Finite Dimesional Spaces Vol.II

by Walter Noll (~ 1990)

0. Preliminaries

01 Insertions, switches, symmetric and skew mappings.

Let a family $(A_i \mid i \in I)$ of sets be given. Recall (Sect.04 of Vol.I) that for each family $a \in X(A_i \mid i \in I)$ and each $j \in I$. the mapping

$$(a.j): A_j \longrightarrow \underset{i \in I}{\times} A_i$$

is defined by the rule

$$((a.j)(x))_i := \begin{cases} a_i & \text{if } i \in I \setminus \{j\} \\ x & \text{if } i = j \end{cases} \quad \text{for all } x \in A_j. \tag{01.1}$$

Moreover, when ϕ is a mapping with $\text{Dom}\phi = X(A_i \mid i \in I)$, we use the notation

$$\phi(a.j) := \phi \circ (a.j) : A_j \longrightarrow \operatorname{Cod}\phi.$$
(01.2)

Analogously, for each $a \in X(A_i \mid i \in I)$ and each $(p,q) \in I^2$ with $p \neq q$, we define the mapping

$$a.(p,q): A_p \times A_q \longrightarrow \underset{i \in I}{\times} A_i$$

by

$$((a.(p,q)(x,y))_{i} := \begin{cases} a_{i} & \text{if } i \in I \setminus \{p,q\}, \\ x & \text{if } i = p, \\ y & \text{if } i = q \end{cases}$$
(01.3)

for all $(x,y) \in A_p \times A_q$. Moreover, when ϕ is a mapping with $\text{Dom}\phi = X(A_i \mid i \in I)$, we use the notation

$$\phi(a.(p,q)) := \phi \circ (a.(p,q)) : A_p \times A_q \longrightarrow \operatorname{Cod}\!\phi, \tag{01.4}$$

so that

$$\phi(a.(p,q))(a_p,a_q) = \phi(a) \quad \text{for all } a \in \underset{i \in I}{\times} A_i.$$
(01.5)

Assume now that a subset J of I and $a \in X(A_i \mid i \in I)$ or $a \in X(A_i \mid i \in I \setminus J)$ are given. We define the mapping

$$(a.J): \times (A_i \mid i \in J) \longrightarrow \times (A_i \mid i \in I)$$

by

$$((a.J)(b))_i := \begin{cases} a_i & \text{if } i \in I \setminus J \\ b_i & \text{if } i \in J \end{cases} \text{ for all } b \in X(A_i \mid i \in J).$$
(01.6)

If ϕ is a mapping with $\text{Dom}\phi = X(A_i \mid i \in I)$ we write $\phi(a.J) := \phi \circ (a.J)$, in analogy to (01.2) and (01.4).

The mappings defined by (01.2), (01.3), and (01.6) are called **insertion mappings**. They are related by $(a.j) = (a.\{j\}) = (a|_{I \setminus \{j\}} \cdot \{j\})$ when $j \in I$ and $(a.(p,q)) = (a.\{p,q\}) = (a|_{I \setminus \{p,q\}} \cdot \{p,q\})$ when $p,q \in I$ with $p \neq q$. From now on we assume that a set S, an index set I, and a linear space \mathcal{W}

From now on we assume that a set S, an index set I, and a linear space \mathcal{W} are given. Given any family $a \in S^I$ and given $(p,q) \in I^2$ with $p \neq q$, we use the notation

$$a^{\sim(p,q)} := (a.(p,q))(a_q, a_p) \in S^I.$$
 (01.7)

Roughly, $a^{\sim(p,q)}$ is obtained from *a* by switching the *p*-term with the *q*-term and hence the operation $\sim(p,q)$ is called a **switch**. We assume now that a mapping $\mathbf{M}: S^I \longrightarrow \mathcal{W}$ is given. We define $\mathbf{M}^{\sim(p,q)}: S^I \longrightarrow \mathcal{W}$ by

$$\mathbf{M}^{\sim(p,q)}(a) := \mathbf{M}(a^{\sim(p,q)}) \text{ for all } a \in S^{I}.$$
 (01.8)

Definition 1. The mapping $\mathbf{M}: S^I \longrightarrow \mathcal{W}$ is said to be symmetric if

$$\mathbf{M}^{\sim(p,q)} = \mathbf{M} \text{ for all } (p,q) \in I \text{ with } p \neq q; \tag{01.9}$$

it is said to be **skew** if

$$\mathbf{M}^{\sim(p,q)} = -\mathbf{M} \text{ for all } (p,q) \in I \text{ with } p \neq q.$$
(01.10)

If the given mapping $\mathbf{M}: S^I \longrightarrow \mathcal{W}$ is symmetric [skew], so is the mapping $(\mathbf{M}.J): S^J \longrightarrow \mathcal{W}$ for every subset J of I.

