Chapter 1 Preliminaries

11. Multilinearity

Let $(\mathcal{V}_i \mid i \in I)$ be a family of linear spaces, we define (see (04.24) of [FDS]), for each $j \in I$ and each $\mathbf{v} \in \times_{i \in I} \mathcal{V}_i$, the mapping $(\mathbf{v}.j) : \mathcal{V}_j \to \times_{i \in I} \mathcal{V}_i$ by the rule

$$((\mathbf{v}.j)(\mathbf{u}))_i := \left\{ \begin{array}{ll} \mathbf{v}_i & \text{if } i \in I \setminus \{j\} \\ \\ \mathbf{u} & \text{if } i = j \end{array} \right\} \quad \text{for all } \mathbf{u} \in \mathcal{V}_j.$$
(11.1)

Definition : Let the family $(\mathcal{V}_i \mid i \in I)$ and \mathcal{W} be linear spaces. We say that the mapping $\mathbf{M} : \times_{i \in I} \mathcal{V}_i \to \mathcal{W}$ is **multilinear** if, for every $\mathbf{v} \in \times_{i \in I} \mathcal{V}_i$ and every $j \in I$ the mapping $\mathbf{M} \circ (\mathbf{v}.j) : \mathcal{V}_j \to \mathcal{W}$ is linear, so that $\mathbf{M} \circ (\mathbf{v}.j) \in \operatorname{Lin}(\mathcal{V}_j, \mathcal{W})$. The set of all multilinear mappings from $\times_{i \in I} \mathcal{V}_i$ to \mathcal{W} is denoted by

$$\operatorname{Lin}_{I}(\times_{i\in I}\mathcal{V}_{i},\mathcal{W}).$$
(11.2)

Let linear spaces \mathcal{V} and \mathcal{W} and a set I be given.

Let Perm I be the permutation group, which consists of all invertible mappings from I to itself. For every permutation $\sigma \in \text{Perm } I$ we define a mapping $T_{\sigma} : \mathcal{V}^{I} \to \mathcal{V}^{I}$ by

$$T_{\sigma}(\mathbf{v}) = \mathbf{v} \circ \sigma \quad \text{for all} \quad \mathbf{v} \in \mathcal{V}^{I}, \tag{11.3}$$

that is $(T_{\sigma}(\mathbf{v}))_i := \mathbf{v}_{\sigma(i)}$ for all $i \in I$. In view of $\mathbf{v} \circ (\sigma \circ \rho) = (\mathbf{v} \circ \sigma) \circ \rho$, we have $T_{\sigma \circ \rho} = T_{\rho} \circ T_{\sigma}$ for all $\sigma, \rho \in \text{Perm } I$. It is not hard to see that, for every multilinear mapping $\mathbf{M} : \mathcal{V}^I \to \mathcal{W}$ and every permutation σ , the composition $\mathbf{M} \circ T_{\sigma}$ is again a multilinear mapping from \mathcal{V}^I to \mathcal{W} , i.e. $\mathbf{M} \circ T_{\sigma} \in \text{Lin}_I(\mathcal{V}^I, \mathcal{W})$.

<u>Definition</u> : A multilinear mapping $\mathbf{M} : \mathcal{V}^I \to \mathcal{W}$ is said to be (completely) symmetric if

$$\mathbf{M} \circ \mathbf{T}_{\sigma} = \mathbf{M} \qquad \text{for all} \quad \sigma \in \operatorname{Perm} I \,,$$

and is said to be (completely) skew if

$$\mathbf{M} \circ \mathbf{T}_{\sigma} = \operatorname{sgn}(\sigma) \mathbf{M}$$
 for all $\sigma \in \operatorname{Perm} I$

The set of all (completely) symmetric multilinear mappings and the set of all (completely) skew multilinear mappings from \mathcal{V}^{I} to \mathcal{W} will be denoted by $\operatorname{Sym}_{I}(\mathcal{V}^{I}, \mathcal{W})$ and by $\operatorname{Skew}_{I}(\mathcal{V}^{I}, \mathcal{W})$; respectively.

Both $\operatorname{Sym}_{I}(\mathcal{V}^{I}, \mathcal{W})$ and $\operatorname{Skew}_{I}(\mathcal{V}^{I}, \mathcal{W})$ are subspaces of the linear space $\operatorname{Lin}_{I}(\mathcal{V}^{I}, \mathcal{W})$ with dimensions

$$\dim \operatorname{Sym}_{I}(\mathcal{V}^{I}, \mathcal{W}) = \begin{pmatrix} \dim \mathcal{V} + \#I - 1 \\ \#I \end{pmatrix} \dim \mathcal{W}$$
(11.4)

and

dim Skew_I(
$$\mathcal{V}^{I}, \mathcal{W}$$
) = $\begin{pmatrix} \dim \mathcal{V} \\ \#I \end{pmatrix}$ dim \mathcal{W} . (11.5)

For every $k \in$, we write $\operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W})$, $\operatorname{Sym}_k(\mathcal{V}^k, \mathcal{W})$ and $\operatorname{Skew}_k(\mathcal{V}^k, \mathcal{W})$ for $\operatorname{Lin}_{k^{]}}(\mathcal{V}^{k^{]}}, \mathcal{W})$, $\operatorname{Sym}_{k^{]}}(\mathcal{V}^{k^{]}}, \mathcal{W})$ and $\operatorname{Skew}_{k^{]}}(\mathcal{V}^{k^{]}}, \mathcal{W})$; respectively.

In applications, we often use the following identifications

$$\operatorname{Lin}_{k}(\mathcal{V}^{k},\mathcal{W}) \cong \operatorname{Lin}_{k-1}(\mathcal{V}^{k-1},\operatorname{Lin}(\mathcal{V},\mathcal{W}))$$
$$\cong \operatorname{Lin}(\mathcal{V},\operatorname{Lin}_{k-1}(\mathcal{V}^{k-1},\mathcal{W}))$$

and inclusions

$$\operatorname{Sym}_{k}(\mathcal{V}^{k},\mathcal{W}) \subset \operatorname{Sym}_{k-1}(\mathcal{V}^{k-1},\operatorname{Lin}(\mathcal{V},\mathcal{W})),$$

$$\operatorname{Skew}_{k}(\mathcal{V}^{k},\mathcal{W}) \subset \operatorname{Skew}_{k-1}(\mathcal{V}^{k-1},\operatorname{Lin}(\mathcal{V},\mathcal{W})).$$

In particular, we shall use $\operatorname{Sym}_2(\mathcal{V}^2,) \cong \operatorname{Sym}(\mathcal{V}, \mathcal{V}^*) := \operatorname{Sym}(\mathcal{V}, \operatorname{Lin}(\mathcal{V},))$ and $\operatorname{Skew}_2(\mathcal{V}^2,) \cong \operatorname{Skew}(\mathcal{V}, \mathcal{V}^*) := \operatorname{Skew}(\mathcal{V}, \operatorname{Lin}(\mathcal{V},))$. It can be shown that $\operatorname{Skew}(\mathcal{V}, \mathcal{V}^*)$ has invertiable mapping if and only if dim \mathcal{V} is even. (See Prop.3 of Sect.87, [FDS].)

Given a number $k \in$ and a multilinear mapping $\mathbf{A} \in \operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W})$, the mapping $\sum_{\sigma \in \operatorname{Perm} kl} (\operatorname{sgn} \sigma) \mathbf{A} \circ T_{\sigma} : \mathcal{V}^k \to \mathcal{W}$ is a completely skew multilinear mapping. Moreover, it can be easily shown that

$$\frac{1}{k!} \sum_{\sigma \in \operatorname{Perm} k^{\mathsf{J}}} (\operatorname{sgn} \sigma) \, \mathbf{W} \circ \mathbf{T}_{\sigma} = \mathbf{W}$$

for all skew multilinear mapping $\mathbf{W} \in \operatorname{Skew}_k(\mathcal{V}^k, \mathcal{W})$.

Definition: Given a number $k \in$, we define the alternating assignment Alt: $\operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W}) \to \operatorname{Skew}_k(\mathcal{V}^k, \mathcal{W})$ by

Alt
$$\mathbf{A} := \frac{1}{k!} \sum_{\sigma \in \operatorname{Perm} k^{]}} (\operatorname{sgn} \sigma) \mathbf{A} \circ \mathbf{T}_{\sigma}$$
 (11.6)

for all linear spaces \mathcal{V} and \mathcal{W} and all $\mathbf{A} \in \operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W})$.

Given $p \in .$ We define, for each $i \in (p+1)^{]}$, a mapping del_i : $\mathcal{V}^{p+1} \to \mathcal{V}^{p}$ by

$$(\operatorname{del}_{i}(\mathbf{v}))_{j} := \left\{ \begin{array}{ccc} \mathbf{v}_{j} & \text{if } 1 \leq i \leq j-1 \\ \\ \mathbf{v}_{i+1} & \text{if } j \leq i \leq p \end{array} \right\} \quad \text{for all} \quad \mathbf{v} \in \mathcal{V}^{p+1}.$$
(11.7)

Intuitively, $del_i(\mathbf{v})$ is obtained from \mathbf{v} by deleting the *i*-th term.

