The Theory of Surface Interactions
by Walter Noll, February 2005 *

0. Introduction

In 1823 Cauchy introduced the concept of the stress tensor, which has been
of central importance in all branches of continuum mechanics ever since. In 1957
I was familiar with the textbook proofs of the existence of the stress tensor, based
on what is usually called the ” Cauchy Stress Principle”. I then proved that this
Principle can itself be derived from more basic hypotheses (see reference [N1]).
Abstract versions of these two results are given as Theorems B and A in Section
6 below.

Very little research on these matters was done between 1957 and 1967. Then
a number of authors reinvestigated these issues in various forms. These are their
names, in alphabetical order:

Fosdick, Gurtin, Martins, Mizel, éilhavjr, Virga, Williams, and Ziemer.
(There may be others that I don’t know about.)

Most of this literature deals with contact forces or heat transfers. Here I
introduce the general concept of interaction, which is an abstraction that can be
applied to force systems, torque systems, heat-transfer systems, entropy-transfer
systems, etc. The concept of a contactor introduced in Sect.5 is an abstraction
that becomes the stress tensor in the case of force systems, the couple-stress
tensor in the case of torque systems, and the heat flux vector in the case heat-
transfer systems.

The treatment given here differs from all previous ones by the use of the
concept of a fit region as defined and analyzed in reference [NV1]. The regions
occupied by a continuous body and its parts are assumed to be fit regions.
The concepts of the reduced contact and directed contact of two such regions, as
defined in Sect.4 below, will be of central importance.

Some of the ideas presented here were discussed in previous papers, in par-
ticular in [N2] and [NV1]. The proofs of most of the statements in Sects.1-4 are
given in these papers and will not be repeated here.

Note: We use the terminology and notation of [N3]. In particular, we use the
following abbreviations:

P*:= the set of all strictly positive real numbers, Dom:= domain,
Clo:= closure, Int:= interior, Bdy:= boundary, Ubli= unit ball,
Usph:= unit sphere, Lin:= space of linear mappings, vol:= volume, ar:= area.

* This paper is based on the lecture that I gave at the meeting of the Soci-
ety for Natural Philosophy in April 1993, which took place at Carnegie Mellon
University on the occasion of my retirement from teaching .
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1. Materially ordered sets

Let a set {2 ordered by < be given. We use the notations
PAQ:=inf{P,Q}, PVQ:=sup{P,Q} forall P,QeQ. (1.1)

Definition 1. We say that ) is materially ordered by < if:

(M;) Q has a maximum ocog and a minimum 0q.
(M2) For every P € Q there is exactly one element of {2, denoted by P¢ and
called the exterior of P, such that
PAP¢ =0 and PVP=o0q. (1.2)
(M3) For all P, Q € Q we have
PAQ =0 = P<Q. (1.3)
(My) P A Q exists for all P, Q € Q.

The following two properties are consequences of (M1) - (My):

(Ms) For all P, Q € Q we have
PAQ =0 < P<Q. ’ (1.4)
(M4) PV Q exists for all P, Q € Q and
PVQ=(P*AQ%°. (1.5)

Theorem 1. If Q is materially ordered, it acquires the structure of a Boolean
algebra relative to V, A, ()¢, g, 00q.

2.Interactions

We assume that a materially ordered set 2 and a linear space W are given.
We use the notation:

(92)sep = {(Pa Q) € 92 ! PAQ= ®Q } s (2'1)
and call its members separate pairs. Given P € ) we put
Qp:={ReQ|P<Q}. (2.2)

The set p is again materially ordered, with P as maximum and R — R¢ AP
as its exterior formation.



Definition 2. A function H : Q — W is said to be additive if
H(PvVvQ)=H(P)+ H(Q) forall (P,Q) € ((22)Sep . (2.3)

A function I : (92)sep —> W is called an interaction in Q if, for all P € ,
both I(- ,P¢): Qp — W and I(P¢,-) : Qp — W are additive.

The resultant Ry : @ — W of a given interaction I in € is defined by
R;(P):=I(P,P°) . (2.4)

We say that the given interaction is skew ( or "obeys the law of action and
reaction”) if

I(Q,P)=—-I(P,Q) forall (P,Q) € (2%)sep - (2.5)

Theorem 2. An interaction is skew if and only if its resultant is additive.

3. Fit regions.

We consider the following problem: What type of subsets of Euclidean
spaces are “fit” to be “regions occupied by a continuous body”?

