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1. Simple Semi-liquids

Almost 50 years ago, in 1958, one of us (W.N.) introduced the concept of a simple fluid (see [N1]). It
is based primarily on two ideas:

1) The present stress in a material element is determined by the history of its deformation.
2) The symmetry group of the element is the full unimodular group.

This concept provides a general framework which includes almost all previously proposed mathematical
models for Non-Newtonian fluids as special cases and also, of course, the classical theory of Navier-Stokes
fluids. It turned out that only this general concept, and no special mathematical models, were needed to
analyze the behavior of simple liquids (incompressible simple fluids) in viscometric flows. This analysis
was presented, in detail, in Chapter E of [NLFT], published first in 1965, and in [VF], published in 1966.

The theory of simple liquids could not describe the mechanical behavior of many of the materials
studied by rheologists, for example the phenomena described by what they call “Bingham materials”. Also,
it did not include Ericksen’s Theory of Anisotropic Fluids as a special case. Aware of these shortcomings,
W.N. introduced, in 1972, what he called the New Theory of Simple Materials ([N2]). It is based primarily
on the following ideas:

a) With each material element one associates a State Space. A state, i.e., an element of this space,
determines the present configuration of the element and the present stress in it.

b) Given the initial state of a material element and subjecting it to an arbitrary deformation process,
the final state is determined.

He proved that the old theory of simple materials is a special case of the new one. However, the new
theory gives a framework for plastic behavior of materials that the old one does not. The new theory has not
seen many applications for about 30 years. About 5 years ago, he took the topic up again and introduced
the concept of a simple semi-fluid, which is a simple material, in the new sense, whose symmetry group is
the full unimodular group. (see part [4] of [FC], entitled The Theory of Simple Semi-Liquids, a Conceptual
Framework for Rheology.) It turns out that only this general concept, and no special mathematical models,
are needed to analyze the behavior of simple semi-liquids (incompressible simple semi-fluids) in viscometric
flows. The analysis of viscometric flows, described in [NLFT] and [VF] mentioned above, can be extended
to those semi-liquids. The new theory, however, allows the existence of plugs (regions of constant velocity)
in such flows, while the old theory does not.

The new theory may give a mathematical framework for describing some of the behavior of such
familiar materials as toothpaste, ketchup, mustard, and sour cream. A special case of the new theory is
what W.N. called Nematic Semi-Liquids (see part [5] of [FC]), which in turn includes Ericksen’s Theory of
Anisotropic Fluids (see Sects. 127-129 of [NLFT]) as a special case.

The behavior of simple liquids in viscometric flows is characterized by three functions: the shear stress
function and two normal stress functions. The limit of these functions as the rate of shear goes to zero is
zero. The behavior of simple semi-liquids in viscometric flows is characterized again by these three functions,
but their limits as the rate of shear goes to zero approaches critical values that need not be zero. It is the
critical value of the shear stress that determines the size of possible plugs. The purpose of this paper is to
give explicit procedures for determining the size of plugs for the entire variety of viscometric flows described
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in [VF].1

The critical values of the normal stress functions may lead to a modification of the analysis of the
effects of normal stresses, in particular the climbing in a steady Couette flow and swelling at exit from a
pipe in Poiseuille flow. Such modification will have to be considered in later papers.

Caution:
Viscometric flows may not be achievable in some simple semi-liquids. Certain limiting conditions

must be satisfied for this to be the case. (See Assumptions I, II, III in part [4] of [FC].) The mathematical
treatment given below presume steady motions and idealized boundaries that are infinite or free. An infinite
time may be required to establish a steady flow. Also, the critical values of the stresses mentioned above
need not be the same as yield stresses. It may happen that larger stresses must be applied to initiate a
viscometric flow. The critical stresses determine at what stage a viscometric flow stops when it is gradually
slowed down.

Experimental methods and results:
The statements made in Sect. 23 of [VF] apply here, too. Flows that can be achieved in the laboratory

can be described only approximately by the results given here. The experimenter must consider, for example
“end effects” due to the finite dimensions of the apparatus. The results below that are most likely to be of
interest to experimenters are given in Sections 3(b), 5, 7, 8, and 9.

As in [VF] we always assume that the material adheres to the bounding surfaces, i.e., that there is
no slip. Whether such slip occurs depends not only on the nature of the material, but also on the stickiness
of the bounding surfaces. Hence the analysis of such slips is likely to be very complicated and beyond the
scope of this paper. However, we believe that , in some cases, what looks like a slip is merely the fact that
that most of the motion is in the plug. For example, in Poiseuille flow, the plug may cover 99% of the cross
section of the tube and the actual flow is confined to the remaining 1%. It is then still a flow, not a slip.We
are convinced that this often happens for materials such as toothpaste and ketchup.