When the alternating assignment Alt restricted to the subspace $\operatorname{Lin}(\mathcal{V}, \operatorname{Skew}_p(\mathcal{V}^p, \mathcal{W}))$ of $\operatorname{Lin}(\mathcal{V}, \operatorname{Lin}_p(\mathcal{V}^p, \mathcal{W})) \cong \operatorname{Lin}_{p+1}(\mathcal{V}^{p+1}, \mathcal{W})$, we have

$$(p+1) \operatorname{(Alt} \mathbf{A}) \mathbf{v} = \sum_{i \in (p+1)^{]}} (-1)^{i-1} \mathbf{A}(\mathbf{v}_i, \operatorname{del}_i \mathbf{v})$$
(11.8)

for all $\mathbf{v} \in \mathcal{V}^{p+1}$ and all $\mathbf{A} \in \operatorname{Lin}(\mathcal{V}, \operatorname{Skew}_p(\mathcal{V}^p, \mathcal{W}))$. Similarly, when the alternating assignment Alt restricted to the subspace $\operatorname{Skew}_p(\mathcal{V}^p, \operatorname{Lin}(\mathcal{V}, \mathcal{W}))$ of $\operatorname{Lin}(\mathcal{V}, \operatorname{Lin}_p(\mathcal{V}^p, \mathcal{W})) \cong \operatorname{Lin}_{p+1}(\mathcal{V}^{p+1}, \mathcal{W})$, we have

$$(p+1) \operatorname{(Alt} \mathbf{B}) \mathbf{v} = \sum_{i \in (p+1)^{]}} (-1)^{p+1-i} \mathbf{B} (\operatorname{del}_{i} \mathbf{v}, \mathbf{v}_{i})$$
(11.9)

for all $\mathbf{v} \in \mathcal{V}^{p+1}$ and all $\mathbf{B} \in \operatorname{Skew}_p(\mathcal{V}^p, \operatorname{Lin}(\mathcal{V}, \mathcal{W})).$

Definition: An algebra is a linear space \mathcal{V} together with a bilinear mapping $\mathbf{B} \in \operatorname{Lin}_2(\mathcal{V}^2, \mathcal{V})$. An algebra \mathcal{V} is called a Lie Alegebra if the bilinear mapping \mathbf{B} is skew-symmetric, i.e. $\mathbf{B} \in \operatorname{Skew}_2(\mathcal{V}^2, \mathcal{V})$, and satisfies Jacobi indetity

$$B(B(v_1, v_2), v_3) + B(B(v_2, v_3), v_1) + B(B(v_3, v_1), v_2) = 0$$
(11.10)

for all $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathcal{V}$.

By using the inclusion $\operatorname{Skew}_2(\mathcal{V}^2, \mathcal{V}) \subset \operatorname{Lin}(\mathcal{V}, \operatorname{Lin}(\mathcal{V}, \mathcal{V}))$ and (11.9), we see taht (11.10) can rewriten as

$$Alt \left(\mathbf{B} \circ \mathbf{B} \right) = \mathbf{0} \tag{11.11}$$

where $(\mathbf{B} \circ \mathbf{B})(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) := \mathbf{B}(\mathbf{B}(\mathbf{v}_1, \mathbf{v}_2), \mathbf{v}_3)$ for all $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathcal{V}$.

Remark 1: In the literature the **alternating assignment** given in (11.6) is often called "*skew-symmetric operator*" ([B-W]), "*complete antisymmetrization*" ([F-C]). The **symmetric assignment**, "*symmetric operator*" or "*complete symmetrization*" Sym : $\operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W}) \to \operatorname{Sym}_k(\mathcal{V}^k, \mathcal{W})$ is given by

Sym
$$\mathbf{M} := \frac{1}{k!} \sum_{\sigma \in \operatorname{Perm} k^{]}} \mathbf{M} \circ \mathbf{T}_{\sigma}$$
 (11.12)

for all linear spaces \mathcal{V} and \mathcal{W} and all $\mathbf{M} \in \operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W})$.

Remark 2: Both assignments given in (11.6) and (11.12) are "natural linear assignments" from a functor to another functor (see (13.16) of Sect.13). More precisely, the alternating assignment is a natural linear assignment from the functor Ln_k to the functor Sk_k and the symmetric assignment is a natural linear assignment from the functor Ln_k to Ln_k

12. Isocategories, isofunctors and Natural Assignments

An isocategory^{* \ddagger} is given by the specification of a class *OBJ* whose members are called **objects**, a class ISO whose members are called **ISOmorphisms**,

- (i) a rule that associates with each $\phi \in \text{ISO}$ a pair $(\text{Dom }\phi, \text{Cod }\phi)$ of objects, called the **domain** and **codomain** of ϕ ,
- (ii) a rule that associates with each $\mathcal{A} \in OBJ$ a member of ISO denoted by $1_{\mathcal{A}}$ and called the **identity** of \mathcal{A} ,
- (iii) a rule that associates with each pair (ϕ, ψ) in ISO such that $\operatorname{Cod} \phi = \operatorname{Dom} \psi$ a member of ISO denoted by $\psi \circ \phi$ and called the **composite** of ϕ and ψ , with $\operatorname{Dom} (\psi \circ \phi) = \operatorname{Dom} \phi$ and $\operatorname{Cod} (\psi \circ \phi) = \operatorname{Cod} \psi$.
- (iv) a rule that associates with each $\phi \in$ ISO a member of ISO denoted by ϕ^{\leftarrow} and called the **inverse** of ϕ .

subject to the following three axioms:

- (I1) $\phi \circ 1_{\text{Dom }\phi} = \phi = 1_{\text{Cod }\phi} \circ \phi$ for all $\phi \in \text{ISO}$,
- (I2) $\chi \circ (\psi \circ \phi) = (\chi \circ \psi) \circ \phi$ for all $\phi, \psi, \chi \in \text{ISO}$ such that $\operatorname{Cod} \phi = \operatorname{Dom} \psi$ and $\operatorname{Cod} \psi = \operatorname{Dom} \chi$.
- (I3) $\phi^{\leftarrow} \circ \phi = 1_{\text{Dom }\phi}$ and $\phi \circ \phi^{\leftarrow} = 1_{\text{Cod }\phi}$ for all $\phi \in \text{ISO}$.

Given $\phi \in \text{ISO}$, one writes $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ or $\mathcal{A} \xrightarrow{\phi} \mathcal{B}$ to indicate that $\text{Dom } \phi = \mathcal{A}$ and $\text{Cod } \phi = \mathcal{B}$.

There is one to one correspondence between an object $\mathcal{A} \in OBJ$ and the corresponding identity $1_{\mathcal{A}} \in ISO$. For this reason, we will usually name an isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO' with object-classes OBJ and OBJ' be given. We can then form the **product-isocategory** ISO × ISO' whose objectclass $OBJ \times OBJ'$ consists of pairs $(\mathcal{A}, \mathcal{A}')$ with $\mathcal{A} \in OBJ$, $\mathcal{A}' \in OBJ'$ and ISOmorphism-class ISO × ISO' consists of pairs (ϕ, ϕ') with $\phi \in$ ISO, $\phi' \in$ ISO' and the following

(a) For every $(\phi, \phi') \in \text{ISO} \times \text{ISO}'$, $\text{Dom}(\phi, \phi') := (\text{Dom}\phi, \text{Dom}\phi')$ and $\text{Cod}(\phi, \phi') := (\text{Cod}\phi, \text{Cod}\phi')$.

^{*} A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose "morphisms" are called ISO-morphisms.

[‡] Since isocategories are widely used in differential geometry, we introduced them directly instead of making them as a special category.

⁴

- (b) Composition in ISO × ISO' is defined by termwise composition, i.e. by $(\psi, \psi') \circ (\phi, \phi') := (\psi \circ \phi, \psi' \circ \phi')$ for all $\phi, \psi \in$ ISO and $\phi', \psi' \in$ ISO' such that Dom $(\psi, \psi') =$ Cod (ϕ, ϕ') .
- (c) The identity of a given pair $(\mathcal{A}, \mathcal{A}') \in OBJ \times OBJ'$ is defined to be $1_{(\mathcal{A}, \mathcal{A}')} = (1_{\mathcal{A}}, 1_{\mathcal{A}'})$.

The product of an arbitrary family of isocategories can be defined in a similar manner. In particular, if a isocategory ISO and an index set I are given, one can form the I-power-isocategory ISO^I of ISO; its ISOmorphism-class consists of all families in ISO indexed on I. In the case when I is of the form $I := n^{1}$, we write $ISO^{n} := ISO^{n^{1}}$ for short. For example, we write $ISO^{2} := ISO \times ISO$. We identify ISO^{1} with ISO and ISO^{m+n} with $ISO^{m} \times ISO^{n}$ for all $m, n \in$ in the obvious manner. The isocategory ISO^{0} is the trival one whose only object is \emptyset and whose only ISOmorphism is 1_{\emptyset} .

A functor Φ is given by the specification of:

- (i) a pair $(Dom \Phi, Cod \Phi)$ of categories, called the **domain-category** and **codomain-category** of Φ ,
- (ii) a rule that associates with every $\phi \in \text{Dom }\Phi$ a member of $\text{Cod }\Phi$ denoted by $\Phi(\phi)$,

subject to the following conditions:

- (F1) We have $\operatorname{Cod} \Phi(\phi) = \operatorname{Dom} \Phi(\psi)$ and $\Phi(\psi \circ \phi) = \Phi(\psi) \circ \Phi(\phi)$ for all $\phi, \psi \in \operatorname{Dom} \Phi$ such that $\operatorname{Cod} \phi = \operatorname{Dom} \psi$.
- (F2) For every identity $1_{\mathcal{A}}$ in Dom Φ , where \mathcal{A} belongs to the objectclass of Dom Φ , $\Phi(1_{\mathcal{A}})$ is an identity in Cod Φ .