We now consider the case when $I := k^{]}$ for some $k \in \mathbb{N}$. Recall the abbreviation $S^{k} := S^{k^{]}}$ (see Sect.02 of Vol.I). The following criterion is clear from Def.1.

Proposition 1. A given mapping $\mathbf{M} : S^k \longrightarrow \mathcal{W}$ is symmetric [skew] if and only if

$$\mathbf{M}^{\sim(p,p+j)} = \mathbf{M} \quad [\mathbf{M}^{\sim(p,p+j)} = -\mathbf{M}]$$
(01.11)

for all $p, j \in (k-1)^{]}$ with $p+j \leq k$.

The following gives a much weaker sufficient condition.

Proposition 2. If a given mapping $\mathbf{M}: S^k \longrightarrow \mathcal{W}$ satisfies

$$\mathbf{M}^{\sim(p,p+1)} = \mathbf{M} \quad [\mathbf{M}^{\sim(p,p+1)} = -\mathbf{M}] \text{ for all } p \in (k-1)^{]}$$
 (01.12)

then it is symmetric [skew].

Proof: First we note that

$$a^{\sim(p,q+1)} = \left(\left(\left(a^{\sim(q,q+1)} \right)^{\sim(p,q)} \right)^{\sim(q,q+1)} \right)$$
(01.13)

holds for all $a \in S^k$ and $p, q \in (k-1)^{]}$ with p < q, as is easily verified from the definition (01.7).

We now assume that (01.12) holds. Let $p \in (k-1)^{j}$ be given. We will show, by induction over j, that (01.11) is valid for this given p. For j := 1 (01.11) reduces to (01.12). Let $j \in (k-p-1)^{j}$ be given and assume that (01.11) is valid for this given j. Let $a \in S^{k}$ be given. We then have, by (01.8) and (01.13),

$$\begin{split} \mathbf{M}^{\sim (p,p+j+1)}(a) &= \mathbf{M}(a^{\sim (p,p+j+1)}) = \mathbf{M}(((a^{\sim (p+j,p+j+1)})^{\sim (p,p+j)})^{\sim (p+j,p+j+1)}) \\ &= \mathbf{M}^{\sim (p+j,p+j+1)}((a^{\sim (p+j,p+j+1)})^{\sim (p,p+j)}) \end{split}$$

Using (01.12) with p replaced by p + j and then using (01.8) again, we find that

$$\mathbf{M}^{\sim (p,p+j+1)}(a) = \pm \mathbf{M}((a^{\sim (p+j,p+j+1)})^{\sim (p,p+j)}) = \pm \mathbf{M}^{\sim (p,p+j)}(a^{\sim (p+j,p+j+1)}).$$

Using the induction hypothesis we obtain

$$\mathbf{M}^{\sim (p,p+j+1)}(a) = \mathbf{M}(a^{\sim (p+j,p+j+1)}) = \mathbf{M}^{\sim (p+j,p+j+1)}(a).$$

(The minus sign of \pm applies to the condition (01.12) in brackets.)

Using (01.12) again with p replaced by p + j we conclude that

$$\mathbf{M}^{\sim(p,p+j+1)}(a) = \pm \mathbf{M}(a),$$

which shows that (01.11) is valid with j replaced by j + 1, completing the induction.

Let a mapping $f := D \longrightarrow C$ and an index set I be given. Recall (see Sect.04 of Vol.I) that the cross-power $f^{\times I} : D^I \longrightarrow C^I$ is defined by

$$f^{\times I}(x) := (f(x_i) \mid i \in I) \quad \text{for all} \quad x \in D^I.$$
(01.14)

For each $k \in \mathbb{N}$ we use the abbreviation $f^{\times k} := f^{\times k^{l}}$.