We are aware that there are many papers on plugs in the literature of rheology; [CP] is an example.
However, it seems that most if not all of the theoretical treatments in the past assume that the shear stress
function conforms to a special model, such as the models of Bingham, Herschel-Bulkley, or whatever. These
models do not refer to a complete constitutive laws but only to a particular forms of the rate of shear
function. The whole point of this paper is to show that special models are not needed to analyze plugs.
Shear-stress functions should be determined experimentally by using, for example, the formula (8) in Sect.3
(b) or the methods described at the end of Sects. 5 or 7 below. It is a bad idea to assume, a priori, that
these functions conform to any special model.

Experimenters should be encouraged to produce a catalogue of graphs of shear-stress functions for
a variety of materials. This catalogue can then be used to predict the behavior of these materials in any
viscometric flow. We hope that our paper may induce some experimenters to reconcile our results with
experimental data for semi-liquids in which plugs can occur, just as Hershel Markovitz reconciled the results
by Coleman and Noll for liquids in which plugs cannot occur, as described in [VF].

To make things easier for an experimenter, we put the final results for each kind of flow at the end of
each relevant section. We also include the special form of these results for Bingham materials, partly just as
an example and partly to show that they coincide with results already in the literature on rheology.

Mathematical background:
Unfortunately, most physicists are still stuck with an outdated mathematical infrastructure, using

variables, constants, and parameters rather than sets and mappings. (See the essay The Conceptual Infras-
tructure of Mathematics on the website www.math.cmu.edu wn0g/noll.) We believe that the new mathe-
matical infrastructure will prevail even in physics, but it may take another 50 years.

However, in this paper, only very little of this new infrastructure is needed, and it is explained in Sect.2
below. The experimental rheologist need not be familiar with the general theory of simple semi-liquids.

1For Poiseuille flow and Couette flow, such plugs were discussed already at the end of Sect.6 of part [4] of [FC]. The analysis
of some other flows, especially in Sect, 6, depends on some crucial insights by Brian Seguin.
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2. Preliminaries

Mathematical infrastructure:
We use the terminology and notation of contemporary mathematics as described, for example, in

Sect.0 of [FDS]. Here are some particulars:

Writing f : D −→ C means that f is a mapping described by the set D, the domain of f , the set C,
the codomain of f , and a procedure that associates with each x ∈ D a value f(x) ∈ C. We say that f is
injective if , for every y ∈ D, there is at most one x ∈ D such that f(x) = y. We say that f is surjective
if, for every y ∈ D, there is at least one x ∈ D such that f(x) = y. The mapping f is both injective and
surjective if and only if, for every y ∈ D, there is exactly one x ∈ D such that f(x) = y. In that case,
one can define the inverse f← : C −→ D by the procedure which associates with each y ∈ C the only
x := f←(y) ∈ D which satisfies f(x) = y.

The range of a given mapping f : D −→ C is the set Rngf := {f(x) | x ∈ D} of all values of f .
The codomain must be given a priori, but determining the range can be a difficult problem. The mapping
is surjective if and only if Rngf = C. The adjustment f |Rng is obtained from f simply by changing the
codomain to the range. Thus, if f is injective, then f |Rng is invertible.

The set of all real numbers is denoted by RI , the set of all positive reals, including 0, is denoted by
PI , and the set of all strictly (i.e. non-zero) positive reals is denoted by PI ×. 2

The term function is usually used for mappings whose codomain is RI or a subset thereof.
Let f : D −→ C be a function whose domain and codomain are subsets of RI . We say that f is

isotone if , for all x, x′ ∈ D, x < x′ implies f(x) ≤ f(x′). We say that f is strictly isotone if , for all
x, x′ ∈ D, x < x′ implies f(x) < f(x′). The terms antitone and strictly antitone are defined similarly. If
a function is strictly isotone or strictly antitone, it is injective.

If f is a differentiable function we denote its derivative by f•, honoring Newton. 3

The Rate of Shear function:

The determining material function for viscometric flows of simple liquids or semi-liquids is the shear
stress function τ : PI → PI . We assume that τ is strictly isotone and that its limit at ∞ is ∞. Its value at
zero, τo := τ(0), is the critical shear stress. For simple liquids we have τo = 0. For Navier-Stokes liquids
the graph of τ is a straight line whose slope is the viscosity.

