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0. Preliminaries
01 Insertions, switches, symmetric and skew mappings.

Let a family (Ai | i ∈ I) of sets be given. Recall (Sect.04 of Vol.I) that for
each family a ∈×(Ai | i ∈ I) and each j ∈ I. the mapping

(a.j) : Aj −→ ×
i∈I

Ai

is defined by the rule

((a.j)(x))i :=

{

ai if i ∈ I\{j}
x if i = j

}

for all x ∈ Aj . (01.1)

Moreover, when φ is a mapping with Domφ = ×(Ai | i ∈ I), we use the notation

φ(a.j) := φ ◦ (a.j) : Aj −→ Codφ. (01.2)

Analogously, for each a ∈ ×(Ai | i ∈ I) and each (p, q) ∈ I2 with p 6= q, we
define the mapping

a.(p, q) : Ap×Aq −→ ×
i∈I

Ai

by

((a.(p, q)(x, y))i :=







ai if i ∈ I\{p, q},
x if i = p,
y if i = q

(01.3)

for all (x, y) ∈ Ap × Aq. Moreover,when φ is a mapping with Domφ =
×(Ai | i ∈ I), we use the notation

φ(a.(p, q)) := φ ◦ (a.(p, q)) : Ap × Aq −→ Codφ, (01.4)

so that
φ(a.(p, q))(ap, aq) = φ(a) for all a ∈ ×

i∈I
Ai. (01.5)

Assume now that a subset J of I and a ∈×(Ai | i ∈ I) or a ∈×(Ai | i ∈
I\J) are given. We define the mapping

(a.J) : ×(Ai | i ∈ J) −→×(Ai | i ∈ I)

by

((a.J)(b))i :=

{

ai if i ∈ I\J
bi if i ∈ J

for all b ∈×(Ai | i ∈ J). (01.6)
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If φ is a mapping with Domφ = ×(Ai | i ∈ I) we write φ(a.J) := φ ◦ (a.J), in
analogy to (01.2) and (01.4).

The mappings defined by (01.2), (01.3), and (01.6) are called insertion

mappings. They are related by (a.j) = (a.{j}) = (a|I\{j}.{j}) when j ∈ I and
(a.(p, q)) = (a.{p, q}) = (a|I\{p,q}.{p, q}) when p, q ∈ I with p 6= q.

From now on we assume that a set S, an index set I, and a linear space W
are given. Given any family a ∈ SI and given (p, q) ∈ I2 with p 6= q, we use the
notation

a∼(p,q) := (a.(p, q))(aq, ap) ∈ SI . (01.7)

Roughly, a∼(p,q) is obtained from a by switching the p-term with the q-term and
hence the operation ∼ (p, q) is called a switch. We assume now that a mapping
M : SI −→ W is given. We define M∼(p,q) : SI −→ W by

M∼(p,q)(a) := M(a∼(p,q)) for all a ∈ SI . (01.8)

Definition 1. The mapping M : SI −→ W is said to be symmetric if

M∼(p,q) = M for all (p, q) ∈ I with p 6= q; (01.9)

it is said to be skew if

M∼(p,q) = −M for all (p, q) ∈ I with p 6= q. (01.10)

If the given mapping M : SI −→ W is symmetric [skew], so is the mapping
(M.J) : SJ −→ W for every subset J of I.

We now consider the case when I := k] for some k ∈ NI . Recall the ab-
breviation Sk := Sk]

(see Sect.02 of Vol.I). The following criterion is clear from
Def.1.

Proposition 1. A given mapping M : Sk −→ W is symmetric [skew] if and
only if

M∼(p,p+j) = M [ M∼(p,p+j) = −M ] (01.11)

for all p, j ∈ (k − 1)] with p + j ≤ k.

The following gives a much weaker sufficient condition.

Proposition 2. If a given mapping M : Sk −→ W satisfies

M∼(p,p+1) = M [ M∼(p,p+1) = −M ] for all p ∈ (k − 1)] (01.12)

then it is symmetric [skew].