Now let, in addition, a mapping $\mathbf{M} : C^I \longrightarrow \mathcal{W}$ be given. If \mathbf{M} is symmetric [skew], so is $\mathbf{M} \circ f^{\times I}$.

02 Multilinear mappings.

Definition 1. Let a family of linear spaces $(\mathcal{V}_i \mid i \in I)$ and a linear space \mathcal{W} be given. We say that the mapping

$$\mathbf{M}: \underset{i \in I}{\times} \mathcal{V}_i \longrightarrow \mathcal{W}$$
(02.1)

is **multilinear** if, for every $\mathbf{f} \in X(\mathcal{V}_i \mid i \in I)$ and every $j \in I$, the mapping $\mathbf{M}(\mathbf{f}.j) : \mathcal{V}_j \longrightarrow \mathcal{W}$ is linear, so that $\mathbf{M}(\mathbf{f}.j) \in \operatorname{Lin}(\mathcal{V}_j, \mathcal{W})$. The set of all multilinear mappings from $X(\mathcal{V}_i \mid i \in I)$ to \mathcal{W} will be denoted by $\operatorname{Lin}_I(X(\mathcal{V}_i \mid i \in I), \mathcal{W})$.

If the mapping (02.1) is multilinear and if $(p,q) \in I^2$ with $p \neq q$ is given, then $\mathbf{M}(\mathbf{f}.(p,q)) : \mathcal{V}_p \times \mathcal{V}_q \longrightarrow \mathcal{W}$ is bilinear for each $\mathbf{f} \in \mathcal{X}(\mathcal{V}_i \mid i \in I)$.

The following three results generalize Props.1, 3, and 4 of Sect.24 of Vol.I.

Proposition 1. $\text{Lin}_I(X(\mathcal{V}_i \mid i \in I), \mathcal{W})$ is a subspace of $\text{Map}(X(\mathcal{V}_i \mid i \in I), \mathcal{W})$.

If $I := \emptyset$, then $\times (\mathcal{V}_i \mid i \in I) = \{\emptyset\}$ and $\operatorname{Lin}_{\emptyset}(\{\emptyset\}, \mathcal{W}) = \operatorname{Map}(\{\emptyset\}, \mathcal{W})$, which we identify with \mathcal{W} . If #I = 1, then $\operatorname{Lin}_I(\mathcal{V}^I, \mathcal{W}) = \operatorname{Lin}(\mathcal{V}^I, \mathcal{W})$, which we usually identify with $\operatorname{Lin}(\mathcal{V}, \mathcal{W})$, especially when $I := 1^{]}$. If #I > 1, we have

$$\operatorname{Lin}_{I}(X(\mathcal{V}_{i} \mid i \in I), \mathcal{W}) \cap \operatorname{Lin}(X(\mathcal{V}_{i} \mid i \in I), \mathcal{W}) = \{\emptyset\}.$$

Proposition 2. The composite of a multilinear mapping with a linear mapping is again multilinear. More precisely, given a family of linear spaces $(\mathcal{V}_i \mid i \in I)$, given linear spaces \mathcal{W} and \mathcal{W}' , and given a multilinear mapping $\mathbf{M} \in \operatorname{Lin}_I(\times(\mathcal{V}_i \mid i \in I), \mathcal{W})$ and a linear mapping $\mathbf{L} \in \operatorname{Lin}(\mathcal{W}, \mathcal{W}')$, we have $\mathbf{LM} \in \operatorname{Lin}_I(\times(\mathcal{V}_i \mid i \in I), \mathcal{W}')$.

Proposition 3. The composite of the cross-product of a family of linear mappings with a multilinear mapping is again multilinear. More precisely, given families of linear spaces $(\mathcal{V}_i \mid i \in I)$ and $(\mathcal{V}'_i \mid i \in I)$, given a linear space \mathcal{W} and, for each $i \in I$, a linear mapping $\mathbf{L}_i \in \operatorname{Lin}(\mathcal{V}_i, \mathcal{V}'_i)$, and given a multilinear mapping $\mathbf{M} \in \operatorname{Lin}_I(\times (\mathcal{V}'_i \mid i \in I), \mathcal{W})$, we have $\mathbf{M} \circ \times (\mathbf{L}_i \mid i \in I) \in \operatorname{Lin}_I(\times (\mathcal{V}_i \mid i \in I), \mathcal{W})$.

