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0. Preliminaries

01 Insertions, switches, symmetric and skew mappings.

Let a family (A4; | ¢ € I) of sets be given. Recall (Sect.04 of Vol.I) that for
each family a € X (A4; | i € I) and each j € I. the mapping

(a.j): Aj — X A;

il
is defined by the rule
(a.5)(2)); = { v Z,:\;J}} for all z € A, (01.1)

Moreover, when ¢ is a mapping with Dom¢ = X (A; | ¢ € I), we use the notation
¢(a.j) :=¢o(ayj) : Aj — Codo. (01.2)

Analogously, for each a € X (A; | i € I) and each (p,q) € I? with p # ¢, we

define the mapping
a.(p,q): Ay X Ay — X A;

el
by
a; if i€ I\{p,q},
((a-(py @) (2, )i ==K = if i=p, (01.3)
y if i=g¢q

for all (z,y) € A, x A;. Moreover,when ¢ is a mapping with Dom¢ =
X (A; | i € I), we use the notation

¢(a-(p,q)) = ¢ o (a.(p,q)) : Ap x Ay — Codo, (01.4)
so that
o(a.(p,q))(ap,aq) = ¢(a) for all a € i>€<I A;. (01.5)

Assume now that a subset J of I and a € X(4; |i€l)orae X(4;|i¢€
I\J) are given. We define the mapping

by

 fa if iel\J L
((a.J)(b)); := {bi e for allb e X(A4; |i€J). (01.6)



If ¢ is a mapping with Dom¢ = X (A; | i € I) we write ¢(a.J) := ¢ o (a.J), in
analogy to (01.2) and (01.4).

The mappings defined by (01.2), (01.3), and (01.6) are called insertion
mappings. They are related by (a.j) = (a.{j}) = (a|p\{;1-{j}) when j € I and

(a.(p,q)) = (a{p.q}) = (aln\(p,¢3-{P,a}) when p,q € I with p # q.
From now on we assume that a set S, an index set I, and a linear space W

are given. Given any family a € ST and given (p, q) € I? with p # ¢, we use the
notation
aw(p,q) = (&.(p, Q))(a(ba'p) S SI' (017)

Roughly, a™~(®9) is obtained from a by switching the p-term with the g-term and
hence the operation ~ (p, q) is called a switch. We assume now that a mapping
M : ST — W is given. We define M~ . § — W by

M~ P9 (q) := M(a™~P9) for all a € ST. (01.8)
Definition 1. The mapping M : ST — W is said to be symmetric if
M~ = M for all (p,q) € I with p # ¢; (01.9)
it is said to be skew if
M~®9) = _M for all (p,q) € I with p # q. (01.10)

If the given mapping M : ST — W is symmetric [skew], so is the mapping
(M.J) : S7 — W for every subset J of I.

We now consider the case when I := k! for some k& € IN. Recall the ab-
breviation S* := S¥ (see Sect.02 of Vol.I). The following criterion is clear from
Def.1.

Proposition 1. A given mapping M : S¥ — W is symmetric [skew] if and
only if
M~ @P+i) — M [ M~ @i — M\ ] (01.11)

for all p,j € (k— 1)) withp+j < k.
The following gives a much weaker sufficient condition.
Proposition 2. If a given mapping M : S¥ — W satisfies
M~PPHD =M [ MYPPED — M forall p € (k — 1)) (01.12)
then it is symmetric [skew].
Proof: First we note that

a~Patl) — (((QN(q,q—H) )N(ZMI) )N(q7q+1)) (01.13)

holds for all a € S* and p,q € (k — 1)} with p < ¢, as is easily verified from the
definition (01.7).