Proof: First we note that

a∼(p,q+1) = (((a∼(q,q+1))∼(p,q))∼(q,q+1)) (01.13)

holds for all a ∈ Sk and p, q ∈ (k − 1)] with p < q, as is easily verified from the
definition (01.7).
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We now assume that (01.12) holds. Let p ∈ (k−1)] be given. We will show,
by induction over j, that (01.11) is valid for this given p. For j := 1 (01.11)
reduces to (01.12). Let j ∈ (k−p−1)] be given and assume that (01.11) is valid
for this given j. Let a ∈ Sk be given. We then have, by (01.8) and (01.13),

M∼(p,p+j+1)(a) = M(a∼(p,p+j+1)) = M(((a∼(p+j,p+j+1))∼(p,p+j))∼(p+j,p+j+1))

= M∼(p+j,p+j+1)((a∼(p+j,p+j+1))∼(p,p+j))

Using (01.12) with p replaced by p + j and then using (01.8) again, we find that

M∼(p,p+j+1)(a) = ±M((a∼(p+j,p+j+1))∼(p,p+j)) = ±M∼(p,p+j)(a∼(p+j,p+j+1)).

Using the induction hypothesis we obtain

M∼(p,p+j+1)(a) = M(a∼(p+j,p+j+1)) = M∼(p+j,p+j+1)(a).

(The minus sign of ± applies to the condition (01.12) in brackets.)
Using (01.12) again with p replaced by p + j we conclude that

M∼(p,p+j+1)(a) = ±M(a),

which shows that (01.11) is valid with j replaced by j + 1, completing the
induction.

Let a mapping f := D −→ C and an index set I be given. Recall (see
Sect.04 of Vol.I) that the cross-power f×I : DI −→ CI is defined by

f×I(x) := (f(xi) | i ∈ I) for all x ∈ DI . (01.14)

For each k ∈ NI we use the abbreviation f×k := f×k]

.

Now let, in addition, a mapping M : CI −→ W be given. If M is symmetric
[skew], so is M ◦ f×I .

02 Multilinear mappings.

Definition 1. Let a family of linear spaces (Vi | i ∈ I) and a linear space W
be given. We say that the mapping

M : ×
i∈I

Vi −→ W (02.1)

is multilinear if, for every f ∈ ×(Vi | i ∈ I) and every j ∈ I, the map-
ping M(f .j) : Vj −→ W is linear, so that M(f .j) ∈ Lin(Vj ,W). The set
of all multilinear mappings from ×(Vi | i ∈ I) to W will be denoted by
LinI(×(Vi | i ∈ I),W).

If the mapping (02.1) is multilinear and if (p, q) ∈ I2 with p 6= q is given,
then M(f .(p, q)) : Vp × Vq −→ W is bilinear for each f ∈×(Vi | i ∈ I).

The following three results generalize Props.1, 3, and 4 of Sect.24 of Vol.I.
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Proposition 1. LinI(×(Vi | i ∈ I),W) is a subspace of Map(×(Vi | i ∈ I),W).

If I := ∅, then ×(Vi | i ∈ I) = {∅} and Lin∅({∅},W) = Map({∅},W),
which we identify with W. If #I = 1, then LinI(V

I ,W) = Lin(VI ,W), which
we usually identify with Lin(V,W), especially when I := 1]. If #I > 1, we have

LinI(×(Vi | i ∈ I),W) ∩ Lin(×(Vi | i ∈ I),W) = {∅}.

Proposition 2. The composite of a multilinear mapping with a linear map-
ping is again multilinear. More precisely, given a family of linear spaces
(Vi | i ∈ I), given linear spaces W and W ′, and given a multilinear mapping
M ∈ LinI(×(Vi | i ∈ I),W) and a linear mapping L ∈ Lin(W,W ′), we have
LM ∈ LinI(×(Vi | i ∈ I),W ′).

Proposition 3. The composite of the cross-product of a family of linear map-
pings with a multilinear mapping is again multilinear. More precisely, given
families of linear spaces (Vi | i ∈ I) and (V ′

i | i ∈ I), given a linear space W and,
for each i ∈ I, a linear mapping Li ∈ Lin(Vi,V

′
i), and given a multilinear map-

ping M ∈ LinI(×(V ′
i | i ∈ I),W), we have M◦×(Li | i ∈ I) ∈ LinI(×(Vi | i ∈

I),W).

From now on we assume that an index set I and linear spaces V and W
are given.The set of all multilinear mappings from VI to W that are also sym-
metric [skew] in the sense of Def.1 of Sect.01 will be denoted by SymI(V

I ,W)
[SkewI(V

I ,W)]. If I := k] for some k ∈ NI , we use the abbreviations

Link(Vk,W) := Link](Vk]

,W),

Symk(Vk,W) := Symk](Vk]

,W), Skewk(Vk,W) := Skewk](Vk]

,W), (02.2)

which are consistent with Def.5 of Sect.24 of Vol.I.
The following result is an immediate consequence of Def.1 of Sect.01.