For the rest of the paper we will consider a simple semi-liquid for which critical shear stress τo is
strictly positive. If τ is of the form

τ(κ) = τo + ηoκ for all κ ∈ PI × (1)

then it is called a Bingham material. For small values of κ the equation (1) can serve as a good approximation
even for a general simple liquid when τ is continuously differentiable and we put ηo := τ•(0), which may be
called the initial viscosity.

All the considerations of Chapters III and IV of [VF] can be applied here, provided they are modified
to account for the possibility that τo need not be zero.

Our assumptions on τ insure that Rng τ = τo + PI and that the adjustment τ |Rng is invertible. The
rate of shear function λ : PI −→ PI introduced in Sect. 11 of [VF] must be given the following new
definition (see (6.6) and (6.7) of part [4] of [FC]):

λ(S) := (τ |Rng)←(S) if S ∈ τo + PI × , λ(S) := 0 if S ∈ [0, τo], (2)

so that
λ(τ(κ)) = κ for all κ ∈ PI . (3)

It is this function that must be used when dealing with semi-liquids. In the case of a Bingham material (2)
reduces to

λ(S) =
1
ηo

(S − τo) if S ∈ τo + PI × , λ(S) = 0 if S ∈ [0, τo]. (4)
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Fig. 1: Rate of shear function

The graph of λ is illustrated in Fig. 1, with the straight line corresponding to a Bingham material.
In the remainder of this paper, we will make use of the formulas from Sects. 9, 14-19, 21 and 22 of

[VF], which remain valid when λ is given by (2).

3. Flows Without Plugs

(a) Simple Shearing

Consider the situation where the simple semi-liquid is contained between two parallel infinite plates.
Choose a Cartesian coordinate system (x, y, z) so that the lower plate is at x = 0 and the upper plate
is at x = d. Let a force F per unit area be applied to the top plate in the positive y-direction so that
T<xy>(d) = F . Also assume that the sem-liquid adheres to both plates.

In this situation the velocity field is assumed to have the form

v<x> = 0, v<y>(x) = κx, v<z> = 0,

where κ satisfies τ(κ) = T<xy> = F (see (111.6) in [NLFT]). In terms of the rate of shear function λ defined
by (2), this means that v<y> = λ(F )x. Hence, using (2), we obtain v<y> = 0 when F ≤ τo and also the
following result:

Results:
There is no flow if F ≤ τo, and if F > τo then there is flow and v<y>(x) = λ(F )x.

(b) Cone and Plate Flow

2It is useful to consider zero to be a number that is both positive and negative.
3the more common notation f ′ may clash with the use of the prime as a mere distinction mark.
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Consider the situation where the simple semi-liquid is contained between a rigid cone rotating about
its axis with angular velocity Ω1 and a rigid disk of radius R rotating about the same axis with angular
velocity Ω0. Define a spherical coordinate system such that the axis of the cone is the polar axis, the rigid
disk is in the plane determined by z = 0 and the angle between the cone and the disk is α. We assume that
the velocity field has the components

vθ = 0, vφ = ω(r), vr = 0 (5)

and that the boundary conditions

ω(π/2) = Ω0, ω(π/2− α) = Ω1 (6)

are satisfied. It is known that the dynamical equations can not be solved exactly under these conditions (see
[VF] p. 51). However, if one neglects inertia and assumes the angle α is small, in the sense that cos α ≈ 0
and sin α ≈ 1, then most of the results of Sect. 21 of [VF] apply.

Let M be torque necessary to make the cone turn relative to the plate. Define

Mo :=
2π
3
R3τo. (7)

It is not hard to arrive at the following:

Results:
If M ≤Mo the material doesn’t move relative to the cone and plate and hence Ω1 = Ω0.
If M > Mo then the material moves and the torque that must be applied to produce the angular

velocity difference Ω1 − Ω0 is given by the the formula

M =
2π
3
R3τ

(Ω1 − Ω0

α

)
(8)

(c) Torsional Flow

We consider a flow that takes place in a cylindrical region bounded by two parallel circular plates,
each with radius R, separated by a distance d. We define a cylindrical coordinate system such that the
bottom plate is at z = 0, the top plate at z = d and the polar axis passes through the centers of the disks.