An **isofunctor** is a functor whose domain-category and codomain-category are isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO' with object-classes OBJ and OBJ' be given. We say that Φ is an **isofunctor from** ISO **to** ISO' and we write ISO $\xrightarrow{\Phi}$ ISO' or Φ : ISO \longrightarrow ISO' to indicate that ISO = Dom Φ and ISO' = Cod Φ . By (F2), we can associate with each $\mathcal{A} \in OBJ$ exactly one object in OBJ', denoted by $\Phi(\mathcal{A})$, such that

$$\Phi(1_{\mathcal{A}}) = 1_{\Phi(\mathcal{A})}.\tag{12.1}$$

It easily follows from (I3), (F1) and (F2) that every isofunctor Φ satisfies

$$\Phi(\phi^{\leftarrow}) = (\Phi(\phi))^{\leftarrow} \quad \text{for all} \quad \phi \in \text{Dom}\,\Phi.$$
(12.2)

One can construct new isofunctors from given isofunctors in the same way as new mappings are constructed from given mappings. (See, for example, Sect. 03

and 04, [FDS].) Thus, if Φ and Ψ are isofunctors such that $\operatorname{Cod} \Phi = \operatorname{Dom} \Psi$, one can define the **composite isofunctor** $\Psi \circ \Phi : \operatorname{Dom} \Phi \to \operatorname{Cod} \Psi$ by

$$(\Psi \circ \Phi)(\phi) := \Psi(\Phi(\phi)) \quad \text{for all} \quad \phi \in \text{Dom}\,\Phi \tag{12.3}$$

Also, given isofunctors Φ and Ψ , one can define the **product-isofunctor**

$$\Phi \times \Psi : \operatorname{Dom} \Phi \times \operatorname{Dom} \Psi \longrightarrow \operatorname{Cod} \Phi \times \operatorname{Cod} \Psi$$

of Φ and Ψ by

$$(\Phi \times \Psi)(\phi, \psi) := (\Phi(\phi), \Psi(\psi))$$
(12.4)

for all $\phi \in \text{Dom } \Phi$ and all $\psi \in \text{Dom } \Psi$.

Product-isofunctors of arbitrary families of isofunctors are defined in a similar way. In particular, if a isofunctor Φ and an index set I are given, we define the *I*-power-isofunctor $\Phi^{\times I} : (\text{Dom } \Phi)^I \to (\text{Cod } \Phi)^I$ of Φ by

$$\Phi^{\times I}(\phi_i \mid i \in I) = (\Phi(\phi_i) \mid i \in I)$$
(12.5)

for all families $(\phi_i \mid i \in I)$ in Dom Φ . We write $\Phi^{\times n} := \Phi^{\times n^{\dagger}}$ when $n \in .$

We now assume that an isocategory ISO with object-class OBJ is given. The **identity-isofunctor** Id : ISO \rightarrow ISO of ISO is defined by

$$Id(\phi) = \phi \quad \text{for all} \quad \phi \in ISO. \tag{12.6}$$

We then have

$$Id(\mathcal{A}) = \mathcal{A} \quad \text{for all} \quad \mathcal{A} \in OBJ.$$
(12.7)

If I is an index set, then the identity-isofunctor of ISO^I is $\text{Id}^{\times I}$. In particular, the identity-isofunctor of $\text{ISO} \times \text{ISO}$ is $\text{Id} \times \text{Id}$.

Given an object $C \in OBJ$. The **trivial-isofunctor** $\operatorname{Tr}_{\mathcal{C}} : \operatorname{ISO} \to \operatorname{ISO}$ for \mathcal{C} is defined by

$$\operatorname{Tr}_{\mathcal{C}}(\phi) = 1_{\mathcal{C}} \quad \text{for all} \quad \phi \in \operatorname{ISO}.$$
 (12.8)

We then have

$$\operatorname{Tr}_{\mathcal{C}}(\mathcal{A}) = \mathcal{C} \quad \text{for all} \quad \mathcal{A} \in OBJ.$$
 (12.9)

One often needs to consider a variety of "accounting isofunctors" whose domain and codomain isocategories are obtained from ISO by product formation. For example, the **switch-isofunctor** Sw : $ISO^2 \rightarrow ISO^2$ is defined by

$$Sw(\phi, \psi) := (\psi, \phi) \text{ for all } \phi, \psi \in ISO.$$
 (12.10)

Given any index set I, the equalization-isofunctor $Eq_I : ISO \rightarrow ISO^I$ is defined by

$$\operatorname{Eq}_{I}(\phi) := (\phi \mid i \in I) \quad \text{for all} \quad \phi \in \operatorname{ISO}.$$
(12.11)

We write $\operatorname{Eq}_n := \operatorname{Eq}_n$ when $n \in .$

Let a index set I and a family $(\Phi_i \mid i \in I)$ of isofunctors, with $\text{Dom} \Phi_i =$ ISO for all $i \in I$, be given. We then identify the family $(\Phi_i \mid i \in I)$ with the **termwise-formation isofunctor**

$$(\Phi_i \mid i \in I) : \mathrm{ISO} \to \underset{i \in I}{\times} \mathrm{Cod} \, \Phi_i$$

defined by

$$(\Phi_i \mid i \in I) := \underset{i \in I}{\times} \Phi_i \circ \mathrm{Eq}_I,$$

so that

$$(\Phi_i \mid i \in I)(\phi) = \underset{i \in I}{\times} \Phi_i(\phi), \text{ for all } \phi \in \text{ISO.}$$
 (12.12)

In particular, if $I = 2^{l}$, we then identify the pair (Φ_1, Φ_2) with the **pair-formation isofunctor** $(\Phi_1, \Phi_2) : \text{ISO} \to \text{Cod} \Phi_1 \times \text{Cod} \Phi_2$.

Let isofunctors Φ and Ψ , both from ISO to ISO', be given. A **natural** assignment α form Φ to Ψ is a rule that associates with each object \mathcal{F} of ISO a mapping

$$\alpha_{\mathcal{F}}: \Phi(\mathcal{F}) \to \Psi(\mathcal{F}),$$

such that

$$\Psi(\chi) \circ \alpha_{\text{Dom}\,\chi} = \alpha_{\text{Cod}\,\chi} \circ \Phi(\chi) \qquad \text{for all} \quad \chi \in \text{ISO}; \tag{12.13}$$

i.e. the diagram

is commutative. We write $\alpha : \Phi \longrightarrow \Psi$ to indicate that Φ is the **domain** isofunctor, denoted by Dmf_{α} , and Ψ is the **codomain** isofunctor, denoted by Cdf_{α} .

One can construct new natural assignments from given ones in the same way as new mappings from given ones. Let natural assignments $\alpha : \Phi \to \Psi$ and $\beta : \Psi \to \Theta$ be given. We can define the **composite assignment** $\beta \circ \alpha : \Phi \to \Theta$, by assigning to each object \mathcal{F} of $\text{Dom }\Phi = \text{Dom }\Psi$ the mapping $(\beta \circ \alpha)_{\mathcal{F}} := \beta_{\mathcal{F}} \circ \alpha_{\mathcal{F}}$. If α, β are natural assignment, one can define the **product-assignment** $\alpha \times \beta$ by assigning to each pair $(\mathcal{F}, \mathcal{G})$ of objects the mapping $(\alpha \times \beta)_{(\mathcal{F}, \mathcal{G})} := \alpha_{\mathcal{F}} \times \beta_{\mathcal{G}}$.

Given a natural assignment $\alpha : \Phi \to \Psi$ and a isofunctor Θ such that $\operatorname{Cod} \Theta = \operatorname{Dom} \Phi = \operatorname{Dom} \Psi$, one can define the **composite assignment**

 $\alpha \circ \Theta : \Phi \circ \Theta \to \Psi \circ \Theta$ by assigning to each object \mathcal{F} of $\operatorname{Dom} \Phi = \operatorname{Dom} \Psi$ the mapping $(\alpha \circ \Theta)_{\mathcal{F}} := \alpha_{\Theta(\mathcal{F})}$.

13. Tensor Functors

We say that an isocategory ISO is **concrete** if ISO consists of mappings, the object-class OBJ consists of sets, and if domain and codomain, composition, identity and inverse have the meanning they are usually given for sets and mappings. (See, e.g. Sect. 01 – 04 of [FDS]).

Examples of concrete isocategory

The following are some concrete isocategories to be used in this book:

(A) The category FIS whose object-class FS consists of all finite dimensional flat spaces over and whose ISOmorphism-class FIS consists of all flat isomorphism from one such space onto another or itself.

(B) Fix a field and we consider the concrete isocategory whose object-class LS consists of all finite dimensional linear spaces over and whose ISOmorphismclass LIS consists of all linear isomorphism from one such space onto another or itself.

(C) Given $s \in$, the category DIF^s whose object-class DF consists of all C^s manifolds and whose ISOmorphism-class DIF^s consists of all diffeomorphism from one such manifold onto another or itself.

Examples of tensor functor

Here is a list of important tensor functors used in linear algebra and differential geometry:

(1) The product-space functor $Pr: LIS^2 \rightarrow LIS$. It is defined by

$$Pr(\mathbf{A}, \mathbf{B}) := \mathbf{A} \times \mathbf{B} \quad \text{for all} \quad (\mathbf{A}, \mathbf{B}) \in LIS^2.$$
(13.1)

We have $Pr(\mathcal{V}, \mathcal{W}) := \mathcal{V} \times \mathcal{W}$ (the *product-space* of \mathcal{V} and \mathcal{W}) for all $\mathcal{V}, \mathcal{W} \in LS$.

(2) Given $k \in$, the k-lin-map-functor $\operatorname{Lin}_k : \operatorname{LIS}^k \times \operatorname{LIS} \to \operatorname{LIS}$. It assigns to each list $(\mathcal{V}_i \mid i \in k^1)$ in LS and each $\mathcal{W} \in LS$ the linear space

$$\operatorname{Lin}_{k}((\mathcal{V}_{i} \mid i \in k^{1}), \mathcal{W}) := \operatorname{Lin}_{k}\left(\underset{i \in k^{1}}{\times} \mathcal{V}_{i}, \mathcal{W}\right)$$
(13.2)

of all k-multilinear mappings from $\times_{i \in k^{]}} \mathcal{V}_{i}$ to \mathcal{W} , and it assigns to every list $(\mathbf{A}_{i} | i \in k^{]})$ in LIS and each $\mathbf{B} \in \text{LIS}$ the linear mapping

$$\operatorname{Lin}_{k}((\mathbf{A}_{i} | i \in k^{1}), \mathbf{B})$$
(13.3)

from $\operatorname{Lin}_k(\times_{i \in k^{]}} \operatorname{Dom} \mathbf{A}_i, \operatorname{Dom} \mathbf{B})$ to $\operatorname{Lin}_k(\times_{i \in k^{]}} \operatorname{Cod} \mathbf{A}_i, \operatorname{Cod} \mathbf{B})$ defined by

$$\operatorname{Lin}_{k}((\mathbf{A}_{i} | i \in k^{]}), \mathbf{B})\mathbf{T} := \mathbf{BT} \circ \underset{i \in k^{]}}{\times} \mathbf{A}_{i}^{-1}$$
(13.4)

for all $\mathbf{T} \in \operatorname{Lin}(\times_{i \in k^{]}} \operatorname{Dom} \mathbf{A}_{i}, \operatorname{Dom} \mathbf{B}).$

When k = 1, $\text{Lin}_1 : \text{LIS} \times \text{LIS} \to \text{LIS}$ is called the **lin-map-functor** and abreviated by $\text{Lin} := \text{Lin}_1$.