After some thought, I came to the conclusion, long ago, that the class of
all such fit regions should satisfy the following reqirements:

A fit region should
(a) be an open set (domain of C!- mappings),

(b) have a boundary that is also the boundary of its exterior (no ”hidden”
boundary points),

(c) have an exterior normal at all but "exceptional” boundary points, and the
Integral-Gradient Theorem (Divergence Theorem) should be applicable.

(d) The class of all fit regions should be invariant under whole-space C2-
diffeomorphisms.

(e) The fit regions included in a given one should be materially odered by inclu-
sion.

We consider the following classes:

Ro : regularly open sets. (does not satisfy (c))

Bnb : bounded sets with negligible boundary. (does not satisfy(a),(b),(c))

Fp : sets of finite perimeter. (does not satisfy (a), (b))

Po : polyhedral sets. (does not satisfy (d))

Reg : regular regions as defined in Sect.1 of [NV2]. (does not satisfy (e))

(A set is regularly open if it is the interior of its closure. A subset of a
Euclidean space is negligible if it can be covered by a finite collection of balls

with arbitrarily small total volume. Sets of finite perimeter are defined in Def.4
on p.12 of [NV1].)



Ideally, the class of all fit regions should include all that can possibly imag-
ined by an engineer but exclude those that only an ingenious mathematician can
think of. It is about 30 years ago that I reached the conclusion that there is no
such class. I now believe that the best one can do is use the class of fit regions
proposed in [NV1]:

Fr=RoNnBnbNFp, (3.1)

which satisfies all the requirements.
Theorem 3. Let B € Fr be given and put

Q:=FrB:={PecF |PCB). (3.2)

Then Q) is materially odered by inclusion with fq = @ , coq := B. In this
case, we use the term exterior relative to B and denote it by ( )® rather than
simply ( )¢. For all P, Q € Q we have

P5 =1Int (B\P) , (3-3)
PAQ=PNQ, (3.4)
PVQ=Int Clo(PUQ). (3.5)

4. Reduced boundaries.

We assume that a Euclidean space £ with translation space V and a fit
region P € Fr € are given. Note that the set z+rUblV is the open ball of radius
r € P> and center z € £.

Definition 3. The density function
dp: &€ — [0,1]U{T} (4.1)

(read T as "trash”) of P is defined by

. vol (PN(z+rUbl V . .. .
dp(z) == {hmr—,o v(ol (z( T-UBLY) L) if the limit exists (4.2)
T otherwise.

The essential interior and the essential boundary of P are defined by

Int ,P:={zx €& |dp(z)=1} (4.3)
respectively.
Theorem 4. We have
vol (Bdy ,P) =0, IntP C Int,P, Bdy,P C BdyP . (4.5)
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Given u € UsphV, the open half-space in V determined by u is defined

v H(u) = P*u+ {u}* (4.6)
Definition 4. The half-density function
dup > [0,3] U (T) (4.7)
of P relative to u is defined by
du,p(7) = dpn(e+H@)(T) forall T€f. (4.8)
(see Fig.1)

/uubﬂz[ U

P s Hid

ny-i
Proposition 1. Given x € £, the problem

?u e UsphV such that dyp(z) =0, d_up(z)= % (4.9)

has at most one solution.

Definition 5. The reduced boundary of P is defined by
Rby P := {z € £ | (4.9) has a solution} (4.10)
and the oriented boundary |
nop : RbyP — UsphV (4.11)

of P is defined by
nop(zr) := the solution of (4.9) (4.12)

Roughly speaking, the reduced boundary is obtained from the essential
boundary by omitting all corners, edges, cusps, etc. and including only points
z at which a tangent plane can be defined, with no p(z) the unit vector normal
to it and directed away from P.

We have CloRby P = Bdy P.

For fit regions, one can define an area-measure on the reduced boundary
and the following is valid (see Sect.6 of [NV1]):
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Integral-Gradient Theorem. Let P € Fr&, a finite-dimensional linear space
W, an open subset B of £ with CloP C B and a C'-function h : B — W be
given. Then

/ Vh dvol = / h®nop dar. (4.13)
P Rby P

If W :=V then one can take the value-wise trace of this formula and obtain
the more familiar Divergence Theorem:

/ divh dvol = / h - nop dar. (4.14)
P Rby P

Definition 6. Let P,Q € Fr& with PN Q = ) be given. Then the reduced
contact of P, Q is defined by

Ret (P,Q) :=RbyP N Rby Q. (4.15)
The directed contact from P to Q is defined by
no (p,g) = N0 P|Ret (P,Q) - (4.16)

If Ret (P, Q) = 0, then no (p gy is the empty mapping, also denoted by 0.
It is clear that we have

no (p,0) = —no (g,p) - (4.17)

Proposition 2. Let P,P',Q Q' e Fré with PN Q =0 and P’ N Q' = 0 be
given such that no (p gy = no(ps,g/y . Then (PNP)N(QN Q') =0 and

no (p,g) = no (PNP)N(QNQ’) = NO (P,Q") - (4.18)

Note: The concept of a directed contact generalizes the concept of an
oriented surface.