Torsional flow between these plates is then assumed have a velocity field whose components are

vz = 0, vθ = ω(z), vr = 0 (9)

and which satisfies the boundary conditions

ω(0) = Ω0, ω(d) = Ω1. (10)

Most of the results of Sect. 22 of [VF] apply and so one obtains, by neglecting inertial forces, that

ω(z) = cz + Ω0 and κ = rc, (11)

where c is a constant.
Let M be the torque applied to the plates designed to make them turn relative to each other and

define Mo as in (7). It is not hard to arrive at the following:

Results:
If M ≤Mo then Ω0 = Ω1 and the material does not move relative to the plates.
If M > Mo the material moves and its velocity is given by equation (22.11) of [VF]. The torque that

must be applied to produce the angular velocity difference Ω1 − Ω0 is given by the the formula

M = 2π
∫ R

0

r2τ
(Ω1 − Ω0

d
r
)
dr (12)
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4. Channel Flow

Consider the steady flow of a column of height h of simple semi-liquid between two infinite parallel
plates. We choose a Cartesian coordinate system so that the two infinite plates are perpendicular to the
x-axis and that the flow is in the direction of the z-axis. Arrange the coordinate system so that one plate is
at x = d and the other one is at x = −d and that the column is bounded by y = 0 and y = h. Assume that
the fluid adheres to the two plates.

Given this information one can solve for the velocity profile. One obtains

v<x> = 0, v<y> = v(x) =
∫ d

x

λ(fξ)dξ, v<z> = 0, (13)

where f is the specific driving force, i.e. the applied force per unit volume in the z-direction. (See Sect. 111
in [NLFT]).

Using (2) one can see that the integrand for v(x) in (13) will be zero if |x| ≤ τo
f . Hence we have the

following:

Results:
There is no flow if f ≤ τo

d .
Assume that f > τo

d . Between the planes defined by

x1 :=
τo
f

and x2 := −τo
f

(14)

the material will have the constant velocity

vp :=
∫ d

x1

λ(fξ)dξ. (15)

Outside of this plug the velocity field is given by

v(x) = v(−x) =
∫ d

x

λ(fξ)dξ for all x ∈ [x1, d]. (16)

Let Q : PI × −→ PI describe the volume discharge, i.e. the volume of material passing through the
channel per unit time, as a function of the driving force that produces the flow. The formula (14.22) of [VF]
reduces to

Q(f) =
2h
f2

∫ df

0

Sλ(S)dS. (17)

Bingham Materials:

In this case, (17) becomes

Q(f) =
h

3ηof2

(
2(df)3 − 3τo(df)2 + τ3

o

)
. (18)

5. Poiseuille Flow

Consider a steady flow through a infinite fixed cylindrical tube of radius R produced by a driving
force in the axial direction. Choose a cylindrical coordinate system such that the z-axis coincides with the
axis of the tube. Finally, choose the positive z-direction so that the driving force is positive. Assuming that
the material adheres to the tube, the results of Sect. 19 of [VF] hold and so the velocity profile is of the form

vr = 0, vz = u(r), vθ = 0 (19)

6



with

u(r) =
∫ R

r

λ(ξf/2)dξ, (20)

where u : [0, R] → PI describes the axial velocity of the flow as a function of the distance from the axis of
the tube and f is the specific driving force, i.e., the driving force per unit volume.

Define
fo :=

2τo
R

and P :=
2τo
f
. (21)

There are two possible situations:

Result:
If f ≤ fo, and hence P ≥ R, then u(r) = 0 for all r ∈ [0, R] and hence the material doesn’t move.
If f > fo, and hence P < R, then the integrand in (20) is 0 for r ∈ [0, P ] and this interval describes

the plug, which is a cylindrical region of radius P moving like a rigid body. The velocity vp of the plug is
given by

vp =
∫ R

P

λ(ξf/2)dξ. (22)

Let Q : f0 + PI × −→ PI describe the volume discharge. It follows from (19.9) of [VF] and (2) that

Q(f) = π

∫ R

P

r2λ(
rf

2
)dr =

8π
f3

∫ Rf
2

τ0

S2λ(S)dS for all f ∈ fo + PI ×. (23)

This formula can be used to express the function λ in terms of the function Q. In fact, we have

λ(S) =
1

4πRS2
Q̄•(

2S
R

) for all S ∈ τo + PI ×, (24)

where Q̄ : fo + PI × −→ PI is defined by

Q̄(f) := f3Q(f) for all f ∈ fo + PI ×. (25)

The function Q may be amenable to determination by experiment. One can then use (24) and (25) to
calculate the rate of shear function λ and hence the shear stress function τ .