From now on we assume that an index set I and linear spaces \mathcal{V} and \mathcal{W} are given. The set of all multilinear mappings from \mathcal{V}^I to \mathcal{W} that are also symmetric [skew] in the sense of Def.1 of Sect.01 will be denoted by $\operatorname{Sym}_I(\mathcal{V}^I, \mathcal{W})$ [Skew $_I(\mathcal{V}^I, \mathcal{W})$]. If $I := k^{]}$ for some $k \in \mathbb{N}$, we use the abbreviations

$$\operatorname{Lin}_{k}(\mathcal{V}^{k},\mathcal{W}) := \operatorname{Lin}_{k^{]}}(\mathcal{V}^{k^{]}},\mathcal{W}),$$

 $\operatorname{Sym}_{k}(\mathcal{V}^{k},\mathcal{W}) := \operatorname{Sym}_{k^{]}}(\mathcal{V}^{k^{]}},\mathcal{W}), \quad \operatorname{Skew}_{k}(\mathcal{V}^{k},\mathcal{W}) := \operatorname{Skew}_{k^{]}}(\mathcal{V}^{k^{]}},\mathcal{W}), \quad (02.2)$

which are consistent with Def.5 of Sect.24 of Vol.I.

The following result is an immediate consequence of Def.1 of Sect.01.

Proposition 4. Sym_I($\mathcal{V}^{I}, \mathcal{W}$) and Skew_I($\mathcal{V}^{I}, \mathcal{W}$) are subspaces of Lin_I($\mathcal{V}^{I}, \mathcal{W}$). If #I = 0 or 1 then Sym_I($\mathcal{V}^{I}, \mathcal{W}$) = Skew_I($\mathcal{V}^{I}, \mathcal{W}$) = Lin_I($\mathcal{V}^{I}, \mathcal{W}$). If $\#I \ge 2$, then Sym_I($\mathcal{V}^{I}, \mathcal{W}$) is disjunct from Skew_I($\mathcal{V}^{I}, \mathcal{W}$).

Pitfall: Prop.7 of Sect.24 of Vol.I states, in effect, that $\operatorname{Sym}_{I}(\mathcal{V}^{I}, \mathcal{W})$ and $\operatorname{Skew}_{I}(\mathcal{V}^{I}, \mathcal{W})$ are actually supplementary in $\operatorname{Lin}_{I}(\mathcal{V}^{I}, \mathcal{W})$ when #I = 2. They are not supplementary when #I > 2, $\dim \mathcal{V} > 1$, and $\dim \mathcal{W} > 2$.

Given $(p,q) \in I$ with $p \neq q, \mathbf{f} \in \mathcal{V}^I$, and $\mathbf{M} \in \operatorname{Lin}_I(\mathcal{V}^I, \mathcal{W})$ it is clear that $\mathbf{M}(\mathbf{f}.(p,q)) \in \operatorname{Lin}_2(\mathcal{V}^2, \mathcal{W})$ and that

$$(\mathbf{M}(\mathbf{f}.(p,q)))^{\sim}(\mathbf{f}_p,\mathbf{f}_q) = \mathbf{M}^{\sim(p,q)}(\mathbf{f}), \qquad (02.3)$$

where the switch on the left is defined according to (24.4) of Vol.I and the switch on the right according to (01.8) and (01.7). Using this fact, we obtain **Proposition 5.** A given $\mathbf{M} \in \operatorname{Lin}_{I}(\mathcal{V}^{I}, \mathcal{W})$ is symmetric [skew] if and only if

$$\mathbf{M}(\mathbf{f}.(p,q)) \in \operatorname{Sym}_2(\mathcal{V}^2,\mathcal{W}), \quad [\mathbf{M}(\mathbf{f}.(p,q)) \in \operatorname{Skew}_2(\mathcal{V}^2,\mathcal{W})]$$

for all $\mathbf{f} \in \mathcal{V}^I$ and all $(p,q) \in I$ with $p \neq q$.

In the case when $I = k^{j}$ for a given $k \in \mathbb{N}$, one can modify Prop.5 in the following manner.