We now assume that (01.12) holds. Let p € (k—1)! be given. We will show,
by induction over j, that (01.11) is valid for this given p. For j := 1 (01.11)
reduces to (01.12). Let j € (k—p—1)! be given and assume that (01.11) is valid
for this given j. Let a € S* be given. We then have, by (01.8) and (01.13),

M~ @PHiF (g) = M(a~PPHHDY = M(((a~PTrHi+0)~@p+i) )~ pFipti+l))
= M~ PHIp I+ (o~ (PHTp i)~ (pp+i))
Using (01.12) with p replaced by p+ j and then using (01.8) again, we find that

MN(p,erjJrl)(a) — iM((GN(p+j,p+j+1))N(p,pﬂ')) — iMN(p,erj)(a~(p+j7p+j+1))_

Using the induction hypothesis we obtain

M~ PP+ () = M (g™~ PPy = M~ PHrtitl) (),

(The minus sign of £ applies to the condition (01.12) in brackets.)
Using (01.12) again with p replaced by p + j we conclude that

M~ PrHit () = +M(a),

which shows that (01.11) is valid with j replaced by j + 1, completing the
induction.

Let a mapping f := D — C and an index set I be given. Recall (see
Sect.04 of Vol.I) that the cross-power f*! : D! — C! is defined by

N (z) == (f(z;) |i€I) forall e D (01.14)

For each k € IN we use the abbreviation f** := ka].
Now let, in addition, a mapping M : CT — W be given. If M is symmetric
[skew], so is M o f*I.

02 Multilinear mappings.

Definition 1. Let a family of linear spaces (V; | i € I) and a linear space W
be given. We say that the mapping

M: XV, — W (02.1)
i€l

is multilinear if, for every f € X(V; | i € I) and every j € I, the map-
ping M(f.j) : V; — W is linear, so that M(f.j) € Lin(V;,W). The set
of all multilinear mappings from X(V; | ¢ € I) to W will be denoted by
Lin[(X (Vz | 1€ I),W)

If the mapping (02.1) is multilinear and if (p,q) € I? with p # ¢ is given,
then M(f.(p,q)) : V, x V; — W is bilinear for each f € X (V; | i € I).
The following three results generalize Props.1, 3, and 4 of Sect.24 of Vol.I.
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Proposition 1. Lin; (X (V; |i € I),W) is a subspace of Map(X (V; |1 € I),W).

If I := 0, then X(V; | i € I) = {0} and Ling({0},W) = Map({0}, W),
which we identify with W. If #I = 1, then Lin;(V!, W) = Lin(V!, W), which
we usually identify with Lin(V, W), especially when I := 1. If #I > 1, we have

Ling (X (V; | i € I),W) N Lin(X (V; | i € I),W) = {0}.

Proposition 2. The composite of a multilinear mapping with a linear map-
ping is again multilinear. More precisely, given a family of linear spaces
(Vi | i € I), given linear spaces W and W', and given a multilinear mapping
M € Lin;(X(V; | i € I),) and a linear mapping L € Lin(W,W'’), we have
LM e LlIl](X(VZ ‘ 1€ I),W’)

Proposition 3. The composite of the cross-product of a family of linear map-
pings with a multilinear mapping is again multilinear. More precisely, given
families of linear spaces (V; | i € I) and (V] | i € I), given a linear space YV and,
for each i € I, a linear mapping L; € Lin(V;,V!), and given a multilinear map-
ping M € Liny (X (V! |i € I),W), we have Mo X (L; | i € I) € Lin;(X(V; |i €
n,w).

From now on we assume that an index set I and linear spaces V and W
are given.The set of all multilinear mappings from V! to W that are also sym-
metric [skew] in the sense of Def.1 of Sect.01 will be denoted by Sym;(VI, W)
[Skew(VI,W)]. If I := k! for some k € IN, we use the abbreviations

Ling (V*, W) := Liny, (Vk] W),

Sym, (V¥, W) := Sym, (V¥ , W), Skew(VF, W) := Skew, (V¥ , W), (02.2)

which are consistent with Def.5 of Sect.24 of Vol.I.
The following result is an immediate consequence of Def.1 of Sect.01.