We assume now that B € Fr& is given and we consider the materially
ordered set Q :=FrB as in (3.2).

Definition 7. The set of all directed contacts for Q is defined by
Dcq = {110 (P,Q) | (Pa Q) € (Qz)sep} . (4'19)

Notation: For functions with codomain Usph), we understand inclusion,
union, and intersection in terms of their graphs. Thus:

nCm <= (DomnC Dommand n=m|pomn) forall n,m € Dc. (4.20)
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Let n € Dcq be given. We denote the set of all directed contacts included
in n by
Dep:={me&Dcg | mCn}. (4.21)

Of course, for every n’ € Dcy, we have Dey C Dey -
Choosing (P, Q) € (2?)sep such that n = no (p, gy, we have

Dcp = {no(g,0) | R€FrB, RCP}. (4.22)

Theorem 5. The order, by inclusion, of the set Dcy is a material order in
the sense of Def.1. The minimum is the empty set and the maximum is n.

Let m,m’ € Dc, be given and put N := Domn ,M := Domm |,
M’ :=Domm’. Then the exterior m® of m is given by

m® = n|pom me (4.23)

with
Domm® = (N \ M)\ (CloMNClo(N\ M)NN) . (4.24)

The meet m A m’ and the join m V m’ are given by

mAm =mNm' =n|pmonm (4.25)

and
mVm' = n|Dom (mAm’) (426)

with
Dom(mV m') = MUM U(CloMNCloM' NN). (4.27)

Outline of proof: We choose (P, Q) € (2%)sep such that n = no(p gy. By
(4.22) one can then determine R and R’ in such a way that m = no (g, g) and
m’ = no (r/,g) have appropriate properties. For example, for the meet mV m’
see Fig.2, where the point z belongs to (Clo MNClo M’NN) but not to MUM'.




Definition 8. We say that a given n € Dcq is plane, and we write
n:= (S,u),

if n is constant with value u and if S := Domn is included in a plane perpen-
dicular to u.

In this case, the members of D¢y, are also all plane and their domains are
subsets of S.

5. Surface interactions

Again, we assume that B € Fr€ is given and we consider the materially
ordered set 2 := FrB as in Thm.3 .

Definition 9. We say that a given interaction I in Q) with values in a given
linear space W is a surface interaction if

ar(Ret (P,Q)) =0 = I(P,Q)=0 forall (P,Q) € (0)sp. (5.1)

Note: Not every contact interaction, as defined in Sect.4 of [NV2], is a
surface interaction. The edge interactions discussed in [NV2] are contact inter-
actions but not surface interactions.

Theorem 6. For every surface interaction I there is exactly one function
C : Dcqg — W such that

C(no(p,g) =1(P,Q) forall (P,Q)€ (Q%)sep - (5.2)
Proof: Let n € Dcq be given and choose (P’,Q') € (9%)sep such that
n = no (p,g1y. Now let (P, Q) € (0*)sep be given such that n = no (p g). Put
P :=Int (P\ (PNP’)). Then P =P"V(PNP’) and (P”,(PNP’)) € (Q?)sep-
(See Fig.3 below.) Hence, by the additivity of I(-, Q) we have ‘
IP,Q)=I(PNP,Q)+I(P" Q). (5.3)
It is easily seen that

no (P, Q) =no P NP, Q) =noP, Q) (5.4)

and Ret (P”, Q) = (. Hence, Since the area of the empty set is zero, it follows
from (5.1) that I(P”, Q) = 0 and hence

I(P,Q) =IPNP, Q). (5.5)
Interchanging the roles of P and P’, we see that
IP,Q)=IPNnP Q). (5.6)
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and hence I(P’, Q) = I(P, Q).
A similar argument shows that I(P’, Q) = I(P’,Q’). Using (5.5) and
(5.6), t follow that I(P’, Q") = I(P, Q) and hence that I(P, Q) depends only on

n =no (P,Q)- |

Fig.3

We say that C is the contact flux associated with I and we have

ar(Domn) =0 = C(n)=0 forall n & Dcgq . (5.7)
Theorem 7. Let n € Dcq be given. Then the restriction
Cn :=C|pc, (5.8)

of the contact flux C to the materially ordered set Dcy, is additive in the sense
of Def.2, i.e. we have

