such that, for every $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$

$$
\begin{equation*}
\mathcal{U}_{\boxed{\Lambda}(\mathbf{K})}^{\overleftarrow{V}} \underset{\mathbf{K}}{ } \mathcal{W} \tag{14.4}
\end{equation*}
$$

is again a short exact sequence. We have

$$
\begin{equation*}
\mathbf{K} \mathbf{P}+\mathbf{I} \boldsymbol{\Lambda}(\mathbf{K})=\mathbf{1}_{\mathcal{V}} \quad \text { for all } \quad \mathbf{K} \in \operatorname{Riv}(\mathbf{P}) \tag{14.5}
\end{equation*}
$$

Proof: It is easily seen that $(\mathbf{K} \mapsto \operatorname{Rng} \mathbf{K})$ is a bijection from $\operatorname{Riv}(\mathbf{P})$ to the set of all supplements of Null $\mathbf{P}=\operatorname{Rng} \mathbf{I}$ in \mathcal{V}. Also, $(\mathbf{D} \mapsto \operatorname{Null} \mathbf{D})$ is a bijection from $\operatorname{Liv}(\mathbf{I})$ to the set of all supplements of $\operatorname{Rng} \mathbf{I}=\operatorname{Null} \mathbf{P}$ in \mathcal{V}. The mapping $\boldsymbol{\Lambda}$ is the composite of the first of these bijections with the inverse of the second one.

[^1]Let $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ be given. Both $\mathbf{K P}$ and $\mathbf{I} \boldsymbol{\Lambda}(\mathbf{K})$ are idempotents with $\operatorname{Rng} \mathbf{K P}=\operatorname{Rng} \mathbf{K}$ and $\operatorname{Rng} \mathbf{I} \boldsymbol{\Lambda}(\mathbf{K})=\operatorname{Rng} \mathbf{I}$. Since $\operatorname{Rng} \mathbf{K}$ and $\operatorname{Rng} \mathbf{I}$ are supplementary in \mathcal{V}, it follows that

$$
\begin{equation*}
\mathbf{K P}+\mathbf{I} \mathbf{\Lambda}(\mathbf{K})=\mathbf{1}_{\mathcal{V}} \tag{14.6}
\end{equation*}
$$

Since $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ was arbitrary, the assertion follows.

Proposition 2: $\operatorname{Riv}(\mathbf{P})$ is a flat in $\operatorname{Lin}(\mathcal{W}, \mathcal{V})$ whose direction space is

$$
\{\mathbf{I L} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})\}
$$

$\operatorname{Liv}(\mathbf{I})$ is a flat in $\operatorname{Lin}(\mathcal{V}, \mathcal{U})$ whose direction space is

$$
\{-\mathbf{L P} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})\}
$$

Proof: Given $\mathbf{K}, \mathbf{K}^{\prime} \in \operatorname{Riv}(\mathbf{P})$, we have $\mathbf{1}_{\mathcal{W}}=\mathbf{P K}=\mathbf{P} \mathbf{K}^{\prime}$ and hence $\mathbf{P}\left(\mathbf{K}-\mathbf{K}^{\prime}\right)=\mathbf{0}$. It follows that $\operatorname{Rng}\left(\mathbf{K}-\mathbf{K}^{\prime}\right) \subset \operatorname{Null} \mathbf{P}=\operatorname{Rng} \mathbf{I}$ and hence $\mathbf{K}-\mathbf{K}^{\prime}=\mathbf{I L}$ for some $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$. On the other hand, given $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ and $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$, we have $\mathbf{P}(\mathbf{I L})=\mathbf{0}$ and hence $\mathbf{1}_{\mathcal{W}}=\mathbf{P K}=\mathbf{P}(\mathbf{K}+\mathbf{I L})$, which implies $\mathbf{K}+\mathbf{I L} \in \operatorname{Riv}(\mathbf{P})$. These facts show that $\operatorname{Riv}(\mathbf{P})$ is a flat in $\operatorname{Lin}(\mathcal{W}, \mathcal{V})$ with direction space $\{\mathbf{I L} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})\}$.

Similar arguments show that $\operatorname{Liv}(\mathbf{I})$ is a flat in $\operatorname{Lin}(\mathcal{V}, \mathcal{U})$ with direction space $\{-\mathbf{L P} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})\}$.