Bingham Materials:

If the semi-liquid is a Bingham material then vp can be calculated explicitly with (4) to yield

vp =
f

4ηo
(R− P )2. (26)

Also, (23) can be evaluated with the following result:

Q(f) =
πR4f

8ηo

(
1− 4

3
(
2τo
fR

) +
1
3

(
2τo
fR

)4
)

for all f ∈ fo + PI ×. (27)

This formula is known, in the literature of rheology, as the Buckingham-Reiner equation.

6. Flow Between Concentric Cylinders, General Results.

We consider a steady flow of a semi-liquid between two infinite concentric cylinders of radii R1 and
R2, with R1 < R2. They may rotate about their common axis with angular velocities Ω1 and Ω2 and may
slide in the direction of their axes with velocities U1 and U2, respectively. Also, there may be a driving
force in the axial direction exerted on the material directly, not to be confused with the forces acting on the
cylinders needed to produce the sliding.
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Choose a cylindrical coordinate system in such a way that the z-axis coincides with the axes of the
cylinders and choose the positive z-direction so that the specific driving force f is positive (strictly positive
or zero). The velocities U1 and U2 are positive if the cylinders are sliding in the positive z-direction and
negative otherwise. It is assumed the velocity field has the form

vr = 0, vz = u(r), vθ = ω(r) (28)

relative to these cylindrical coordinates. If both u and ω are non-zero, the flow is helical in the sense that
the stream lines are helices. If u is zero but ω is not, the streamlines are circles. If ω is zero but u is not,
the streamlines are straight lines.

Assuming that the material adheres to the cylinders, we have the boundary conditions

u(R1) = U1, u(R2) = U2, (29)
ω(R1) = Ω1, ω(R2) = Ω2. (30)

The analysis in [VF] (p.37-41) remains valid. The shear stress at the distance r from the axis is given
by (16.8) of [VF], i.e., by the restriction to [R1, R2] of function S : PI × −→ PI defined by

S(r) =

[(
M

2πr2

)2

+
(
b

r
− rf

2

)2
] 1

2

=

[(
M

2πr2

)2

+
b2

r2
− bf +

r2f2

4

] 1
2

, (31)

where M is the torque per unit height required to maintain the relative rotation of the cylinders. The
constant b is to be determined later.

One can solve the dynamical equations (see (16.10) and (16.11) of [VF]) with the above boundary
conditions to obtain:

u(r) =
∫ r

R1

(
b

ξ
− ξf

2

)
λ(S(ξ))
S(ξ)

dξ + U1, (32)

ω(r) =
M

2π

∫ r

R1

λ(S(ξ))
ξ3S(ξ)

dξ + Ω1, (33)

for r ∈ [R1, R2], so that

U := U2 − U1 =
∫ R2

R1

(
b

ξ
− ξf

2

)
λ(S(ξ))
S(ξ)

dξ, (34)

Ω := Ω2 − Ω1 =
M

2π

∫ R2

R1

λ(S(ξ))
ξ3S(ξ)

dξ. (35)

U is the relative velocity of the sliding cylinders in the z-direction, and Ω is the relative angular
velocity of the rotating cylinders.

We say that there is a plug if both u and ω have constant values in some subinterval of [R1, R2]. If
the right end of this interval is R2 we say that the plug adheres to the outer cylinder, if the left end is
R1 we say that the plug adheres to the inner cylinder. Otherwise, we say that the plug is internal.

We now make some case distinctions.

Case 1: f > 0 and M 6= 0

It is clear from (31) that Rng S ⊂ PI × and that the function S is differentiable. An easy calculation
shows that

S•(r) = −S(r)−1

(
M2

2π2r5
+
b2

r3
− rf2

4

)
. (36)

It is easily seen that S• only has one root. Also, by (31), we have

limr→0S(r) =∞ = limr→∞S(r).
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Fig. 2: Shear stress as a function of radius, Case 1

Therefore, the graph of S has the form shown in Fig. 2. The function S has a minimum Sm which is obtained
at rm, so that Sm = S(rm). Since S•(rm) = 0, it follows from (36) that

0 =
M2

2π2r5m
+
b2

r3m
− rmf

2

4
. (37)

If τo > Sm, then there are P1, P2 ∈ PI ×, with P1 < rm < R2, such that S(P1) = S(P2) = τo (see Fig. 2).
Since M 6= 0, it follows from (37) that 4b2

f2 < r4m and hence

4b2

f2
< r4 for all r ∈ rm + PI . (38)

Case 2: f > 0, M = 0 and b > 0

In this case, (31) reduces to

S(r) =
∣∣∣∣ br − rf

2

∣∣∣∣ . (39)