Proposition 6. A given $\mathbf{M} \in \operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W})$ is symmetric [skew] if and only if

$$\mathbf{M}(\mathbf{f}.(p,p+1)) \in \operatorname{Sym}_2(\mathcal{V}^2,\mathcal{W}), \quad [\mathbf{M}(\mathbf{f}.(p,p+1)) \in \operatorname{Skew}_2(\mathcal{V}^2,\mathcal{W})]$$

for all $\mathbf{f} \in \mathcal{V}^k$ and all $p \in (k-1)^{]}$.

The proof of Prop.6 is immediate from Prop.2 of Sect.01.

Proposition 7. For any given $\mathbf{M} \in \operatorname{Skew}_{I}(\mathcal{V}^{I}, \mathcal{W})$ and any given linearly dependent $\mathbf{f} \in \mathcal{V}^{I}$ we have $\mathbf{M}(\mathbf{f}) = \mathbf{0}$.

Proof: It follows from, Prop.1 of Sect.15 of Vol.I that we may choose $\lambda \in (\mathbf{R}^{(I)})^{\times}$ such that $\ln \mathbf{c}_{\mathbf{f}} \lambda = \sum (\lambda_i \mathbf{f}_i \mid i \in I) = \mathbf{0}$. Since $\lambda \neq 0$, we may choose $j \in I$ such that $\lambda_j \neq 0$. It follows that

$$\mathbf{f}_j = -\frac{1}{\lambda_j} \sum_{i \in I \setminus \{j\}} \lambda_i \mathbf{f}_i. \tag{02.4}$$

Since **M** is multilinear and hence $\mathbf{M}(\mathbf{f},j): \mathcal{V} \longrightarrow \mathcal{W}$ linear, we conclude that

$$\mathbf{M}(\mathbf{f}) = \mathbf{M}(\mathbf{f}.j)(\mathbf{f}_j) = -\frac{1}{\lambda_j} \sum_{i \in I \setminus \{j\}} \lambda_i \mathbf{M}(\mathbf{f}.j)(\mathbf{f}_i).$$
(02.5)

Since $\mathbf{M}(\mathbf{f}.j)(\mathbf{f}_i) = \mathbf{M}(\mathbf{f}.(j,i))(\mathbf{f}_i,\mathbf{f}_i)$ and since $\mathbf{M}(\mathbf{f}.(j,i)) \in \operatorname{Skew}_2(\mathcal{V}^2,\mathcal{W})$ for all $i \in I \setminus \{j\}$ by Prop.5 above, we conclude from Prop.5 of Sect.24 of Vol.I that $\mathbf{M}(\mathbf{f}.j)(\mathbf{f}_i) = 0$ for all $i \in I \setminus \{j\}$ and hence from (02.5) that $\mathbf{M}(\mathbf{f}) = 0$.

Proposition 8. Let $\mathbf{M} \in \operatorname{Lin}_{I}(\mathcal{V}^{I}, \mathcal{W})$ be given. Then \mathbf{M} is skew if and only if $\mathbf{M}(\mathbf{f}) = 0$ for all $\mathbf{f} \in \mathcal{V}^{I}$ that fail to be injective, i.e., have repeated terms.

Proof: The "only if" part is a direct consequence of Prop.7 above and Prop.3 of Sect.15 of Vol.I.

To prove the "if" part, assume that $\mathbf{M}(\mathbf{f}) = 0$ for all non-injective $\mathbf{f} \in \mathcal{V}^I$. Let $\mathbf{g} \in \mathcal{V}^I$ and $(p,q) \in I^2$ with $p \neq q$ be given. For every $\mathbf{u} \in \mathcal{V}$, $\mathbf{f} := (\mathbf{g}.(p,q))(\mathbf{u},\mathbf{u})$ is then non-injective because $\mathbf{f}_p = \mathbf{f}_q = \mathbf{u}$. Hence we have $\mathbf{M}((\mathbf{g}.(p,q))(\mathbf{u},\mathbf{u})) = 0$ for every $\mathbf{u} \in \mathcal{V}$. By Prop.5 of Sect.24 of Vol.I it follows that $\mathbf{M}(\mathbf{g}.(p,q)) \in \mathrm{Skew}_2(\mathcal{V}^2,\mathcal{W})$. Since $\mathbf{g} \in \mathcal{V}^I$ and $(p,q) \in I^2$ with $p \neq q$ were arbitrary, it follows from Prop.5 above that $\mathbf{M} \in \mathrm{Skew}_I(\mathcal{V}^I,\mathcal{W})$.