Proposition 3: Let \mathbf{K} and \mathbf{K}^{\prime} in $\operatorname{Riv}(\mathbf{P})$ be given and determine $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ such that $\mathbf{K}-\mathbf{K}^{\prime}=\mathbf{I L}$. Then

$$
\begin{equation*}
\boldsymbol{\Lambda}(\mathbf{K})-\boldsymbol{\Lambda}\left(\mathbf{K}^{\prime}\right)=-\mathbf{L P} \tag{14.7}
\end{equation*}
$$

Proof: It follows from (14.5) that $\mathbf{K} \mathbf{P}+\mathbf{I} \boldsymbol{\Lambda}(\mathbf{K})=\mathbf{1}_{\mathcal{V}}=\mathbf{K}^{\prime} \mathbf{P}+\mathbf{I} \boldsymbol{\Lambda}\left(\mathbf{K}^{\prime}\right)$ and hence

$$
\mathbf{I}\left(\boldsymbol{\Lambda}(\mathbf{K})-\boldsymbol{\Lambda}\left(\mathbf{K}^{\prime}\right)\right)=-\left(\mathbf{K}-\mathbf{K}^{\prime}\right) \mathbf{P}
$$

Since $\mathbf{K}-\mathbf{K}^{\prime}=\mathbf{I L}$ and \mathbf{I} is injective, we obtain $\boldsymbol{\Lambda}(\mathbf{K})-\boldsymbol{\Lambda}\left(\mathbf{K}^{\prime}\right)=-\mathbf{L P}$.
It follows from the injectivity of \mathbf{I} and from the surjectivity of \mathbf{P} that both the direction space $\{\mathbf{I}\} \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ of $\operatorname{Riv}(\mathbf{P})$ and the direction space $\operatorname{Lin}(\mathcal{W}, \mathcal{U})\{\mathbf{P}\}$ of $\operatorname{Liv}(\mathbf{I})$ are naturally isomorphic to $\operatorname{Lin}(\mathcal{W}, \mathcal{U})$. Hence we may and will consider $\operatorname{Lin}(\mathcal{W}, \mathcal{U})$ to be the external translation space (see Conventions and Notations) of both $\operatorname{Riv}(\mathbf{P})$ and $\operatorname{Liv}(\mathbf{I})$. We have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Riv}(\mathbf{P})=(\operatorname{dim} \mathcal{W})(\operatorname{dim} \mathcal{U})=\operatorname{dim} \operatorname{Liv}(\mathbf{I}) \tag{14.8}
\end{equation*}
$$

Proposition 4: The mapping $\boldsymbol{\Lambda}: \operatorname{Riv}(\mathbf{P}) \rightarrow \operatorname{Liv}(\mathbf{I})$, as described in Prop. 1, is a flat isomorphism whose gradient $\nabla \boldsymbol{\Lambda} \in \operatorname{Lin}(\operatorname{Lin}(\mathcal{W}, \mathcal{U}))$ is $\mathbf{1}_{\operatorname{Lin}(\mathcal{W}, \mathcal{U})}$, so that

$$
\begin{equation*}
\nabla \boldsymbol{\Lambda}(\mathbf{L})=-\mathbf{L} \quad \text { for all } \quad \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U}) \tag{14.9}
\end{equation*}
$$

Proof: It follows from Prop. 2 and the identification $\operatorname{Lin}(\mathcal{W}, \mathcal{U})\{\mathbf{P}\} \cong \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ that $\boldsymbol{\Lambda}: \operatorname{Riv}(\mathbf{P}) \rightarrow \operatorname{Liv}(\mathbf{I})$ is a flat isomorphism with $\nabla \boldsymbol{\Lambda}=-\mathbf{1}_{\operatorname{Lin}(\mathcal{W}, \mathcal{U})}$.