Proposition 4. Sym;(V!, W) and Skew;(V!, W) are subspaces of Lin; (VI, W).
If #1 = 0 or 1 then Sym;(V!, W) = Skew;(VI,W) = Lin;(VI,W). If #I > 2,
then Sym;(V!, W) is disjunct from Skewr(VI, W).

Pitfall: Prop.7 of Sect.24 of Vol.I states, in effect, that Sym;(V!,) and
Skew(VI, W) are actually supplementary in Lin;(V!, W) when #I = 2 . They
are not supplementary when #I > 2, dim)V > 1, and dimW > 2.3

Given (p,q) € I with p # ¢,f € V!, and M € Lin;(V!, W) it is clear that
M(f.(p,q)) € Lina(V?, W) and that

(M(f.(p, 0))~ (£, £,) = M~®(f), (02.3)

where the switch on the left is defined according to (24.4) of Vol.I and the switch
on the right according to (01.8) and (01.7). Using this fact, we obtain

4



Proposition 5. A given M € Lin; (V! W) is symmetric [skew] if and only if
M(f.(p,q)) € Sym,(V2, W), [ M(f.(p,q)) € Skewo(V?, W) ]

for all £ € V! and all (p,q) € I with p # q.

In the case when I = k! for a given k € IN, one can modify Prop.5 in the
following manner.

Proposition 6. A given M € Ling(V*, W) is symmetric [skew] if and only if
M(f.(p,p + 1)) € Symy,(V2, W), [ M(f.(p,p+1)) € Skews(V*, W) |

for all f € V¥ and all p € (k — 1))
The proof of Prop.6 is immediate from Prop.2 of Sect.01.

Proposition 7. For any given M € Skew;(V!, W) and any given linearly de-
pendent £ € VI we have M(f) = 0.

Proof: It follows from, Prop.1 of Sect.15 of Vol.I that we may choose A €
(RD)* such that IncgA = S"(\if; | i € I) = 0. Since A # 0, we may choose
J € I such that A\; # 0. It follows that

1
fi=—1 > M (02.4)
T ien {5}

Since M is multilinear and hence M(f.j) : V — W linear, we conclude that

M(F) = M(EJ)(E) =~ S AME))(E). (02.5)
T ien{s}

Since M(f.5)(f;) = M(f.(4,4))(f;,f;) and since M(f.(j,7)) € Skews (V2 W) for
all © € I\{j} by Prop.5 above, we conclude from Prop.5 of Sect.24 of Vol.I that
M(f.5)(f;) =0 for all i € I\{j} and hence from (02.5) that M(f) = 0.

Proposition 8. Let M € Lin;(V!, W) be given. Then M is skew if and only if
M(f) = 0 for all f € V! that fail to be injective, i.e., have repeated terms.

Proof: The ”only if” part is a direct consequence of Prop.7 above and Prop.3
of Sect.15 of Vol.I.

To prove the ”if” part, assume that M(f) = 0 for all non-injective f € V!.
Let g € V! and (p,q) € I? with p # ¢ be given. For every u € V, f :=
(g8.(p,¢))(u,u) is then non-injective because f, = f, = u. Hence we have
M((g.(p,q))(u,u)) = 0 for every u € V. By Prop.5 of Sect.24 of Vol.I it follows
that M(g.(p, q)) € Skews(V2, W). Since g € V! and (p,q) € I? with p # q were
arbitrary, it follows from Prop.5 above that M € Skew;(VI,W). |

In the case when I = k! for a given k € IN, one can modify Prop.7 in the
following manner.



Proposition 9. Let M € Ling,(V*, W) be given. Then M is skew if and only
if M(f) = 0 for all f € V¥ that have adjacent repeated terms in the sense that
f; = f;,1 for some j € (k — 1)l

The proof of Prop.9 is analogous to that of Prop.8 except that Prop.6 rather
than Prop.5 is used in it.