(3) Given $k \in$, the k-multilin-functor $\operatorname{Ln}_k : \operatorname{LIS}^2 \to \operatorname{LIS}$. It is defined by

$$\operatorname{Ln}_k := \operatorname{Lin}_k \circ (\operatorname{Eq}_k \times \operatorname{Id}). \tag{13.5}$$

We have

$$\operatorname{Ln}_{k}(\mathbf{A}, \mathbf{B})\mathbf{T} := \mathbf{BT} \circ (\mathbf{A}^{-1})^{\times k}$$
(13.6)

for all $\mathbf{A}, \mathbf{B} \in \text{LIS}$ and all $\mathbf{T} \in \text{Lin}_k((\text{Dom }\mathbf{A})^k, \text{Dom }\mathbf{B})$. and

$$\operatorname{Ln}_k(\mathcal{V}, \mathcal{W}) := \operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W}) \tag{13.7}$$

for all $\mathcal{V}, \mathcal{W} \in LS$

There are two very important "subfunctors" (see [E-M]), Sm_k and Sk_k , given in following. The **symmetric**-k-multilin-functor $Sm_k : LIS^2 \to LIS$ assigns to every pair of linear spaces $(\mathcal{V}, \mathcal{W}) \in LS^2$ the linear space

$$\operatorname{Sm}_k(\mathcal{V}, \mathcal{W}) := \operatorname{Sym}_k(\mathcal{V}^k, \mathcal{W})$$
 (13.8)

of all symmetric k-multilinear mappings from \mathcal{V}^k to \mathcal{W} . It is clear that

$$\operatorname{Sm}_{k}(\mathbf{A}, \mathbf{B})\mathbf{T} := \mathbf{BT} \circ (\mathbf{A}^{-1})^{\times k}$$
(13.9)

for all $\mathbf{A}, \mathbf{B} \in \text{LIS}$ and all $\mathbf{T} \in \text{Sym}_k((\text{Dom }\mathbf{A})^k, \text{Dom }\mathbf{B})$. The **skew**-k-multilinfunctor $\text{Sk}_k : \text{LIS}^2 \to \text{LIS}$ is defined in the same manner as Sm_k , except that $\text{Sym}_k(\mathcal{V}^k, \mathcal{W})$ in (13.8) is replaced by the linear space $\text{Skew}_k(\mathcal{V}^k, \mathcal{W})$ of all *skew* k-multilinear mappings from \mathcal{V}^k to \mathcal{W} .

(4) Given $n \in$, the k-linform-functor Lnf_k , the k-symform-functor Smf_k , the k-skewform-functor Skf_k , all from LIS to LIS. They are defined by

$$\operatorname{Lnf}_k := \operatorname{Ln}_k \circ (\operatorname{Id}, \operatorname{Tr}), \ \operatorname{Smf}_k := \operatorname{Sm}_k \circ (\operatorname{Id}, \operatorname{Tr}), \ \operatorname{Skf}_k := \operatorname{Sk}_k \circ (\operatorname{Id}, \operatorname{Tr}).$$
 (13.10)

Given $\mathcal{V} \in LS$, we have

$$\operatorname{Lnf}_{k}(\mathcal{V}) := \operatorname{Lin}_{k}(\mathcal{V}^{k},), \qquad (13.11)$$

the space of all k-multilinear forms on \mathcal{V}^k . We have

$$\operatorname{Lnf}_{k}(\mathbf{A})\boldsymbol{\omega} := \boldsymbol{\omega} \circ (\mathbf{A}^{-1})^{\times k} \quad \text{for all} \quad \boldsymbol{\omega} \in \operatorname{Lin}_{k}((\operatorname{Dom} \mathbf{A})^{k},)$$
(13.12)

and all $\mathbf{A} \in \text{LIS}$. The formulas (13.11) and (13.12) remain valid if Lin is replaced by Sym or Skew and Lnf by Smf or Skf correspondingly.

When k = 1, we have $Lnf_1 = Smf_1 = Skf_1$ which is called the **duality-functor** and denoted by Dl : LIS \rightarrow LIS.

(5) The **lineon-functor** Ln : LIS \rightarrow LIS. It is defined by

$$\operatorname{Ln} := \operatorname{Lin} \circ \operatorname{Eq}_2. \tag{13.13}$$

We have

$$\operatorname{Ln}(\mathcal{V}) := \operatorname{Lin}(\mathcal{V}, \mathcal{V}) \quad \text{for all} \quad \mathcal{V} \in LS$$
 (13.14)

and

$$\operatorname{Ln}(\mathbf{A})\mathbf{T} := \mathbf{A}\mathbf{T}\mathbf{A}^{-1}$$
 for all $\mathbf{A} \in \operatorname{LIS}$ and $\mathbf{T} \in \operatorname{Ln}(\operatorname{Dom} \mathbf{A})$. (13.15)

It is clear that $\text{Lin}_1 = \text{Ln}_1$, however, $\text{Ln}_1 \neq \text{Ln}!$ Notation?

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W], §3.2) the use of the term "tensor" is limited to tensor functors of the form $\mathbf{T}_s^r := \text{Lin} \circ (\text{Lnf}_s, \text{Lnf}_r) : \text{LIS} \to \text{LIS}$ with $r, s \in$, or to tensor functors that are naturally equivalent to one of this form. Given $\mathcal{V} \in LS$ a member of the linear space $\mathbf{T}_s^r(\mathcal{V})$ is called a "tensor of contravariant order r and covariant order s."

Let a family of tensor functors $(\Phi_i \mid i \in k^{\mathbb{I}})$ and a tensor functor Ψ with Dom $\times_{i \in k^{\mathbb{I}}} \Phi_k = \text{LIS}^k = \text{Dom } \Psi$ be given. We say that a natural assignment $\beta : \times_{i \in k^{\mathbb{I}}} \Phi_k \to \Psi$ is a *k*-linear assignment if, for every $\mathcal{F} \in LS^k$, the mapping

$$\beta_{\mathcal{F}} : \underset{i \in k^{]}}{\times} \Phi_i(\mathcal{F}_i) \to \Psi(\mathcal{F})$$
(13.16)

is k-linear.

The following are examples for bilinear natural assignments.

(6) Given $k \in$, the **alternating assgnment** Alt : $\operatorname{Ln}_k \to \operatorname{Sk}_k$ it assigns each pair $(\mathcal{V}, \mathcal{W}) \in LS^2$ the mapping

$$\operatorname{Alt}_{(\nu, w)} \mathbf{A} := \sum_{\sigma \in \operatorname{Perm} k^{\operatorname{l}}} (\operatorname{sgn} \sigma) \mathbf{A} \circ \operatorname{T}_{\sigma}$$
(13.17)

where Perm $k^{]}$ is the permutation group of $k^{]}$ and T_{σ} is defined as in (11.3), for all $\mathbf{A} \in \operatorname{Lin}_{k}(\mathcal{V}^{k}, \mathcal{W})$.

(7) The **tensor product** tpr : Id × Id \rightarrow Lin \circ (Dl × Id) \circ Sw assigns each pair (\mathcal{V}, \mathcal{W}) $\in LS^2$ the mapping

$$\operatorname{tpr}_{(\nu,w)} : \mathcal{V} \times \mathcal{W} \to \operatorname{Lin}(\mathcal{W}^*, \mathcal{V})$$
 (13.18)

defined by

$$\operatorname{tpr}_{(\mathcal{V},\mathcal{W})}(\mathbf{v},\mathbf{w}) := \mathbf{v} \otimes \mathbf{w} \quad \text{for all} \quad \mathbf{v} \in \mathcal{V} \text{ and } \mathbf{w} \in \mathcal{W}, \tag{13.19}$$

where $\mathbf{v} \otimes \mathbf{w}$ is the tensor product defined according to Def. 1 of Sect. 25, [FDS], with the identification $\mathcal{W} \cong \mathcal{W}^{**}$.

The wedge product wpr : $Id \times Id \rightarrow Lin \circ (Dl \times Id) \circ Sw$ is defined by

$$\operatorname{wpr}_{(\mathcal{V},\mathcal{W})}(\mathbf{v},\mathbf{w}) := \mathbf{v} \wedge \mathbf{w} \quad \text{for all} \quad \mathbf{v} \in \mathcal{V} \text{ and } \mathbf{w} \in \mathcal{W},$$
 (13.20)

where $\mathbf{v} \wedge \mathbf{w}$ is the wedge product defined according to (12.9) of Sect. 12, [FDS], Vol.2, with the identification $\mathcal{W} \cong \mathcal{W}^{**}$.

We now assume that the field relative to which LS and LIS are defined in above is the field of real number. Given $\mathcal{V}, \mathcal{W} \in LS$, the set

$$\operatorname{Lis}(\mathcal{V}, \mathcal{W}) := \left\{ \mathbf{A} \in \operatorname{LIS} \mid \operatorname{Dom} \mathbf{A} = \mathcal{V}, \operatorname{Cod} \mathbf{A} = \mathcal{W} \right\}$$
(13.21)

is then an open subset of the linear space $\operatorname{Lin}(\mathcal{V}, \mathcal{W})$. (See, for example, the Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).