Notation: Let $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ be given. We define the mapping

$$
\Gamma^{\mathbf{K}}: \operatorname{Riv}(\mathbf{P}) \rightarrow \operatorname{Lin}(\mathcal{W}, \mathcal{U})
$$

by

$$
\begin{equation*}
\boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}^{\prime}\right):=-\boldsymbol{\Lambda}(\mathbf{K}) \mathbf{K}^{\prime} \quad \text { for all } \quad \mathbf{K}^{\prime} \in \operatorname{Riv}(\mathbf{P}) \tag{14.10}
\end{equation*}
$$

Proposition 5: For every $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$, the mapping $\boldsymbol{\Gamma}^{\mathbf{K}}: \operatorname{Riv}(\mathbf{P}) \rightarrow \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ is a flat isomorphism whose gradient $\nabla \boldsymbol{\Gamma}^{\mathbf{K}} \in \operatorname{Lin}(\operatorname{Lin}(\mathcal{W}, \mathcal{U}))$ is $\mathbf{1}_{\operatorname{Lin}(\mathcal{W}, \mathcal{U})}$; i.e.

$$
\nabla \boldsymbol{\Gamma}^{\mathbf{K}}(\mathbf{L})=-\mathbf{L} \quad \text { for all } \quad \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})
$$

Proof: Let $\mathbf{K}_{1}, \mathbf{K}_{2} \in \operatorname{Riv}(\mathbf{P})$ be given; then we determine $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ such that $\mathbf{K}_{1}-\mathbf{K}_{2}=\mathbf{I L}$. It follows from (14.10) and $\boldsymbol{\Lambda}(\mathbf{K}) \mathbf{I}=\mathbf{1}_{\mathcal{U}}$ that

$$
\boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}_{1}\right)-\boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}_{2}\right)=-\boldsymbol{\Lambda}(\mathbf{K})\left(\mathbf{K}_{1}-\mathbf{K}_{2}\right)=-\boldsymbol{\Lambda}(\mathbf{K})(\mathbf{I L})=-\mathbf{L} .
$$

Since $\mathbf{K}_{1}, \mathbf{K}_{2} \in \operatorname{Riv}(\mathbf{P})$ were arbitrary, the assertion follows.

Proposition 6: We have

$$
\begin{align*}
\mathbf{K}-\mathbf{K}^{\prime} & =\mathbf{I} \boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}^{\prime}\right) \\
\mathbf{\Lambda}(\mathbf{K})-\boldsymbol{\Lambda}\left(\mathbf{K}^{\prime}\right) & =-\mathbf{\Gamma}^{\mathbf{K}}\left(\mathbf{K}^{\prime}\right) \mathbf{P} \tag{14.11}
\end{align*}
$$

and hence $\boldsymbol{\Gamma}^{\mathbf{K}^{\prime}}(\mathbf{K})=-\boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}^{\prime}\right)$ for all $\mathbf{K}, \mathbf{K}^{\prime} \in \operatorname{Riv}(\mathbf{P})$. Moreover,

$$
\begin{equation*}
\boldsymbol{\Gamma}^{\mathbf{K}_{1}}\left(\mathbf{K}_{3}\right)-\boldsymbol{\Gamma}^{\mathbf{K}_{2}}\left(\mathbf{K}_{3}\right)=\boldsymbol{\Gamma}^{\mathbf{K}_{1}}\left(\mathbf{K}_{2}\right) \tag{14.12}
\end{equation*}
$$

for all $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{K}_{3} \in \operatorname{Riv}(\mathbf{P})$.
Proof: In view of (14.5) and (14.10), we have

$$
\mathbf{K}-\mathbf{K}^{\prime}=\left(\mathbf{K} \mathbf{P}-\mathbf{1}_{\mathcal{V}}\right) \mathbf{K}^{\prime}=-(\mathbf{I} \boldsymbol{\Lambda}(\mathbf{K})) \mathbf{K}^{\prime}=\mathbf{I} \boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}^{\prime}\right)
$$

for all $\mathbf{K}^{\prime}, \mathbf{K} \in \operatorname{Riv}(\mathbf{P})$. The second equation $(14.11)_{2}$ follows from $(14.11)_{1}$ and Prop. 2 with \mathbf{L} replaced by $\boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}^{\prime}\right)$.