In the case when $I = k^{j}$ for a given $k \in \mathbb{N}$, one can modify Prop.7 in the following manner.

Proposition 9. Let $\mathbf{M} \in \operatorname{Lin}_k(\mathcal{V}^k, \mathcal{W})$ be given. Then \mathbf{M} is skew if and only if $\mathbf{M}(\mathbf{f}) = 0$ for all $\mathbf{f} \in \mathcal{V}^k$ that have adjacent repeated terms in the sense that $\mathbf{f}_j = \mathbf{f}_{j+1}$ for some $j \in (k-1)^{]}$.

The proof of Prop.9 is analogous to that of Prop.8 except that Prop.6 rather than Prop.5 is used in it.

For later use we record here a generalization to multilinear mappings of the general distributive law (07.19) of Vol.I:

Proposition 10. Let $\mathbf{M} \in \operatorname{Lin}_{I}(\mathcal{V}^{I}, \mathcal{W})$ be given. Then

$$\mathbf{M}(\mathbf{f} + \mathbf{g}) = \sum_{J \in \text{Sub}I} \mathbf{M}(\mathbf{f}|_{I \setminus J} . J)(\mathbf{g}|_J) \text{ for all } \mathbf{f}, \mathbf{g} \in \mathcal{V}^I.$$
(02.6)

Given $j, k \in \mathbb{P}^{\times}$ it is often useful to use the identification

$$\mathcal{V}^j \times \mathcal{V}^k \cong \mathcal{V}^{j+k} \tag{02.6}$$

by identifying a given pair (\mathbf{x}, \mathbf{y}) of list $\mathbf{x} \in \mathcal{V}^j$, $\mathbf{y} \in \mathcal{V}^k$ with a single list in \mathcal{V}^{j+k} defined by concatenation in the sense that

$$(\mathbf{x}, \mathbf{y})_i := \begin{cases} x_i & \text{if } i \in j^{]} \\ y_{i-j} & \text{if } i \in (j+1)..(j+k) \end{cases} \quad \text{for all } i \in (j+k)^{]} .$$
(02.7)

Also it is often useful to use the identification

$$\operatorname{Lin}_{j}(\mathcal{V}^{j}, \operatorname{Lin}_{k}(\mathcal{V}^{k}, \mathcal{W}) \cong \operatorname{Lin}_{k+j}(\mathcal{V}^{j+k}, \mathcal{W})$$
(02.8)

with the following precaution: If **M** belongs to the right side of (02.8), then the corresponding element on the left side of (02.8) will be denoted by $\mathbf{M}_{\langle j \rangle}$. The two are related by

$$\mathbf{M}(\mathbf{x}, \mathbf{y}) = \mathbf{M}_{\langle j \rangle}(\mathbf{x})(\mathbf{y}) \quad \text{for all} \quad \mathbf{x} \in \mathcal{V}^j \ , \mathbf{y} \in \mathcal{V}^k \ . \tag{02.9}$$

If **M** belongs to the left side of (02.8), then the corresponding element on the right side of (02.8) will be denoted by $\mathbf{M}_{\langle \rightarrow \rangle}$.

Proposition 11. Let $m \in \mathbb{P}^{\times}$ and $\mathbf{S} \in \text{Lin}_{m+1}(\mathcal{V}^{m+1}, \mathcal{W})$ be given. Using identifications and notations of the type (02.8) and (02.9), we have

$$\mathbf{S}_{<1>} \in \operatorname{Lin}\left(\mathcal{V}, \operatorname{Lin}_{m}(\mathcal{V}^{m}, \mathcal{W})\right) , \quad \mathbf{S}_{<2>} \in \operatorname{Lin}\left(\mathcal{V}^{2}, \operatorname{Lin}_{(\mathcal{V}^{m-1}, \mathcal{W})}\right) . \quad (02.8)$$

If $\mathbf{S}_{<2>}$ is symmetric and if the values of $\mathbf{S}_{<2>}$ are symmetric, then \mathcal{S} itself is symmetric.