Then S has the minimum Sm = 0 at rm, so that b = r2mf
2 . Then, by (39)

S(r) =
f

2r

∣∣r2m − r2∣∣ . (40)

Hence,

S(r) =


f
2r (r2m − r2) =

(
b
r −

rf
2

)
if r ≤ rm

f
2r (r2 − r2m) = −

(
b
r −

rf
2

)
if rm ≤ r

 (41)
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Fig. 3: Shear stress as a function of radius, Case 2

and

S•(r) =

{
− f2

r2+r2m
r2 if r < rm

f
2
r2+r2m
r2 if rm < r

}
. (42)

The left and right limits of S• at rm are −f and f , respectively. Also, S has the property that
limr→0S(r) = ∞ = limr→∞S(r) and so the graph of S has the form shown in Fig. 3. Since τo > 0, there
are P1, P2 ∈ PI ×, with P1 < rm < P2, such that S(P1) = S(P2) = τo, i.e. by (41)

f

2P1
(r2m − P 2

1 ) = τo =
f

2P2
(P 2

2 − r2m). (43)

A simple calculation from (43) shows that

τo =
f

2
(P2 − P1) and r2m = P1P2 . (44)

Assume now that R1 < rm < R2. Then, by (41)

b

r
− rf

2
:=
{

S(r) if r ∈ [R1, rm]
−S(r) if r ∈ [rm, R2]

}
. (45)

Hence, by (34)

U =
∫ rm

R1

λ(S(r))dr −
∫ R2

rm

λ(S(r))dr. (46)

Case 3: f = 0

In this case, (31) reduces to

S(r) =
(

M2

4π2r4
+
b2

r2

)1/2

. (47)
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Fig. 4: Shear stress as a function of radius, Case 3

It is clear that the function S is strictly antitone and that limr→0S(r) =∞ and limr→∞S(r) = 0. Therefore,
the graph of S has the form shown in Fig. 4. Since τo > 0, there is a exactly one P ∈ PI × such that
S(P ) = τo. Hence, by (47)

b2 = P 2τ2
o −

M2

4π2P 2
. (48)

The following are two results of a general nature.

Theorem 1: Assume that f > 0. If there is a plug attached to the inner cylinder, then U < 0.
Hence, if U ≥ 0, any possible plug must be internal or attached to the outer cylinder.

Proof: Assume there is a plug attached to the inner cylinder. Then we must have τo > Sm and
P1 ≤ R1 < P2 < R2, where P1 and P2 are determined as in Case 1 or Case 2 above, so that S(r) ≤ τo, and
hence λ(S(r)) = 0, for all r ∈ [R1, P2]. It follows from (32) and (33) that u(r) = U1 and ω(r) = Ω1 for all
r ∈ [R1, P2]. From (34) one obtains that

U =
∫ R2

P2

(
b

ξ
− ξf

2

)
λ(S(ξ))
S(ξ)

dξ. (49)

Now, if b ≤ 0, then the integrand of (49) is strictly negative and hence U < 0. If b > 0, it follows from (38)
when M 6= 0 and from (45) when M = 0 that b

r −
rf
2 ≤ 0 for all r ∈ rm + PI . Since rm < P2, it follows that

the integrand in (49) is still strictly negative and hence U < 0.

Theorem 2: Assume that f = 0. Then any possible plug must be attached to the outer cylinder.

11



Proof: Let P be determined as in Case 3 above. If there is a plug, we must have R1 < P < R2. We
have that S(r) ≤ τo, and hence λ(S(r)) = 0, for all r ∈ P + PI ×. It follows from (32) and (33) that u(r) = U2

and ω(r) = Ω2 for all r ∈ [P,R2]. This means that the plug adheres to the outer cylinder.

7. Couette Flow

Couette flow is a flow between concentric cylinders in which the boundary condition (29) is modified
so that

U1 = U2 = 0 and f = 0. (50)

We are in Case 3 of Sect. 6. It follows from (34) that b = 0. The formulas (31), (32) and (33) then reduce to

S(r) =
M

2πr2
, u(r) = 0 and ω(r) =

∫ r

R1

1
ξ
λ(

M

2πξ2
)dξ + Ω1. (51)

It follows from (48) that

P :=
√

M

2πτo
. (52)

It is clear from (52) and (51)1 that there is a plug if and only if R1 < P < R2. Defining

M1 := 2πR2
1τo, M2 := 2πR2

2τo, (53)

this means that there is a plug if and only if M1 < M < M2.