We observe from (14.11) that

$$
\begin{aligned}
\mathbf{I} \boldsymbol{\Gamma}^{\mathbf{K}_{1}}\left(\mathbf{K}_{2}\right)=\mathbf{K}_{1}-\mathbf{K}_{2} & =\left(\mathbf{K}_{1}-\mathbf{K}_{3}\right)-\left(\mathbf{K}_{2}-\mathbf{K}_{3}\right) \\
& =\mathbf{I}\left(\boldsymbol{\Gamma}^{\mathbf{K}_{1}}\left(\mathbf{K}_{3}\right)-\boldsymbol{\Gamma}^{\mathbf{K}_{2}}\left(\mathbf{K}_{3}\right)\right)
\end{aligned}
$$

for all $\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{K}_{3} \in \operatorname{Riv}(\mathbf{P})$. Since \mathbf{I} is injective, (14.12) follows.
Remark: We consider $\operatorname{Lin}(\mathcal{W}, \mathcal{U})$ to be the external translation space of $\operatorname{Riv}(\mathbf{P})$. Given $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$, in view of $(14.11)_{1}$, we have

$$
\boldsymbol{\Gamma}^{\mathbf{K}}\left(\mathbf{K}^{\prime}\right)=\mathbf{K}-\mathbf{K}^{\prime} \quad \text { for all } \quad \mathbf{K}^{\prime} \in \operatorname{Riv}(\mathbf{P})
$$

Roughly speaking, the flat isomorphism $\boldsymbol{\Gamma}^{\mathbf{K}}: \operatorname{Riv}(\mathbf{P}) \rightarrow \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ identify $\operatorname{Riv}(\mathbf{P})$ with $\operatorname{Lin}(\mathcal{W}, \mathcal{U})$ by choosing \mathbf{K} as the "zero" (or "orgin").

15. Brackets and Twists

We assume now that linear spaces \mathcal{V}, \mathcal{W} and \mathcal{Z} and a short exact sequence

$$
\begin{equation*}
\operatorname{Lin}(\mathcal{W}, \mathcal{Z}) \quad \mathbf{I} \quad \mathcal{V} \quad \xrightarrow{\mathbf{P}} \mathcal{W} \tag{15.1}
\end{equation*}
$$

are given. Recall from Prop. 1 of Sec. 14 that to every linear right-inverse \mathbf{K} of \mathbf{P} there corresponds exactly one linear left-inverse $\boldsymbol{\Lambda}(\mathbf{K})$ of \mathbf{I} such that
is again a short exact sequence. In view of the identification

$$
\begin{equation*}
\operatorname{Lin}(\mathcal{W}, \operatorname{Lin}(\mathcal{W}, \mathcal{Z})) \cong \operatorname{Lin}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right) \tag{15.3}
\end{equation*}
$$

we may identify the external translation space $\operatorname{Lin}(\mathcal{W}, \operatorname{Lin}(\mathcal{W}, \mathcal{Z}))$ of $\operatorname{Riv}(\mathbf{P})$ with $\operatorname{Lin}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)$.

Assumption : From now on, we assume that in this section, a flat \mathcal{F} in $\operatorname{Riv}(\mathbf{P})$ with direction space $\{\mathbf{I}\} \operatorname{Sym}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)$ is given. Here $\operatorname{Sym}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)$ is regarded as a subspace of $\operatorname{Lin}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right) \cong \operatorname{Lin}(\mathcal{W}, \operatorname{Lin}(\mathcal{W}, \mathcal{Z}))$.

Proposition 1: For every $\mathbf{K}_{1}, \mathbf{K}_{2} \in \mathcal{F}$,
$\left(\boldsymbol{\Lambda}\left(\mathbf{K}_{1}\right) \mathbf{v}\right)\left(\mathbf{P}^{\prime}{ }^{\prime}\right)-\left(\boldsymbol{\Lambda}\left(\mathbf{K}_{1}\right) \mathbf{v}^{\prime}\right)(\mathbf{P v})=\left(\boldsymbol{\Lambda}\left(\mathbf{K}_{2}\right) \mathbf{v}\right)\left(\mathbf{P}^{\prime}\right)-\left(\boldsymbol{\Lambda}\left(\mathbf{K}_{2}\right) \mathbf{v}^{\prime}\right)(\mathbf{P} \mathbf{v})$
holds for all $\mathbf{v}, \mathbf{v}^{\prime} \in \mathcal{V}$.