03 Convex functions

We assume that a finite-dimensional flat space \mathcal{E} with translation space \mathcal{V} and a subset \mathcal{D} of \mathcal{E} are given. The **epigraph** of a function $f : \mathcal{D} \longrightarrow \mathbf{R}$ is defined by

$$\operatorname{Epi}(f) := \{(x, s) \mid x \in \mathcal{D}, s \in f(x) + \mathbb{P}\} \subset \mathcal{E} \times \mathbb{R}$$
 (X.1)

We now assume that a function $f : \mathcal{D} \longrightarrow \mathbf{R}$ is given.

Definition 1. We say that the function f is **convex** if its epigraph is a convex subset of $\mathcal{E} \times \mathbf{R}$.

Proposition 1. If f is convex, then its domain \mathcal{D} is a convex subset of \mathcal{E} .

From now on, we assume that \mathcal{D} is convex.

Proposition 2. The function $f : \mathcal{D} \longrightarrow \mathbb{R}$ is convex if and only if

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y) \quad \text{for all } x, y \in \mathcal{D}, \ \lambda \in [0,1] \ . \ (X.2)$$

Proposition 3. Assume that $f : \mathcal{D} \longrightarrow \mathbb{R}$ is convex. Let a non-empty family $p := (p_i \mid i \in I)$ of points in \mathcal{D} and $\lambda \in (\mathbb{IP}^{(I)})_1$ be given. (See Def.3 of Sect 37 of Vol.I.) Then

$$f(\operatorname{cxc}_p(\lambda)) \le \operatorname{cxc}_{f \circ p}(\lambda)$$
. (X.3)

Proposition 4. Assume that $f : \mathcal{D} \longrightarrow \mathbb{R}$ is convex. Let a flat space \mathcal{F} and a flat mapping $\alpha : \mathcal{F} \longrightarrow \mathcal{E}$ be given. Then

$$f \circ \alpha|_{\alpha^{<}(\mathcal{D})}^{\mathcal{D}} : \alpha^{<}(\mathcal{D}) \longrightarrow \mathbf{R}$$
 (X.4)

is convex.

Proposition 5. Let Φ be a collection of convex functions with domain \mathcal{D} . Assume that, for every $x \in \mathcal{D}$ the set $\{h(x) \mid h \in \Phi\}$ is bounded above and define $g: \mathcal{D} \longrightarrow \mathbb{R}$ by

$$g(x) := \sup\{h(x) \mid h \in \Phi\} \quad \text{for all} \quad x \in \mathcal{D} . \tag{X.5}$$

Then g is convex.

Proof: It easily follows from (X.5) that

$$\operatorname{Epi}(g) = \bigcap_{h \in \Phi} \operatorname{Epi}(h) . \tag{X.6}$$

Hence, by Def.1, Epi(g) is the intersection of a collection of convex sets and hence itself convex by Prop.1 of Sect.37 of Vol.I.

Proposition 6. Let $(h_i \mid i \in I)$ be a family of convex functions in Map $(\mathcal{D}, \mathbb{R})$. Then $\sum_{i \in I} \lambda_i h_i$ is convex for all $\lambda \in \mathbb{P}^{(I)}$.

Theorem. If the domain \mathcal{D} of the function f is open (and convex) and if f is convex, then the restriction $f|_{\mathcal{C}}$ of f to every compact subset \mathcal{C} of \mathcal{D} is constricted.

Proof (Use (ii) of Prop.1 of Sect 64 of Vol.I in the case when ν is a diamond norm.)

Corollary. If the domain \mathcal{D} of the function f is open (and convex) and if f is convex, then it is continuous.

Proposition 6. Assume that the domain \mathcal{D} of f is open (and convex) and that f is differentiable. Then f is convex if and only if

$$(\nabla_x f - \nabla_y f)(x - y) \ge 0$$
 for all $x, y \in \mathcal{D}$. (X.7)

Proposition 7. Assume that the domain \mathcal{D} of f is open (and convex) and that f is twice differentiable. Then f is convex if and only if the values of the second gradient $\nabla^{(2)}f: \mathcal{D} \longrightarrow \operatorname{Qu}(\mathcal{V})$ are positive quadratic forms. (See Def.1 of Sect.27 of Vol.I.)