Cn(m Am') =Cp(m)+ Cy(m’) for all (m,m’) e (Dep)2, . (5.9)

sep

Proposition 3. The surface interaction I is skew in the sense of (2.5) if and
only if
C(—n) =—-C(n) forall ne€Dcq. (5.10)

6. Contactors and Proto-contactors.

Let a fit region B and a surface interaction I for Fr B be given as in the
previous section. Also, let a subset I' of Dcq be given.

9



Definition 10. We say that a function
s: B x UsphVY — W (6.1)

is a proto-contactor of I relative to I' if
C(n) :/ s(z,n(x)) dar, forall nel . (6.2)
Domn

Definition 11. We say that a function
S:B— Lin(V,W) (6.3)
is a contactor of I relative to I if
((z,u) — S(z)u) : Bx UsphV — W (6.4)

is a proto-contactor of of I relative to I, so that

C(n) = /D S(z)n(x)) dar, forall neT . (6.5)

In 1823, Cauchy proved, in essence, a theorem of the following form: If I
admits a proto-contactor relative to a suitable class I" and if suitable assumptions
are made then I admits a contactor relative to I'. Cauchy simply assumed the
existence of a proto-contactor. This assumption is often called ”the Cauchy
Stress Principle”. The description of the class I' and the assumptions needed for
the proof of his theorem were quite vague by modern standards.

In 1957 (see Theorem IV on p.275 in [N1]), I proved a theorem of the
following form: If suitable assumptions are made then I admits a proto-contactor
relative to an appropriate class I'. Again, the description of the class I' and
the assumptions needed for the proof of my theorem were not very precise.
One reason was that, at that time, the requisite conceptual infrastructure was
missing.

We will now examine the nature of the conditions that would be appropri-
ate to modern standards.

Conditions:
Given: A surface interaction I with corresponding contact-flux C.

(a) The resultant R; of I, as defined by (2.4), is locally volume-bounded.
More precisely: For every x € B there is M € Q with x € M and there is
k € P* such that

|Ri(P)| < kvol(P) forall PeQpn, (6.6)
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where Q is defined according to (2.2).
(b) I is locally area-bounded. More precisely: For every = € B there is
M € Q with x € M and there is h € P* such that

|I(P, Q)| < h ar(Ret (P, Q))  for all (P, Q) € (Q4)sep - (6.7)

where (Q%/)sep is defined according to (2.1).

(c) For every n € Dcq the additive function Cy : Dey, — W described in
Theorem 7 has a continuous density s, : Domn — W, so that

Cn(m) = / sn(z)dar, for all m € Dcy. (6.8)
Domm

It is easily seen that (c) implies (b). Adding some additional hypotheses
to (b) may insure that a modified (b) implies (c), but it is not clear to me how
such additional hypotheses should be formulated.

Theorem A. If (a) and (c) hold, then I admits a proto-contactor relative to

the class
SDcq :={ n € Dcg | Dom n is a C! — surface } . (6.9)

Proof: Let 2 € B and u € UsphV be given. The plane z + {u}* through x and
perpendicular to u cuts B into two parts, both of which belong to FrB. The
directed contact from one to the other of these two parts is a plane contact of
the form (S, u), where S is included in the plane z + {u}t. By (c), this plane
contact has a density, whose value at x we denote by s(z,u). For every subset
T of S such that (7, u) belongs to Dcq, we then have

C((7T,u) = /[s(:r;, u)dary . (6.10)

Now, for every r € IP*, consider the open half-ball
Cr:=z+rUblVNH(—u) (6.11)

where H(—u) is the open half-space in V defined by —u (see (4.6)).
If r is small enough, then C, is included in B and belongs to set €2 := Fr B.
The oriented boundary of C, is the union of two disjoint directed contacts. One
of these is plane, namely the oriented upper disc (D,, u). The second, denoted by
¢, is the oriented hemispherical part of the boundary. In view of the additivity
properties of the contact flux C, as described in Thm.7, the resultant of I acting
on C,, which is the same as the value of C at the entire oriented boundary of
C., is given by
R;(C,) = C(D¥,u) + C(c,) . (6.12)

Now let n € SDcqg and z € Domn be given and put u := n(z). We
consider the half-ball C, as described above and also a region G, which differs
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from C, in that the upper disc is replaced by an oriented portion m, of the
Cl-surface Domn. It is clear that m, € SDcq and m, C n. We denote the
oriented spherical part of the boundary of G, by g, (see Fig.4).