Let a tensor functor Φ be given. For every pair of objects $(\mathcal{V}, \mathcal{W})$ of Dom Φ , we define the mapping

$$\Phi_{(\nu,w)} : \operatorname{Lis}(\nu, W) \to \operatorname{Lis}(\Phi(\nu), \Phi(W))$$
(13.22)

by

$$\Phi_{(\nu,w)}(\mathbf{A}) := \Phi(\mathbf{A}) \quad \text{for all} \quad \mathbf{A} \in \operatorname{Lis}(\mathcal{V}, \mathcal{W}).$$
(13.23)

Indeed, we can view (13.22) as a bilinear assignment from $\text{Lin} = \text{Ln}_1$ to $\text{Lin} \circ (\Phi \times \Phi)$. The one to be used in (13.27)

$$\Phi_{(\nu,\nu)}: \operatorname{Lis}(\mathcal{V}) \to \operatorname{Lis}(\Phi(\mathcal{V}))$$

We say that the tensor functor Φ is **analytic** if $\Phi_{(\nu,w)}$ is an analytic mapping for every pair of objects $(\mathcal{V}, \mathcal{W})$ of Dom Φ . We say that a natural assignment $\alpha : \Phi \to \Psi$ is an **analytic** assignment if the mapping $\alpha_{\mathcal{F}} : \Phi(\mathcal{F}) \to \Psi(\mathcal{F})$ is an analytic mapping for every object \mathcal{F} of Dom Φ . All the tensor functors listed in above are in fact analytic. (The fact that they are of class C^{∞} can easily be inferred from the results of Ch.6 of [FDS]. Proofs that they are analytic can be inferred, for example, from the results that will be presented in Ch.2 of Vol.2 of [FDS].)

Theorem : Let an analytic tensor functor Φ be given and associate with each $\mathcal{V} \in \text{Dom } \Phi$ the mapping

$$\Phi_{\nu}^{\bullet}: \operatorname{Ln}(\mathcal{V}) \to \operatorname{Ln}(\Phi(\mathcal{V}))$$
(13.24)

defined by

$$\Phi_{\nu}^{\bullet} := \nabla_{\mathbf{1}\nu} \Phi_{(\nu,\nu)}. \tag{13.25}$$

(The gradient-notation used here is explained in [FDS], Sect.63.) Then Φ^{\bullet} is a linear assignment from Ln to Ln $\circ \Phi$. We call Φ^{\bullet} the **derivative** of Φ .

Proof: Let a pair of objects $(\mathcal{V}, \mathcal{W})$ of Dom Φ and $\mathbf{A} \in \text{Lis}(\mathcal{V}, \mathcal{W})$ be given. It follows from (13.23), from axiom (F1), and from (12.2) that

$$\Phi_{(\mathcal{W},\mathcal{W})}(\mathbf{ALA}^{-1}) = \Phi(\mathbf{A})\Phi_{(\mathcal{V},\mathcal{V})}(\mathbf{L})\Phi(\mathbf{A})^{-1}$$
(13.26)

for all $\mathbf{L} \in \text{Lis}(\mathcal{V}, \mathcal{V})$. By (13.15) we may write (13.26) as

$$\left(\Phi_{(w,w)} \circ \operatorname{Ln}(\mathbf{A})\right)(\mathbf{L}) = \left(\operatorname{Ln}(\Phi(\mathbf{A})) \circ \Phi_{(v,v)}\right)(\mathbf{L})$$
(13.27)

for all $\mathbf{L} \in \text{Lis}(\mathcal{V}, \mathcal{V})$. Taking the gradient of (13.27) with respect to \mathbf{L} at $\mathbf{L} := \mathbf{1}_{\mathcal{V}}$ yields

$$\Phi^{\bullet}_{\mathcal{W}} \circ \operatorname{Ln}(\mathbf{A}) = (\operatorname{Ln} \circ \Phi)(\mathbf{A}) \circ \Phi^{\bullet}_{\mathcal{V}}.$$
(13.28)

In view of (12.13) it follows that Φ^{\bullet} is a natural assignment from Ln to Ln $\circ \Phi$. The linearity of Φ^{\bullet} follows from the definition of gradient.

We now list the derivatives of a few analytic tensor functors. The formulas given are valid for every $\mathcal{V} \in LS$.

(6) $\operatorname{Ln}_{\mathcal{V}}^{\bullet}: \operatorname{Ln}(\mathcal{V}) \to \operatorname{Ln}(\operatorname{Ln}(\mathcal{V}))$ is given by

$$(\operatorname{Ln}_{\mathcal{V}}^{\bullet}\mathbf{L})\mathbf{M} = \mathbf{L}\mathbf{M} - \mathbf{M}\mathbf{L} \text{ for all } \mathbf{L}, \mathbf{M} \in \operatorname{Ln}(\mathcal{V})$$
 (13.29)

(This formula is an easy consequence of (13.15) and, [FDS] (68.9).).

(7) Let $k \in$ be given. In order to describe

$$(\operatorname{Lnf}_k)^{\bullet}_{\mathcal{V}} : \operatorname{Ln}(\mathcal{V}) \to \operatorname{Ln}(\operatorname{Lin}_k(\mathcal{V}^k,)),$$
 (13.30)

we define, for every $\mathbf{L} \in \operatorname{Ln}(\mathcal{V})$ and every $j \in k^{\mathrm{I}}, D_j(\mathbf{L}) \in (\operatorname{Ln}(\mathcal{V}))^k$ by

$$(D_j(\mathbf{L}))_i := \left\{ \begin{array}{ll} \mathbf{L} & if \ i = j \\ \\ \mathbf{1}_{\mathcal{V}} & if \ i \neq j \end{array} \right\} \quad \text{for all} \quad i \in k^{\mathbb{I}}.$$
(13.31)

We then have

$$((\operatorname{Lnf}_k)^{\bullet}_{\mathcal{V}}\mathbf{L})\boldsymbol{\omega} = -\sum_{j\in k^{]}}\boldsymbol{\omega}\circ D_j(\mathbf{L}) \quad \text{for all} \quad \boldsymbol{\omega}\in \operatorname{Lin}_k(\mathcal{V}^k,)$$
(13.32)

and all $\mathbf{L} \in \operatorname{Ln}(\mathcal{V})$. The formula (13.32) remains valid if Lnf is replaced by Smf or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition (13.25) immediately lead to the following

Chain Rule for Analytic Tensor Functors

Let Φ and Ψ be analytic tensor functors. Then the composite functor $\Psi \circ \Phi$ is also an analytic tensor functor and we have

$$(\Psi \circ \Phi)^{\bullet} = (\Psi^{\bullet} \circ \Phi) \circ \Phi^{\bullet}, \qquad (13.33)$$

where the composite assignments on the right are explained in the end of Sect. 12.

For example, (13.33) shows that, for each $\mathcal{V} \in LS$,

$$(\operatorname{Ln} \circ \operatorname{Ln})^{\bullet}_{\mathcal{V}} : \operatorname{Ln}(\mathcal{V}) \to \operatorname{Ln}(\operatorname{Ln}(\operatorname{Ln}(\mathcal{V})))$$

is given by

$$(\operatorname{Ln} \circ \operatorname{Ln})^{\bullet}_{\nu} = \operatorname{Ln}_{\operatorname{Ln}(\nu)} \operatorname{Ln}_{\nu}^{\bullet}.$$
(13.34)

In view of (13.29.) above, (13.34) gives

$$(((\operatorname{Ln} \circ \operatorname{Ln})^{\bullet}_{\nu} \mathbf{L}) \mathbf{K}) \mathbf{M} = ((\operatorname{Ln}^{\bullet}_{\nu} \mathbf{L}) \mathbf{K} - \mathbf{K} (\operatorname{Ln}^{\bullet}_{\nu} \mathbf{L})) \mathbf{M}$$

= $\mathbf{L} (\mathbf{KM}) - (\mathbf{KM}) \mathbf{L} - \mathbf{K} (\mathbf{LM} - \mathbf{ML})$ (13.35)

for all $\mathcal{V} \in LS$, all $\mathbf{K} \in \operatorname{Ln}(\operatorname{Ln}(\mathcal{V}))$, and all $\mathbf{L}, \mathbf{M} \in \operatorname{Ln}(\mathcal{V})$.

If Φ and Ψ are analytic tensor functors so is $\Pr \circ (\Phi, \Psi)$ and we have

$$(\Pr \circ (\Phi, \Psi))^{\bullet}_{\mathcal{V}} = (\Phi^{\bullet}_{\mathcal{V}} \mathbf{L}) \times \mathbf{1}_{\Psi(\mathcal{V})} + \mathbf{1}_{\Psi(\mathcal{V})} \times (\Phi^{\bullet}_{\mathcal{V}} \mathbf{L})$$
(13.36)

for all $\mathcal{V} \in LS$ and all $\mathbf{L} \in \operatorname{Ln}(\mathcal{V})$.

Let α be an analytic assignment of degree $n \in .$ If we associate with each $\mathcal{V} \in LS$ the mapping $(\nabla \alpha)_{\mathcal{V}} := \nabla(\alpha_{\mathcal{V}})$, the gradient of the mapping $\alpha_{\mathcal{V}}$, then $\nabla \alpha$ is again an analytic assignment of degree n and we have $\mathrm{Dmf}_{\nabla \alpha} = \mathrm{Dmf}_{\alpha}$ and $\mathrm{Cdf}_{\nabla \alpha} = \mathrm{Lin} \circ (\mathrm{Dmf}_{\alpha}, \mathrm{Cdf}_{\alpha})$. We call $\nabla \alpha$ the **gradient** of α .

Let tensor functors Φ_1, Φ_2, Ψ , all of degree $n \in$ but not necessarily analytic, be given. Each bilinear assignment $\beta : \Pr \circ (\Phi_1, \Phi_2) \to \Psi$ is then analytic and its gradient $\nabla \beta : \Pr \circ (\Phi_1, \Phi_2) \to \operatorname{Lin} \circ (\Pr \circ (\Phi_1, \Phi_2), \Psi)$ is given by

$$\left((\nabla \beta)_{\nu} (\mathbf{v}_1, \mathbf{v}_2) \right) (\mathbf{u}_1, \mathbf{u}_2) = \beta_{\nu} (\mathbf{v}_1, \mathbf{u}_2) + \beta_{\nu} (\mathbf{u}_1, \mathbf{v}_2)$$
(13.37)

for all $\mathcal{V} \in LS$, all $\mathbf{v}_1, \mathbf{u}_1 \in \Phi_1(\mathcal{V})$, and all $\mathbf{v}_2, \mathbf{u}_2 \in \Phi_2(\mathcal{V})$.