Proof: Let $\mathbf{K}_{1}, \mathbf{K}_{2} \in \mathcal{F}$ be given. Then we determine $\mathbf{L} \in \operatorname{Sym}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)$ such that $\mathbf{K}_{1}-\mathbf{K}_{2}=\mathbf{I L}$. It follows from Prop. 3 of Sect. 14 that

$$
\left(\boldsymbol{\Lambda}\left(\mathbf{K}_{1}\right) \mathbf{v}\right)\left(\mathbf{P} \mathbf{v}^{\prime}\right)-\left(\boldsymbol{\Lambda}\left(\mathbf{K}_{2}\right) \mathbf{v}\right)\left(\mathbf{P}^{\prime}\right)=-\mathbf{L}\left(\mathbf{P} \mathbf{v}, \mathbf{P}^{\prime}\right)
$$

holds for all $\mathbf{v}, \mathbf{v}^{\prime} \in \mathcal{V}$. By interchanging \mathbf{v} and \mathbf{v}^{\prime} and observing that \mathbf{L} is symmetric, we conclude that (15.4) follows.

Definition: In view of Prop. 1, the \mathcal{F}-bracket $\mathbf{B}_{\mathcal{F}} \in \operatorname{Skw}_{2}\left(\mathcal{V}^{2}, \mathcal{Z}\right)$ can be defined such that

$$
\begin{equation*}
\mathbf{B}_{\mathcal{F}}\left(\mathbf{v}, \mathbf{v}^{\prime}\right):=(\boldsymbol{\Lambda}(\mathbf{K}) \mathbf{v})\left(\mathbf{P}^{\prime}\right)-\left(\boldsymbol{\Lambda}(\mathbf{K}) \mathbf{v}^{\prime}\right)(\mathbf{P} \mathbf{v}) \quad \text { for all } \quad \mathbf{v}, \mathbf{v}^{\prime} \in \mathcal{V} \tag{15.5}
\end{equation*}
$$

is valid for all $\mathbf{K} \in \mathcal{F}$. Using the identification (15.3) we also have

$$
\mathbf{B}_{\mathcal{F}} \in \operatorname{Lin}(\mathcal{V}, \operatorname{Lin}(\mathcal{V}, \mathcal{Z}))
$$

Proposition 2: The \mathcal{F}-bracket $\mathbf{B}_{\mathcal{F}} \in \operatorname{Lin}(\mathcal{V}, \operatorname{Lin}(\mathcal{V}, \mathcal{Z}))$ satisfies

$$
\begin{align*}
\mathbf{B}_{\mathcal{F}}(\mathbf{I} \mathbf{M}) & =\mathbf{M} \mathbf{P} \quad
\end{align*} \quad \text { for all } \quad \mathbf{M} \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z}), ~ 子 \quad \text { for all } \quad \mathbf{K} \in \mathcal{F} \text { and all } \mathbf{v} \in \mathcal{V} .
$$

If $\operatorname{dim} \mathcal{Z} \neq 0$, then $\mathbf{B}_{\mathcal{F}}$ is injective; i.e. Null $\mathbf{B}_{\mathcal{F}}=\{\mathbf{0}\}$.
Proof: The equations $(15.6)_{1}$ and $(15.6)_{2}$ follow from Definition (15.5) together with $\boldsymbol{\Lambda}(\mathbf{K}) \mathbf{I}=\mathbf{1}_{\operatorname{Lin}(\mathcal{W}, \mathcal{Z})}$ and $\mathbf{P K}=\mathbf{1}_{\mathcal{W}}$, respectively.

Let $\mathbf{v} \in \operatorname{Null} \mathbf{B}_{\mathcal{F}}$ be given, so that $\mathbf{B}_{\mathcal{F}} \mathbf{v}=\mathbf{0}$ and hence

$$
\mathbf{0}=\left(\mathbf{B}_{\mathcal{F}} \mathbf{v}\right) \mathbf{I M}=\mathbf{B}_{\mathcal{F}}(\mathbf{v}, \mathbf{I M})=-\left(\mathbf{B}_{\mathcal{F}}(\mathbf{I} \mathbf{M})\right) \mathbf{v}
$$