Proposition 4. SymI(V
I ,W) and SkewI(V

I ,W) are subspaces of LinI(V
I ,W).

If #I = 0 or 1 then SymI(V
I ,W) = SkewI(V

I ,W) = LinI(V
I ,W). If #I ≥ 2,

then SymI(V
I ,W) is disjunct from SkewI(V

I ,W).

Pitfall: Prop.7 of Sect.24 of Vol.I states, in effect, that SymI(V
I ,W) and

SkewI(V
I ,W) are actually supplementary in LinI(V

I ,W) when #I = 2 . They
are not supplementary when #I > 2, dimV > 1, and dimW > 2.

Given (p, q) ∈ I with p 6= q, f ∈ VI , and M ∈ LinI(V
I ,W) it is clear that

M(f .(p, q)) ∈ Lin2(V
2,W) and that

(M(f .(p, q)))∼(fp, fq) = M∼(p,q)(f), (02.3)

where the switch on the left is defined according to (24.4) of Vol.I and the switch
on the right according to (01.8) and (01.7). Using this fact, we obtain
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Proposition 5. A given M ∈ LinI(V
I ,W) is symmetric [skew] if and only if

M(f .(p, q)) ∈ Sym2(V
2,W), [ M(f .(p, q)) ∈ Skew2(V

2,W) ]

for all f ∈ VI and all (p, q) ∈ I with p 6= q.

In the case when I = k] for a given k ∈ NI , one can modify Prop.5 in the
following manner.

Proposition 6. A given M ∈ Link(Vk,W) is symmetric [skew] if and only if

M(f .(p, p + 1)) ∈ Sym2(V
2,W), [ M(f .(p, p + 1)) ∈ Skew2(V

2,W) ]

for all f ∈ Vk and all p ∈ (k − 1)].

The proof of Prop.6 is immediate from Prop.2 of Sect.01.

Proposition 7. For any given M ∈ SkewI(V
I ,W) and any given linearly de-

pendent f ∈ VI we have M(f) = 0.

Proof: It follows from, Prop.1 of Sect.15 of Vol.I that we may choose λ ∈
( RI (I))× such that lncfλ =

∑

(λifi | i ∈ I) = 0. Since λ 6= 0, we may choose
j ∈ I such that λj 6= 0. It follows that

fj = −
1

λj

∑

i∈I\{j}

λifi. (02.4)

Since M is multilinear and hence M(f .j) : V −→ W linear, we conclude that

M(f) = M(f .j)(fj) = −
1

λj

∑

i∈I\{j}

λiM(f .j)(fi). (02.5)

Since M(f .j)(fi) = M(f .(j, i))(fi, fi) and since M(f .(j, i)) ∈ Skew2(V
2,W) for

all i ∈ I\{j} by Prop.5 above, we conclude from Prop.5 of Sect.24 of Vol.I that
M(f .j)(fi) = 0 for all i ∈ I\{j} and hence from (02.5) that M(f) = 0.

Proposition 8. Let M ∈ LinI(V
I ,W) be given. Then M is skew if and only if

M(f) = 0 for all f ∈ VI that fail to be injective, i.e., have repeated terms.

Proof: The ”only if” part is a direct consequence of Prop.7 above and Prop.3
of Sect.15 of Vol.I.

To prove the ”if” part, assume that M(f) = 0 for all non-injective f ∈ VI .
Let g ∈ VI and (p, q) ∈ I2 with p 6= q be given. For every u ∈ V, f :=
(g.(p, q))(u,u) is then non-injective because fp = fq = u. Hence we have
M((g.(p, q))(u,u)) = 0 for every u ∈ V. By Prop.5 of Sect.24 of Vol.I it follows
that M(g.(p, q)) ∈ Skew2(V

2,W). Since g ∈ VI and (p, q) ∈ I2 with p 6= q were
arbitrary, it follows from Prop.5 above that M ∈ SkewI(V

I ,W).
In the case when I = k] for a given k ∈ NI , one can modify Prop.7 in the

following manner.
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Proposition 9. Let M ∈ Link(Vk,W) be given. Then M is skew if and only
if M(f) = 0 for all f ∈ Vk that have adjacent repeated terms in the sense that
fj = fj+1 for some j ∈ (k − 1)].

The proof of Prop.9 is analogous to that of Prop.8 except that Prop.6 rather
than Prop.5 is used in it.