If α is an analytic assignment of degree $n \in$ and if Φ is any isofunctor from LIS^k to LIS^n with $k \in$, then $\alpha \circ \Phi$ is an analytic assignment of degree k and we have $\nabla(\alpha \circ \Phi) = (\nabla \alpha) \circ \Phi$.

14. Short Exact Sequences

Let a pair (\mathbf{I},\mathbf{P}) of mappings be given such that $\operatorname{Cod}\mathbf{I}=\operatorname{Dom}\mathbf{P}.$ We often write

$$\mathcal{U} \xrightarrow{\mathbf{I}} \mathcal{V} \xrightarrow{\mathbf{P}} \mathcal{W} \quad \text{or} \quad \mathcal{W} \xleftarrow{\mathbf{P}} \mathcal{V} \xleftarrow{\mathbf{I}} \mathcal{U}$$
(14.1)

to indicate that $\mathcal{U} = \text{Dom } \mathbf{I}$, $\mathcal{V} = \text{Cod } \mathbf{I} = \text{Dom } \mathbf{P}$ and $\text{Cod } \mathbf{P} = \mathcal{W}$. If \mathcal{U} , \mathcal{V} and \mathcal{W} are linear spaces and if \mathbf{I} is injective linear mapping, \mathbf{P} is surjective linear mapping with

$$\operatorname{Rng} \mathbf{I} = \operatorname{Null} \mathbf{P},$$

we say that (\mathbf{I}, \mathbf{P}) , or (14.1), is a **short exact sequence** *. In the literature, a short exact sequence is often expressed as

$$\mathbf{0} \longrightarrow \mathcal{U} \stackrel{\mathbf{I}}{\longrightarrow} \mathcal{V} \stackrel{\mathbf{P}}{\longrightarrow} \mathcal{W} \longrightarrow \mathbf{0}.$$

Let a short exact sequence $\mathcal{U} \xrightarrow{\mathbf{I}} \mathcal{V} \xrightarrow{\mathbf{P}} \mathcal{W}$ be given.

Notation: The set of all linear right-inverses of \mathbf{P} is denoted by

$$\operatorname{Riv}(\mathbf{P}) := \{ \mathbf{K} \in \operatorname{Lin}(\mathcal{W}, \mathcal{V}) \mid \mathbf{P}\mathbf{K} = \mathbf{1}_{\mathcal{W}} \},$$
(14.2)

and the set of all linear left-inverses of I is denoted by

 \mathcal{U}

$$\operatorname{Liv}(\mathbf{I}) := \left\{ \left. \mathbf{D} \in \operatorname{Lin}\left(\mathcal{V}, \mathcal{U}\right) \right| \mathbf{DI} = \mathbf{1}_{\mathcal{U}} \right\}.$$
(14.3)

Proposition 1: There is a bijection Λ : $\operatorname{Riv}(\mathbf{P}) \to \operatorname{Liv}(\mathbf{I})$ such that, for every $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$

$$\underset{\mathbf{\Lambda}(\mathbf{K})}{\longleftarrow} \quad \begin{array}{ccc} \mathcal{V} & \longleftarrow & \mathcal{W} \\ & & \mathbf{K} \end{array} \tag{14.4}$$

is again a short exact sequence. We have

$$\mathbf{KP} + \mathbf{I}\Lambda(\mathbf{K}) = \mathbf{1}_{\mathcal{V}}$$
 for all $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$. (14.5)

Proof: It is easily seen that $(\mathbf{K} \mapsto \operatorname{Rng} \mathbf{K})$ is a bijection from $\operatorname{Riv}(\mathbf{P})$ to the set of all supplements of $\operatorname{Null} \mathbf{P} = \operatorname{Rng} \mathbf{I}$ in \mathcal{V} . Also, $(\mathbf{D} \mapsto \operatorname{Null} \mathbf{D})$ is a bijection from $\operatorname{Liv}(\mathbf{I})$ to the set of all supplements of $\operatorname{Rng} \mathbf{I} = \operatorname{Null} \mathbf{P}$ in \mathcal{V} . The mapping $\boldsymbol{\Lambda}$ is the composite of the first of these bijections with the inverse of the second one.

^{*} The term short exact sequence comes from the more general concept of an "exact sequence" which is not needed here.

Let $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ be given. Both \mathbf{KP} and $\mathbf{IA}(\mathbf{K})$ are idempotents with $\operatorname{Rng} \mathbf{KP} = \operatorname{Rng} \mathbf{K}$ and $\operatorname{Rng} \mathbf{IA}(\mathbf{K}) = \operatorname{Rng} \mathbf{I}$. Since $\operatorname{Rng} \mathbf{K}$ and $\operatorname{Rng} \mathbf{I}$ are supplementary in \mathcal{V} , it follows that

$$\mathbf{KP} + \mathbf{I}\mathbf{\Lambda}(\mathbf{K}) = \mathbf{1}_{\mathcal{V}}.\tag{14.6}$$

Since $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ was arbitrary, the assertion follows.

Proposition 2: Riv(**P**) is a flat in Lin(\mathcal{W}, \mathcal{V}) whose direction space is $\{ \mathbf{IL} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U}) \},$ Liv(**I**) is a flat in Lin(\mathcal{V}, \mathcal{U}) whose direction space is $\{ -\mathbf{LP} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U}) \}.$

Proof: Given $\mathbf{K}, \mathbf{K}' \in \operatorname{Riv}(\mathbf{P})$, we have $\mathbf{1}_{\mathcal{W}} = \mathbf{P}\mathbf{K} = \mathbf{P}\mathbf{K}'$ and hence $\mathbf{P}(\mathbf{K} - \mathbf{K}') = \mathbf{0}$. It follows that $\operatorname{Rng}(\mathbf{K} - \mathbf{K}') \subset \operatorname{Null}\mathbf{P} = \operatorname{Rng}\mathbf{I}$ and hence $\mathbf{K} - \mathbf{K}' = \mathbf{IL}$ for some $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$. On the other hand, given $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ and $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$, we have $\mathbf{P}(\mathbf{IL}) = \mathbf{0}$ and hence $\mathbf{1}_{\mathcal{W}} = \mathbf{P}\mathbf{K} = \mathbf{P}(\mathbf{K} + \mathbf{IL})$, which implies $\mathbf{K} + \mathbf{IL} \in \operatorname{Riv}(\mathbf{P})$. These facts show that $\operatorname{Riv}(\mathbf{P})$ is a flat in $\operatorname{Lin}(\mathcal{W}, \mathcal{V})$ with direction space $\{\mathbf{IL} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})\}$.

Similar arguments show that $\operatorname{Liv}(\mathbf{I})$ is a flat in $\operatorname{Lin}(\mathcal{V},\mathcal{U})$ with direction space $\{-\mathbf{LP} \mid \mathbf{L} \in \operatorname{Lin}(\mathcal{W},\mathcal{U})\}.$

Proposition 3: Let \mathbf{K} and \mathbf{K}' in $\operatorname{Riv}(\mathbf{P})$ be given and determine $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ such that $\mathbf{K} - \mathbf{K}' = \mathbf{IL}$. Then

$$\Lambda(\mathbf{K}) - \Lambda(\mathbf{K}') = -\mathbf{L}\mathbf{P}.$$
(14.7)

Proof: It follows from (14.5) that $\mathbf{KP} + \mathbf{IA}(\mathbf{K}) = \mathbf{1}_{\mathcal{V}} = \mathbf{K'P} + \mathbf{IA}(\mathbf{K'})$ and hence

$$\mathbf{I}(\mathbf{\Lambda}(\mathbf{K}) - \mathbf{\Lambda}(\mathbf{K}')) = -(\mathbf{K} - \mathbf{K}')\mathbf{P}.$$

Since $\mathbf{K} - \mathbf{K}' = \mathbf{I}\mathbf{L}$ and \mathbf{I} is injective, we obtain $\mathbf{\Lambda}(\mathbf{K}) - \mathbf{\Lambda}(\mathbf{K}') = -\mathbf{L}\mathbf{P}$.

It follows from the injectivity of \mathbf{I} and from the surjectivity of \mathbf{P} that both the direction space $\{\mathbf{I}\}\operatorname{Lin}(\mathcal{W},\mathcal{U})$ of $\operatorname{Riv}(\mathbf{P})$ and the direction space $\operatorname{Lin}(\mathcal{W},\mathcal{U})\{\mathbf{P}\}$ of $\operatorname{Liv}(\mathbf{I})$ are naturally isomorphic to $\operatorname{Lin}(\mathcal{W},\mathcal{U})$. Hence we may and will consider $\operatorname{Lin}(\mathcal{W},\mathcal{U})$ to be the external translation space (see Conventions and Notations) of both $\operatorname{Riv}(\mathbf{P})$ and $\operatorname{Liv}(\mathbf{I})$. We have

$$\dim \operatorname{Riv}(\mathbf{P}) = (\dim \mathcal{W})(\dim \mathcal{U}) = \dim \operatorname{Liv}(\mathbf{I}).$$
(14.8)

1	C
	h
т	U

Proposition 4: The mapping Λ : Riv(P) \rightarrow Liv(I), as described in Prop. 1, is a flat isomorphism whose gradient $\nabla \Lambda \in \text{Lin}(\text{Lin}(\mathcal{W},\mathcal{U}))$ is $-\mathbf{1}_{\text{Lin}(\mathcal{W},\mathcal{U})}$, so that

$$\nabla \mathbf{\Lambda}(\mathbf{L}) = -\mathbf{L} \quad \text{for all} \quad \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U}).$$
 (14.9)

Proof: It follows from Prop. 2 and the identification $\operatorname{Lin}(\mathcal{W}, \mathcal{U})\{\mathbf{P}\} \cong \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ that $\mathbf{\Lambda} : \operatorname{Riv}(\mathbf{P}) \to \operatorname{Liv}(\mathbf{I})$ is a flat isomorphism with $\nabla \mathbf{\Lambda} = -\mathbf{1}_{\operatorname{Lin}(\mathcal{W}, \mathcal{U})}$.