For later use we record here a generalization to multilinear mappings of the
general distributive law (07.19) of Vol.I:

Proposition 10. Let M € Lin;(V!, W) be given. Then
M(f+g)= > M(flns.J)(gly) for all f,ge V. (02.6)
JeSubl
Given j, k € P> it is often useful to use the identification
Vi x Yk pitk (02.6)
by identifying a given pair (x,y) of list x € V7 ,y € V¥ with a single list in V/ %

defined by concatenation in the sense that

z; if iej! o |
i = ) . . ) f 11 . 2.
(x,y) {yij o (]+1)..(]—|—k:)} orallie (j+k) (02.7)

Also it is often useful to use the identification
Lin ; (W7, Lin x (V¥, W) = Lin . ; (V7% W) (02.8)

with the following precaution: If M belongs to the right side of (02.8), then the
corresponding element on the left side of (02.8) will be denoted by M;~. The
two are related by

M(x,y) = Mo~ (x)(y) forall xeV yecVF. (02.9)

If M belongs to the left side of (02.8), then the corresponding element on the
right side of (02.8) will be denoted by M _, <.

Proposition 11. Let m € P* and S € Lin 1 (V™ "1, W) be given. Using
identifications and notations of the type (02.8) and (02.9), we have

S<is> € Lin (V,Lin,,(V™,W)) , Scas € Lin(V*,Lin V"', W) . (02.8)
If Sco- is symmetric and if the values of Sco~ are symmetric, then S itself is

symmetric.

03 Convex functions

We assume that a finite-dimensional flat space £ with translation space V
and a subset D of £ are given. The epigraph of a function f : D — R is
defined by

Epi(f) :={(z,s) |z €D,se f(z)+ P} C ExR (X.1)
We now assume that a function f: D — R is given.
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Definition 1. We say that the function f is convex if its epigraph is a convex
subset of £ X R.

Proposition 1. If f is convex, then its domain D is a convex subset of £.
From now on, we assume that D is convex.

Proposition 2. The function f : D — R is convex if and only if

f(A=XNz+Xy) < (1 =Nf(x)+Af(y) forall z,yeD, Ae[0,1]. (X.2)

Proposition 3. Assume that f : D — R is convex. Let a non-empty family
p:=(p; | i € I) of points in D and A € (IP1)); be given. (See Def.3 of Sect 37
of Vol.I .) Then

fexcp(N)) < excpop(A) . (X.3)

Proposition 4. Assume that f : D — R is convex. Let a flat space F and a
flat mapping o : F — & be given. Then
foalPp):a*(D) — R (X.4)

IS convex.

Proposition 5. Let ® be a collection of convex functions with domain D. As-
sume that, for every x € D the set {h(z) | h € ®} is bounded above and define
g:D— R by

g(z) :=sup{h(z) | he &} forall ze€D. (X.5)

Then g is convex.

Proof: It easily follows from (X.5) that

Epi(g) = (] Epi(h) . (X.6)

Hence, by Def.1, Epi(g) is the intersection of a collection of convex sets and
hence itself convex by Prop.1 of Sect.37 of Vol.I. |

Proposition 6. Let (h; | i € I) be a family of convex functions in Map(D, R).

Then ), ; Aih; is convex for all A € PD,

Theorem. If the domain D of the function f is open (and convex) and if f is
convex,then the restriction f|c¢ of f to every compact subset C of D is constricted.

Proof .... ( Use (ii) of Prop.1 of Sect 64 of Vol.I in the case when v is a diamond
norm.)



Corollary. If the domain D of the function f is open (and convex) and if f is
convex, then it is continuous.

Proposition 6. Assume that the domain D of f is open (and convex) and that
f is differentiable. Then f is convex if and only if

(Vof =Vyf)(x—y) >0 forall z,yeD. (X.7)

Proposition 7. Assume that the domain D of f is open (and convex) and that
f is twice differentiable. Then f is convex if and only if the values of the second

gradient V) f : D — Qu(V) are positive quadratic forms. (See Def.1 of Sect.27
of Vol.I.)