for all $\mathbf{M} \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z})$. Using (15.6) $)_{1}$, it follows that $-\mathbf{M P v}=\mathbf{0}$ for all $\mathbf{M} \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z})$, which can happen, when $\operatorname{dim} \mathcal{Z} \neq 0$, only if $\mathbf{P v}=\mathbf{0}$ and hence $\mathbf{v} \in \operatorname{Null} \mathbf{P}=\operatorname{Rng} \mathbf{I}$. Thus we may choose $\mathbf{M}^{\prime} \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z})$ such that $\mathbf{v}=\mathbf{I M}^{\prime}$ and hence $\mathbf{B}_{\mathcal{F}}\left(\mathbf{I M}^{\prime}\right)=\mathbf{0}$. Using (15.6) $)_{1}$ again, it follows that $\mathbf{M}^{\prime} \mathbf{P}=\mathbf{0}$. Since \mathbf{P} is surjective, we conclude that $\mathbf{M}^{\prime}=\mathbf{0}$ and hence $\mathbf{v}=\mathbf{0}$. Since $\mathbf{v} \in \operatorname{Null} \mathbf{B}_{\mathcal{F}}$ was arbitrary, it follows that $\operatorname{Null} \mathbf{B}_{\mathcal{F}}=\{\mathbf{0}\}$.

Definition: The \mathcal{F}-twist

$$
\begin{equation*}
\mathbf{T}_{\mathcal{F}}: \operatorname{Riv}(\mathbf{P}) \rightarrow \operatorname{Skw}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right) \tag{15.7}
\end{equation*}
$$

is defined by

$$
\begin{equation*}
\mathbf{T}_{\mathcal{F}}(\mathbf{K}):=-\mathbf{B}_{\mathcal{F}} \circ(\mathbf{K} \times \mathbf{K}) \quad \text { for all } \quad \mathbf{K} \in \operatorname{Riv}(\mathbf{P}) \tag{15.8}
\end{equation*}
$$

where $\mathbf{B}_{\mathcal{F}}$ is the \mathcal{F}-bracket defined by (15.5).
Proposition 3: For every $\mathbf{H} \in \mathcal{F}$, we have

$$
\begin{equation*}
\mathbf{T}_{\mathcal{F}}=\boldsymbol{\Gamma}^{\mathbf{H}}-\boldsymbol{\Gamma}^{\mathbf{H}^{\sim}} \tag{15.9}
\end{equation*}
$$

where ${ }^{\sim}$ denotes the value-wise switch, so that $\boldsymbol{\Gamma}^{\mathbf{H}}(\mathbf{K})(\mathbf{s}, \mathbf{t})=\boldsymbol{\Gamma}^{\mathbf{H}}(\mathbf{K})(\mathbf{t}, \mathbf{s})$ for all $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ and all $\mathbf{s}, \mathbf{t} \in \mathcal{W}$.

Proof: Let $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ and $\mathbf{s}, \mathbf{t} \in \mathcal{W}$ be given. By (15.8) and (15.5), we see that for every $\mathbf{H} \in \mathcal{F}$ we have

$$
\begin{align*}
\mathbf{T}_{\mathcal{F}}(\mathbf{K})(\mathbf{s}, \mathbf{t}) & =-\mathbf{B}_{\mathcal{F}}(\mathbf{K s}, \mathbf{K} \mathbf{t}) \\
& =-\boldsymbol{\Lambda}(\mathbf{H})(\mathbf{K} \mathbf{s}) \mathbf{P}(\mathbf{K t})+\boldsymbol{\Lambda}(\mathbf{H})(\mathbf{K t}) \mathbf{P}(\mathbf{K} \mathbf{s}) \tag{15.10}
\end{align*}
$$

We conclude from $\mathbf{P} \mathbf{K}=\mathbf{1}_{\mathcal{W}}$, (15.10) and (14.10) that

$$
\mathbf{T}_{\mathcal{F}}(\mathbf{K})(\mathbf{s}, \mathbf{t})=\boldsymbol{\Gamma}^{\mathbf{H}}(\mathbf{K})(\mathbf{s}, \mathbf{t})-\boldsymbol{\Gamma}^{\mathbf{H}}(\mathbf{K})^{\sim}(\mathbf{s}, \mathbf{t})
$$

Since $\mathbf{s}, \mathbf{t} \in \mathcal{W}$ and $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ were arbitrary, (15.9) follows.
Remark: It is clear from (15.9) and (11.6) that

$$
\mathbf{T}_{\mathcal{F}}=2 \text { Alt } \circ \boldsymbol{\Gamma}^{\mathbf{H}} \quad \text { for all } \quad \mathbf{H} \in \mathcal{F} .
$$

The numerical factor 2 is conventional which reduces numerical factors in calculations.