Dow m,,

For the region G, the equation (6.12) changes to
R1(Gr) = C(m,) + C(g,) . (6.13)
The oriented spherical surfaces ¢, and g, have a portion h,in common. They
are the disjoint unions of h, with portions c¢ and g9, respectively. In view of
the additivity properties of the contact flux C we have

C(e;) = C(h,) + C(cy) , C(gr) = C(h,) + C(g) (6.14)

Subtracting (6.13) from (6.12) and using (6.14), we obtain
C(D},w) — C(m,) = R;(C,) — R1(G;) — C(cf) + C(g?) - (6.15)

Since the volumes of G, and C, are proportional to 73 it follows from (a) that

lim R1(Gr)

1= — 0 = lim 72

im =L (6.16)

Since the C!- surface Domn is tangent to the disc DY, the areas of Domc¢ and
Dom g¢ approach 0 faster than 2 as r approaches 0. Hence it follows from (b)
that

c G
tim S0 _ g = g C&7) (6.17)
r—0 7 r—0 r
We also have D D
i @omm,) . ar(Domm,) (6.18)
r—0  ar(DY¥) 7—0 T2
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Therefore, using (6.16), (6,17), and (6.18), we conslude from (6.15) that

C(m"') — lim C(D‘erl) u) )

r—0 area(Domm,) r—0 772

(6.19)

Applying (6.10) to the case when 7 := D¥, we conclude that the right side of
(6.19) is s(z,u). Applying the equation (6.8) of the condition (c) to the case
when m := m,, we see that the left side of (6.19) is s,(z). Since n € SDcq
and x € Domn were arbitrary, it follows that the function (6.1) is indeed a
proto-contactor when its values are defined as in the beginning of this proof. §

My proof of Theorem IV on p.275 in [N1] used a cylindrical region instead

of a half-ball and hence was more complicated than the proof above.

Theorem B. If I satisfies the condition (a) and admits a continuous proto-
contactor s relative to SDcq, then I admits a continuous contactor relative to
SDCQ.

The traditional proof of this Theorem uses a Cartesian coordinate system.
Since 1956, I have used a coordinate-free proof in my courses on Continuum Me-
chanics at CMU. This proof has been presented in some textbooks, for example
in [T], pp.175-177. The following is an outline of a new and simpler version of
this proof:

Let € B, u € UsphV and linearly independent v,w € {u}* be given.
Put z := v+w and let o € P* be given. Consider the triangle 7 and the prism
shown below.

vt “u
i
AdZ F}ys‘
Put v w 2
a:i= S(.ZL', M)lvl + S(,ZL', m)lwl + S(.’L‘, _H)IZL (62())
and ;
b := (s(z, —u) + s(z, u))ar(7). (6.21)
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Consider the resultant Ry of I acting on the prism. Taking the limit a — 0, and
using (a) as well as the assumed continuity of s we obtaina=Db .
Given 8 € P*, replace v by v ad w by fw. Then a = b is replaced by

fa= b .
Since a = b and since § € P> was arbitrary, we get
a=0=b,

which shows that s(x,-) is the restriction of a linear mapping S(z) € Lin (V, W)
to the unit sphere Usph V. |

Remarks: Note that Theorem A only assures the existence of a proto-contactor
s if (a) and (c) are satisfied. Analyzing the proof, one can conclude that, for
every u € UsphV the restrictions of s(-, u) to plane regions perpendicular to u
are continuous. But this is much less than continuity of s itself. It is not clear
whether the conditions (a) and (c) alone are sufficient to insure the existence of
a continuous proto-contactor.

If the Interaction I does admit a continuous proto-contactor and hence a
contactor by Thm.B, it is clear from (6.5) that

C(—n) =—-C(n) forall n € SDcq . (6.22)

In view of Prop.3, it follows that I is Cl-skew in the sense that (2.5) holds for
all (P, Q) € (22)sep such that Ret (P, Q) is a Cl-surface.

If the conditions (a) and (c) are satisfied but if the resulting proto-contactor
of Thm.A fails to be continuous, it is not clear whether (6.22) remains valid. This
question can only be answered by a proof or a counter-example.

It is also not clear what happens if the Class SDCq, is replaced by a larger
subclass of DCq or DCq itself. However, investigating this issue is likely to
involve sophisticated arguments from geometric measure theory.
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