Results:
If M ≤M1, and hence P ≤ R1, then the integrand in (51)3 is always zero and hence ω(r) = Ω1 = Ω2

for all r ∈ [R1, R2]. Thus, the material rotates rigidly at a constant angular velocity.
If M ≥M2, and hence P ≥ R2, then the integrand in (51)3 is never zero so there are no plugs.
If M1 < M < M2, and hence R1 < P < R2, then the integrand in (51)3 is zero for r ∈ [P,R2] and

hence corresponds to a plug attached to the outer cylinder. Using (30)2 it is easy to see that the angular
velocity of the plug is Ω2.

It follows that (35) reduces to

Ω =
M

2π

∫ P

R1

λ(S(ξ))
ξ3S(ξ)

dξ. (54)

Let Ω̂ : [M1,M2] −→ PI describe the angular velocity difference Ω as a function of the torque per unit
height needed to produce the flow. In view of (54), this means that

Ω̂(M) =
∫ M

2πR12

τo

λ(S)
2S

dS for all M ∈ [M1,M2]. (55)

This formula can be used to express the function λ in terms of the function Ω̂. In fact, we have

λ(S) = 4πR1
2SΩ̂•(2πR1

2S) for all S ∈ [τo,
(
R2

R1

)2

τo]. (56)

The function Ω̂ may be amenable to determination by experiment. One can then use (56) to calculate the
rate of shear function λ and hence the shear stress function τ .

Bingham materials:

For such materials, (55) can be made explicit with the result

Ω̂(M) =
τo

2ηo

(
M

2πτoR2
1

− log
M

2πτoR2
1

− 1
)
. (57)

12



8. Concentric Pipe Flow

In this section we consider a steady flow between concentric cylinders in which the boundary conditions
(29) and (30) are of the form

U1 = U2 = Ω1 = Ω2 = 0. (58)

It follows from (35) that M = 0 and hence ω(r) = 0 for all r ∈ [R1, R2]. Of course, if f = 0 there is no flow.
Hence we may assume that f > 0.

The equation (34) reduces to

0 =
∫ R2

R1

(
b

r
− rf

2

)
λ(S(r))
S(r)

dr. (59)

If b ≤ 0 then the integrand in (59) is strictly negative unless S(r) ≤ τo for all r ∈ [R1, R2], which
means, by (2) and (32), that there is no flow.

Therefore, we now assume that b > 0, and so we are in Case 2 of Sect. 6. If R1 < rm < R2 fails
to hold, it follows from (41) that the integrand in (59) is either strictly positive or strictly negative unless
S(r) ≤ τo for all r ∈ [R1, R2], which means, by (2) and (32) again, that there is no flow.

Therefore we now assume that R1 < rm < R2, and hence, by (46), that∫ rm

R1

λ(S(r))dr =
∫ R2

rm

λ(S(r))dr. (60)

Recall that S(r) ≤ τo for all r ∈ [P1, P2]. Thus, there can be a flow only if

R1 < P1 < rm < P2 < R2, (61)

We now assume that (61) holds. By (44)1 we then must have

2τo
f

= P2 − P1 < R2 −R1 . (62)

There is an internal plug described by the interval [P1, P2].
By (32), (58), and (41) we have

u(r) =

{ ∫ r
R1
λ(S(ξ))dξ if r ∈ [R1, P1]∫ R2

r
λ(S(ξ))dξ if r ∈ [P2.R2]

}
(63)

The speed of the plug is given by

vp = u(P1) = u(P2) =
∫ P1

R1

λ(S(r))dr =
∫ R2

P2

λ(S(r))dr . (64)

In view of (41), it follows that

vp =
∫ P1

R1

λ(
f

2r
(r2m − r2))dr =

∫ R2

P2

λ(
f

2r
(r2 − r2m))dr. (65)

The equations (44) and (65) can be used to determine rm, P1 and P2.

Results:
If f ≤ 2τo

R2−R1
then there is no flow.

If f > 2τo
R2−R1

then there is flow and the internal plug is described by the subinterval [P1, P2] of
]R1, R2[.

The equations (44) and (65) can be used to determine rm, P1 and P2.