<u>Notation</u>: Let $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ be given. We define the mapping

$$\Gamma^{\mathbf{K}} : \operatorname{Riv}(\mathbf{P}) \to \operatorname{Lin}(\mathcal{W}, \mathcal{U})$$

by

$$\Gamma^{\mathbf{K}}(\mathbf{K}') := -\Lambda(\mathbf{K})\mathbf{K}' \quad \text{for all} \quad \mathbf{K}' \in \operatorname{Riv}(\mathbf{P}). \tag{14.10}$$

Proposition 5: For every $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$, the mapping $\Gamma^{\mathbf{K}} : \operatorname{Riv}(\mathbf{P}) \to \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ is a flat isomorphism whose gradient $\nabla \Gamma^{\mathbf{K}} \in \operatorname{Lin}(\operatorname{Lin}(\mathcal{W}, \mathcal{U}))$ is $-\mathbf{1}_{\operatorname{Lin}(\mathcal{W}, \mathcal{U})}$; i.e.

$$\nabla \Gamma^{\mathbf{K}}(\mathbf{L}) = -\mathbf{L} \text{ for all } \mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U}).$$

Proof: Let $\mathbf{K}_1, \mathbf{K}_2 \in \operatorname{Riv}(\mathbf{P})$ be given; then we determine $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ such that $\mathbf{K}_1 - \mathbf{K}_2 = \mathbf{IL}$. It follows from (14.10) and $\mathbf{\Lambda}(\mathbf{K})\mathbf{I} = \mathbf{1}_{\mathcal{U}}$ that

$$\Gamma^{\mathbf{K}}(\mathbf{K}_1) - \Gamma^{\mathbf{K}}(\mathbf{K}_2) = -\Lambda(\mathbf{K})(\mathbf{K}_1 - \mathbf{K}_2) = -\Lambda(\mathbf{K})(\mathbf{IL}) = -\mathbf{L}.$$

Since $\mathbf{K}_1, \mathbf{K}_2 \in \operatorname{Riv}(\mathbf{P})$ were arbitrary, the assertion follows.

Proposition 6: We have

$$\mathbf{K} - \mathbf{K}' = \mathbf{I} \Gamma^{\mathbf{K}}(\mathbf{K}')$$

$$\mathbf{\Lambda}(\mathbf{K}) - \mathbf{\Lambda}(\mathbf{K}') = -\Gamma^{\mathbf{K}}(\mathbf{K}')\mathbf{P}$$
(14.11)

and hence $\Gamma^{\mathbf{K}'}(\mathbf{K}) = -\Gamma^{\mathbf{K}}(\mathbf{K}')$ for all $\mathbf{K}, \mathbf{K}' \in \operatorname{Riv}(\mathbf{P})$. Moreover,

$$\boldsymbol{\Gamma}^{\mathbf{K}_1}(\mathbf{K}_3) - \boldsymbol{\Gamma}^{\mathbf{K}_2}(\mathbf{K}_3) = \boldsymbol{\Gamma}^{\mathbf{K}_1}(\mathbf{K}_2)$$
(14.12)

for all $\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3 \in \operatorname{Riv}(\mathbf{P})$.

Proof: In view of (14.5) and (14.10), we have

 $\mathbf{K}-\mathbf{K}'=(\mathbf{K}\mathbf{P}-\mathbf{1}_{\mathcal{V}})\mathbf{K}'=-(\mathbf{I}\,\Lambda(\mathbf{K}))\mathbf{K}'=\mathbf{I}\,\Gamma^{\mathbf{K}}(\mathbf{K}')$

for all $\mathbf{K}', \mathbf{K} \in \operatorname{Riv}(\mathbf{P})$. The second equation $(14.11)_2$ follows from $(14.11)_1$ and Prop. 2 with \mathbf{L} replaced by $\Gamma^{\mathbf{K}}(\mathbf{K}')$.

We observe from (14.11) that

$$I\Gamma^{K_{1}}(K_{2}) = K_{1} - K_{2} = (K_{1} - K_{3}) - (K_{2} - K_{3})$$
$$= I(\Gamma^{K_{1}}(K_{3}) - \Gamma^{K_{2}}(K_{3}))$$

for all $\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3 \in \operatorname{Riv}(\mathbf{P})$. Since I is injective, (14.12) follows.

Remark: We consider $\operatorname{Lin}(\mathcal{W}, \mathcal{U})$ to be the external translation space of $\operatorname{Riv}(\mathbf{P})$. Given $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$, in view of $(14.11)_1$, we have

$$\Gamma^{\mathbf{K}}(\mathbf{K}') = \mathbf{K} - \mathbf{K}' \text{ for all } \mathbf{K}' \in \operatorname{Riv}(\mathbf{P}).$$

Roughly speaking, the flat isomorphism $\Gamma^{\mathbf{K}}$: $\operatorname{Riv}(\mathbf{P}) \to \operatorname{Lin}(\mathcal{W}, \mathcal{U})$ identify $\operatorname{Riv}(\mathbf{P})$ with $\operatorname{Lin}(\mathcal{W}, \mathcal{U})$ by choosing \mathbf{K} as the "zero" (or "orgin").

15. Brackets and Twists

We assume now that linear spaces \mathcal{V}, \mathcal{W} and \mathcal{Z} and a short exact sequence

$$\operatorname{Lin}(\mathcal{W},\mathcal{Z}) \xrightarrow{\mathbf{I}} \mathcal{V} \xrightarrow{\mathbf{P}} \mathcal{W}$$
(15.1)

are given. Recall from Prop. 1 of Sec. 14 that to every linear right-inverse \mathbf{K} of \mathbf{P} there corresponds exactly one linear left-inverse $\Lambda(\mathbf{K})$ of \mathbf{I} such that

-

$$\operatorname{Lin}(\mathcal{W},\mathcal{Z}) \underset{\mathbf{\Lambda}(\mathbf{K})}{\longleftarrow} \mathcal{V} \underset{\mathbf{K}}{\longleftarrow} \mathcal{W}$$
(15.2)

is again a short exact sequence. In view of the identification

$$\operatorname{Lin}\left(\mathcal{W},\operatorname{Lin}\left(\mathcal{W},\mathcal{Z}\right)\right)\cong\operatorname{Lin}_{2}\left(\mathcal{W}^{2},\mathcal{Z}\right)$$
(15.3)

we may identify the external translation space $\operatorname{Lin}(\mathcal{W}, \operatorname{Lin}(\mathcal{W}, \mathcal{Z}))$ of $\operatorname{Riv}(\mathbf{P})$ with $\operatorname{Lin}_2(\mathcal{W}^2, \mathcal{Z})$.

Assumption: From now on, we assume that in this section, a flat \mathcal{F} in Riv(P) with direction space $\{\mathbf{I}\}$ Sym₂ ($\mathcal{W}^2, \mathcal{Z}$) is given. Here Sym₂ ($\mathcal{W}^2, \mathcal{Z}$) is regarded as a subspace of Lin₂ ($\mathcal{W}^2, \mathcal{Z}$) \cong Lin ($\mathcal{W},$ Lin (\mathcal{W}, \mathcal{Z})).

Proposition 1: For every
$$\mathbf{K}_1, \mathbf{K}_2 \in \mathcal{F}$$
,
 $(\mathbf{\Lambda}(\mathbf{K}_1)\mathbf{v})(\mathbf{Pv'}) - (\mathbf{\Lambda}(\mathbf{K}_1)\mathbf{v'})(\mathbf{Pv}) = (\mathbf{\Lambda}(\mathbf{K}_2)\mathbf{v})(\mathbf{Pv'}) - (\mathbf{\Lambda}(\mathbf{K}_2)\mathbf{v'})(\mathbf{Pv})$ (15.4)
holds for all $\mathbf{v}, \mathbf{v'} \in \mathcal{V}$.

18

Proof: Let $\mathbf{K}_1, \mathbf{K}_2 \in \mathcal{F}$ be given. Then we determine $\mathbf{L} \in \operatorname{Sym}_2(\mathcal{W}^2, \mathcal{Z})$ such that $\mathbf{K}_1 - \mathbf{K}_2 = \mathbf{IL}$. It follows from Prop.3 of Sect.14 that

$$(\mathbf{\Lambda}(\mathbf{K}_1)\mathbf{v})(\mathbf{Pv}') - (\mathbf{\Lambda}(\mathbf{K}_2)\mathbf{v})(\mathbf{Pv}') = -\mathbf{L}(\mathbf{Pv},\mathbf{Pv}')$$

holds for all $\mathbf{v}, \mathbf{v}' \in \mathcal{V}$. By interchanging \mathbf{v} and \mathbf{v}' and observing that \mathbf{L} is symmetric, we conclude that (15.4) follows.