Proposition 4: The \mathcal{F}-torsion $\mathbf{T}_{\mathcal{F}}$ is a surjective flat mapping whose gradient

$$
\nabla \mathbf{T}_{\mathcal{F}} \in \operatorname{Lin}\left(\operatorname{Lin}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right), \operatorname{Skw}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)\right)
$$

is given by

$$
\begin{equation*}
\left(\nabla \mathbf{T}_{\mathcal{F}}\right) \mathbf{L}=\mathbf{L}^{\sim}-\mathbf{L} \tag{15.11}
\end{equation*}
$$

for all $\mathbf{L} \in \operatorname{Lin}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)$.
Proof: Let $\mathbf{H} \in \mathcal{F}$ be given. It follows from (15.8) and (15.5)

$$
\mathbf{T}_{\mathcal{F}}\left(\mathbf{H}-\frac{1}{2} \mathbf{I L}\right)=\mathbf{L} \quad \text { for all } \quad \mathbf{L} \in \operatorname{Skw}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)
$$

and hence $\mathbf{T}_{\mathcal{F}}$ is surjective.
Prop. 3 together with Prop. 4 in Sec. 14 shows that the \mathcal{F}-torsion $\mathbf{T}_{\mathcal{F}}$ is a flat mapping whose gradient is given by (15.11).

In view of definitions (15.8), (15.5) and (15.11), we have $\mathbf{T}_{\mathcal{F}}{ }^{<}(\{\mathbf{0}\})=\mathcal{F}$.

Definition: We say that $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ is \mathcal{F}-twist-free (or \mathcal{F}-symmetric) if $\mathbf{T}_{\mathcal{F}}(\mathbf{K})=\mathbf{0}$, i.e. if $\mathbf{K} \in \mathcal{F}$.
\mathcal{F} is a flat in $\operatorname{Riv}(\mathbf{P})$ with the (external) direction space $\operatorname{Sym}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)$ and hence

$$
\begin{equation*}
\operatorname{dim} \mathbf{T}_{\mathcal{F}}^{<}(\{\mathbf{0}\})=\operatorname{dim} \operatorname{Sym}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)=\frac{n(n+1)}{2} m, \tag{15.12}
\end{equation*}
$$

where $n:=\operatorname{dim} \mathcal{W}$ and $m:=\operatorname{dim} \mathcal{Z}$. The mapping

$$
\begin{equation*}
\mathbf{S}_{\mathcal{F}}:=\left.\left(\mathbf{1}_{\operatorname{Riv}(\mathbf{P})}+\frac{1}{2} \mathbf{I} \mathbf{T}_{\mathcal{F}}\right)\right|^{\mathbf{T}_{\mathcal{F}}<(\{0\})} \tag{15.13}
\end{equation*}
$$

is the projection of $\operatorname{Riv}(\mathbf{P})$ onto $\mathbf{T}_{\mathcal{F}}^{<}(\{\mathbf{0}\})$ with $\operatorname{Null} \nabla \mathbf{S}_{\mathcal{F}}=\operatorname{Skw}_{2}\left(\mathcal{W} \mathcal{W}^{2}, \mathcal{Z}\right)$. If $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$, we call

$$
\mathbf{S}_{\mathcal{F}}(\mathbf{K})=\mathbf{K}+\frac{1}{2} \mathbf{I}\left(\mathbf{T}_{\mathcal{F}}(\mathbf{K})\right)
$$

the \mathcal{F}-symmetric part of \mathbf{K}.

[^0]: * A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose "morphisms" are called ISO-morphisms.
 \ddagger Since isocategories are widely used in differential geometry, we introduced them directly instead of making them as a special category.

[^1]: * The term short exact sequence comes from the more general concept of an "exact sequence" which is not needed here.