13



The volume discharge Q(f) as a function of the specific driving force f for this flow is given by (18.7)
in [VF]. In this case, it reduces to

Q(f) = π

(∫ P1

R1

r2λ(
f

2r
(r2m − r2))dr +

∫ R2

P2

r2λ(
f

2r
(r2 − r2m)dr

)
. (66)

Bingham materials:

When the semi-liquid is a Bingham material, the rate of shear function λ is given by (4) and one can
evaluate the integrals in (65) explicitly with the result

vp =
f

4ηo

(
2r2mlog(

P1

R1
)−(P 2

1 −R2
1)− 4τo

f
(P1−R1)

)
=

f

4ηo

(
−2r2mlog(

R2

P2
)+(R2

2−P 2
2 )− 4τo

f
(R2−P2)

)
(67)

Using (44)2, it follows from (67) that

2P1P2log(
R2P1

R1P2
) = (R2

2 −R2
1 + P 2

1 − P 2
2 ) +

4τo
f

(P1 + P2 −R2 −R1) (68)

Using (44)1, we can substitute P2 = P1 + 2τo
f into (68) to obtain an equation for P1 that can be solved

numerically and then also calculate P2.

The formula (65) can be evaluated explicitly to yield, with the help of (44)2,

Q(f) =
πf

ηo

[
1
4
P1P2(P 2

1 + P 2
2 −R2

2 −R2
1)− 1

8
(P 4

1 + P 4
2 −R4

2 −R4
1)− τo

3f
(P 3

1 − P 3
2 +R3

2 −R3
1)
]
. (69)

Remark:
It can be shown that in the limit as R1 goes to infinity, while R2 −R1 and f are kept fixed, the flow

approaches that of a channel flow.

9. Cylindrical Shearing

Here we look at the concentric cylinder case when f = M = 0 but U 6= 0. We are in Case 3 of Sect.
6. and (47) and (48) reduce to

S(r) =
Pτ0
r

. (70)

Therefore, (34) reduces to

U = Û(P ) =
∫ R2

R1

λ(
Pτo
r

)dr. (71)

It is clear that the function Û : PI −→ PI is strictly isotone and surjective. Thus, for any given U , there is
exactly one P such that (70) holds.

Results:
If U ≥ Û(R2) then we must have P ≥ R2, and there is no plug.
If P < R2 then there is a plug attached to the outer cylinder. It is described by the interval [P,R2]

and (71) reduces to

U = Û(P ) =
∫ P

R1

λ(
Pτo
r

)dr. (72)

The force per unit length F necessary to maintain the speed of the outer cylinder is given by

F = 2πS(R2) = 2π
Pτo
R2

. (73)
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Thus, if F is given, (73) can be used to determine P and then (72) to determine U .

Bingham materials:

In this case (72) can be evaluated explicitly with the result

U = Û(P ) =
1
ηo

[
Pτolog(

P

R1
) + τo(R1 − P )

]
. (74)

Remark:

It can be shown that in the limit as R1 goes to infinity, while R2 − R1 and U are kept fixed, the
inequality U ≥ Û(R2) always holds and so the flow approaches that of simple shearing.

Acknowledgment: We are grateful to Guy Berry for helpful remarks and proofreading.

References:

[CP] D.O.A.Cruz and F.T.Pinho: Skewed Poiseuille-Couette flows of SPPT fluids in concentric annuli and
channels, Journal of Non-Newtonian Fluid Mechanics, 121, (2004).

[FC]: W. Noll: Five Contributions to Natural Philosophy, 73 pages, 2004.
Part [4]: The Theory of Simple Semi-Liquids, a Conceptual Framework for Rheology.
Part [5]: Nematic Semi-Liquids.
Published on the website www.math.cmu.edu/∼wn0g/noll.

[FDS] W. Noll.: Finite-Dimensional Spaces, Algebra, Geometry, and Analysis, Vol.I, 393 pages. Martinus
Nijhoff Publishers, 1987.
A corrected version (2005)is published on the website www.math.cmu.edu/∼wn0g/noll .

[N1] W. Noll: A mathematical theory of the mechanical behavior of continuous media, Archive for Rational
Mechanics and Analysis 2, 197-226 (1958).

[N2] W. Noll: A new mathematical theory of simple materials, Archive for Rational Mechanics and Analysis
48, 1-50 (1972).

[NFLT] C.Truesdell and W. Noll: The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics,
Vol. III/3, 602 pages. Springer-Verlag, 1965. Second Edition, 1992. Translation into Chinese, 2000.
Third Edition, 2004.

[VF] B. D. Coleman, H. Markovitz, and W. Noll: Viscometric Flows of Non-Newtonian Fluids, Theory and
Experiment, 130 pages, Springer Tracts in Natural Philosophy 5, Springer-Verlag, 1966.

15