For later use we record here a generalization to multilinear mappings of the
general distributive law (07.19) of Vol.I:

Proposition 10. Let M ∈ LinI(V
I ,W) be given. Then

M(f + g) =
∑

J∈SubI

M(f |I\J .J)(g|J) for all f ,g ∈ VI . (02.6)

Given j, k ∈ PI × it is often useful to use the identification

Vj × Vk ∼= Vj+k (02.6)

by identifying a given pair (x,y) of list x ∈ Vj ,y ∈ Vk with a single list in Vj+k

defined by concatenation in the sense that

(x,y)i :=

{

xi if i ∈ j]

yi−j if i ∈ (j + 1)..(j + k)

}

for all i ∈ (j + k)] . (02.7)

Also it is often useful to use the identification

Lin j(V
j ,Lin k(Vk,W) ∼= Lin k+j(V

j+k,W) (02.8)

with the following precaution: If M belongs to the right side of (02.8), then the
corresponding element on the left side of (02.8) will be denoted by M<j>. The
two are related by

M(x,y) = M<j>(x)(y) for all x ∈ Vj ,y ∈ Vk . (02.9)

If M belongs to the left side of (02.8), then the corresponding element on the
right side of (02.8) will be denoted by M<→>.

Proposition 11. Let m ∈ PI × and S ∈ Lin m+1(V
m+1,W) be given. Using

identifications and notations of the type (02.8) and (02.9), we have

S<1> ∈ Lin (V,Lin m(Vm,W)) , S<2> ∈ Lin (V2,Lin (V
m−1,W) . (02.8)

If S<2> is symmetric and if the values of S<2> are symmetric, then S itself is
symmetric.

03 Convex functions

We assume that a finite-dimensional flat space E with translation space V
and a subset D of E are given. The epigraph of a function f : D −→ RI is
defined by

Epi(f) := {(x, s) | x ∈ D, s ∈ f(x) + PI } ⊂ E × RI (X.1)

We now assume that a function f : D −→ RI is given.
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Definition 1. We say that the function f is convex if its epigraph is a convex
subset of E × RI .

Proposition 1. If f is convex, then its domain D is a convex subset of E .

From now on, we assume that D is convex.

Proposition 2. The function f : D −→ RI is convex if and only if

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y) for all x, y ∈ D , λ ∈ [0, 1] . (X.2)

Proposition 3. Assume that f : D −→ RI is convex. Let a non-empty family
p := (pi | i ∈ I) of points in D and λ ∈ ( PI (I))1 be given. (See Def.3 of Sect 37
of Vol.I .) Then

f(cxcp(λ)) ≤ cxcf◦p(λ) . (X.3)

Proposition 4. Assume that f : D −→ RI is convex. Let a flat space F and a
flat mapping α : F −→ E be given. Then

f ◦ α|Dα<(D) : α<(D) −→ RI (X.4)

is convex.

Proposition 5. Let Φ be a collection of convex functions with domain D. As-
sume that, for every x ∈ D the set {h(x) | h ∈ Φ} is bounded above and define
g : D −→ RI by

g(x) := sup{h(x) | h ∈ Φ} for all x ∈ D . (X.5)

Then g is convex.

Proof: It easily follows from (X.5) that

Epi(g) =
⋂

h∈Φ

Epi(h) . (X.6)

Hence, by Def.1, Epi(g) is the intersection of a collection of convex sets and
hence itself convex by Prop.1 of Sect.37 of Vol.I.

Proposition 6. Let (hi | i ∈ I) be a family of convex functions in Map(D, RI ).

Then
∑

i∈I λihi is convex for all λ ∈ PI (I).

Theorem. If the domain D of the function f is open (and convex) and if f is
convex,then the restriction f |C of f to every compact subset C of D is constricted.

Proof .... ( Use (ii) of Prop.1 of Sect 64 of Vol.I in the case when ν is a diamond
norm.)
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Corollary. If the domain D of the function f is open (and convex) and if f is
convex, then it is continuous.

Proposition 6. Assume that the domain D of f is open (and convex) and that
f is differentiable. Then f is convex if and only if

(∇xf −∇yf)(x − y) ≥ 0 for all x, y ∈ D . (X.7)

Proposition 7. Assume that the domain D of f is open (and convex) and that
f is twice differentiable. Then f is convex if and only if the values of the second
gradient ∇(2)f : D −→ Qu(V) are positive quadratic forms. (See Def.1 of Sect.27
of Vol.I.)
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