Definition: In view of Prop. 1, the \mathcal{F} -bracket $\mathbf{B}_{\mathcal{F}} \in \operatorname{Skw}_2(\mathcal{V}^2, \mathcal{Z})$ can be defined such that

$$\mathbf{B}_{\mathcal{F}}(\mathbf{v}, \mathbf{v}') := (\mathbf{\Lambda}(\mathbf{K})\mathbf{v})(\mathbf{P}\mathbf{v}') - (\mathbf{\Lambda}(\mathbf{K})\mathbf{v}')(\mathbf{P}\mathbf{v}) \quad \text{for all} \quad \mathbf{v}, \mathbf{v}' \in \mathcal{V}$$
(15.5)

is valid for all $\mathbf{K} \in \mathcal{F}$. Using the identification (15.3) we also have

$$\mathbf{B}_{\mathcal{F}} \in \operatorname{Lin}(\mathcal{V}, \operatorname{Lin}(\mathcal{V}, \mathcal{Z})).$$

Proposition 2: The \mathcal{F} -bracket $\mathbf{B}_{\mathcal{F}} \in \operatorname{Lin}(\mathcal{V}, \operatorname{Lin}(\mathcal{V}, \mathcal{Z}))$ satisfies $\mathbf{B}_{\mathcal{F}}(\mathbf{I} \mathbf{M}) = \mathbf{M} \mathbf{P}$ for all $\mathbf{M} \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z}),$ $(\mathbf{B}_{\mathcal{F}} \mathbf{v}) \mathbf{K} = \mathbf{\Lambda}(\mathbf{K}) \mathbf{v}$ for all $\mathbf{K} \in \mathcal{F}$ and all $\mathbf{v} \in \mathcal{V}.$ (15.6)

If dim $\mathcal{Z} \neq 0$, then $\mathbf{B}_{\mathcal{F}}$ is injective; i.e. Null $\mathbf{B}_{\mathcal{F}} = \{\mathbf{0}\}$.

Proof: The equations $(15.6)_1$ and $(15.6)_2$ follow from Definition (15.5) together with $\Lambda(\mathbf{K}) \mathbf{I} = \mathbf{1}_{\text{Lin}(\mathcal{W},\mathcal{Z})}$ and $\mathbf{PK} = \mathbf{1}_{\mathcal{W}}$, respectively.

Let $\mathbf{v} \in \operatorname{Null} \mathbf{B}_{\!\mathcal{F}}$ be given, so that $\mathbf{B}_{\!\mathcal{F}} \mathbf{v} = \mathbf{0}$ and hence

$$\mathbf{0} = (\mathbf{B}_{\mathcal{F}}\mathbf{v}) \mathbf{I}\mathbf{M} = \mathbf{B}_{\mathcal{F}}(\mathbf{v}, \mathbf{I}\mathbf{M}) = -(\mathbf{B}_{\mathcal{F}}(\mathbf{I}\mathbf{M}))\mathbf{v}$$

for all $\mathbf{M} \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z})$. Using $(15.6)_1$, it follows that $-\mathbf{MPv} = \mathbf{0}$ for all $\mathbf{M} \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z})$, which can happen, when dim $\mathcal{Z} \neq 0$, only if $\mathbf{Pv} = \mathbf{0}$ and hence $\mathbf{v} \in \operatorname{Null} \mathbf{P} = \operatorname{Rng} \mathbf{I}$. Thus we may choose $\mathbf{M}' \in \operatorname{Lin}(\mathcal{W}, \mathcal{Z})$ such that $\mathbf{v} = \mathbf{IM}'$ and hence $\mathbf{B}_{\mathcal{F}}(\mathbf{IM}') = \mathbf{0}$. Using $(15.6)_1$ again, it follows that $\mathbf{M}' \mathbf{P} = \mathbf{0}$. Since \mathbf{P} is surjective, we conclude that $\mathbf{M}' = \mathbf{0}$ and hence $\mathbf{v} = \mathbf{0}$. Since $\mathbf{v} \in \operatorname{Null} \mathbf{B}_{\mathcal{F}}$ was arbitrary, it follows that $\operatorname{Null} \mathbf{B}_{\mathcal{F}} = \{\mathbf{0}\}$.

<u>Definition</u>: The \mathcal{F} -twist

$$\mathbf{T}_{\mathcal{F}} : \operatorname{Riv}(\mathbf{P}) \to \operatorname{Skw}_2(\mathcal{W}^2, \mathcal{Z})$$
 (15.7)

is defined by

$$\mathbf{T}_{\mathcal{F}}(\mathbf{K}) := -\mathbf{B}_{\mathcal{F}} \circ (\mathbf{K} \times \mathbf{K}) \quad \text{for all} \quad \mathbf{K} \in \operatorname{Riv}(\mathbf{P}), \quad (15.8)$$

where $\mathbf{B}_{\mathcal{F}}$ is the \mathcal{F} -bracket defined by (15.5).

Proposition 3: For every $\mathbf{H} \in \mathcal{F}$, we have

$$\mathbf{T}_{\mathcal{F}} = \boldsymbol{\Gamma}^{\mathbf{H}} - \boldsymbol{\Gamma}^{\mathbf{H}^{\sim}}$$
(15.9)

where ~ denotes the value-wise switch, so that $\Gamma^{\mathbf{H}}(\mathbf{K})(\mathbf{s},\mathbf{t}) = \Gamma^{\mathbf{H}}(\mathbf{K})(\mathbf{t},\mathbf{s})$ for all $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ and all $\mathbf{s}, \mathbf{t} \in \mathcal{W}$.

Proof: Let $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ and $\mathbf{s}, \mathbf{t} \in \mathcal{W}$ be given. By (15.8) and (15.5), we see that for every $\mathbf{H} \in \mathcal{F}$ we have

$$T_{\mathcal{F}}(\mathbf{K})(\mathbf{s}, \mathbf{t}) = -\mathbf{B}_{\mathcal{F}}(\mathbf{K}\mathbf{s}, \mathbf{K}\mathbf{t})$$

= $-\mathbf{\Lambda}(\mathbf{H})(\mathbf{K}\mathbf{s})\mathbf{P}(\mathbf{K}\mathbf{t}) + \mathbf{\Lambda}(\mathbf{H})(\mathbf{K}\mathbf{t})\mathbf{P}(\mathbf{K}\mathbf{s}).$ (15.10)

We conclude from $\mathbf{P}\mathbf{K} = \mathbf{1}_{\mathcal{W}}$, (15.10) and (14.10) that

$$\mathbf{T}_{\mathcal{F}}(\mathbf{K})(\mathbf{s},\mathbf{t}) = \mathbf{\Gamma}^{\mathbf{H}}(\mathbf{K})(\mathbf{s},\mathbf{t}) - \mathbf{\Gamma}^{\mathbf{H}}(\mathbf{K})^{\sim}(\mathbf{s},\mathbf{t}).$$

Since $\mathbf{s}, \mathbf{t} \in \mathcal{W}$ and $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ were arbitrary, (15.9) follows.

Remark: It is clear from (15.9) and (11.6) that

$$\mathbf{T}_{\mathcal{F}} = 2 \operatorname{Alt} \circ \mathbf{\Gamma}^{\mathbf{H}} \quad \text{for all} \quad \mathbf{H} \in \mathcal{F}.$$

The numerical factor 2 is conventional which reduces numerical factors in calculations.

Proposition 4: The \mathcal{F} -torsion $\mathbf{T}_{\mathcal{F}}$ is a surjective flat mapping whose gradient $\nabla \mathbf{T}_{\mathcal{F}} \in \operatorname{Lin}\left(\operatorname{Lin}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right), \operatorname{Skw}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)\right)$

is given by

$$(\nabla \mathbf{T}_{\mathcal{F}})\mathbf{L} = \mathbf{L}^{\sim} - \mathbf{L} \tag{15.11}$$

for all $\mathbf{L} \in \operatorname{Lin}_2(\mathcal{W}^2, \mathcal{Z})$.

Proof: Let $\mathbf{H} \in \mathcal{F}$ be given. It follows from (15.8) and (15.5)

$$\mathbf{T}_{\mathcal{F}}\left(\mathbf{H}-\frac{1}{2}\mathbf{I}\mathbf{L}\right) = \mathbf{L}$$
 for all $\mathbf{L} \in \operatorname{Skw}_{2}\left(\mathcal{W}^{2}, \mathcal{Z}\right)$

and hence $\mathbf{T}_{\mathcal{F}}$ is surjective.

Prop. 3 together with Prop. 4 in Sec. 14 shows that the \mathcal{F} -torsion $\mathbf{T}_{\mathcal{F}}$ is a flat mapping whose gradient is given by (15.11).

In view of definitions (15.8), (15.5) and (15.11), we have $\mathbf{T}_{\mathcal{F}}^{<}(\{\mathbf{0}\}) = \mathcal{F}$.

റ	ſ	J
4	ſ	J

<u>Definition</u>: We say that $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$ is \mathcal{F} -twist-free (or \mathcal{F} -symmetric) if $\mathbf{T}_{\mathcal{F}}(\mathbf{K}) = \mathbf{0}$, *i.e.* if $\mathbf{K} \in \mathcal{F}$.

 \mathcal{F} is a flat in Riv(**P**) with the (external) direction space Sym₂ ($\mathcal{W}^2, \mathcal{Z}$) and hence

dim
$$\mathbf{T}_{\mathcal{F}}^{<}(\{\mathbf{0}\}) = \dim \operatorname{Sym}_{2}(\mathcal{W}^{2}, \mathcal{Z}) = \frac{n(n+1)}{2}m,$$
 (15.12)

where $n := \dim \mathcal{W}$ and $m := \dim \mathcal{Z}$. The mapping

$$\mathbf{S}_{\mathcal{F}} := \left(\mathbf{1}_{\mathrm{Riv}(\mathbf{P})} + \frac{1}{2} \mathbf{I} \mathbf{T}_{\mathcal{F}} \right) \Big|^{\mathbf{T}_{\mathcal{F}}^{<}(\{\mathbf{0}\})}$$
(15.13)

is the projection of $\operatorname{Riv}(\mathbf{P})$ onto $\mathbf{T}_{\mathcal{F}}^{<}(\{\mathbf{0}\})$ with $\operatorname{Null} \nabla \mathbf{S}_{\mathcal{F}} = \operatorname{Skw}_{2}(\mathcal{W}^{2}, \mathcal{Z})$. If $\mathbf{K} \in \operatorname{Riv}(\mathbf{P})$, we call

$$\mathbf{S}_{\mathcal{F}}(\mathbf{K}) = \mathbf{K} + \frac{1}{2}\mathbf{I}(\mathbf{T}_{\mathcal{F}}(\mathbf{K}))$$

the \mathcal{F} -symmetric part of K.