Index of Theorem Titles

	Sec	tion	Pag	ge
Additive Decomposition Theorem		86		321
Annihilators and Transposes, Th. on.		21		73
Attainment of Extrema, Th. on	08,	58	35,	203
Basic Convergence Criterion		55		188
Cell-Inclusion Theorem		52		173
Chain Rule for Flat Mappings		33		111
Characterization of Bases		15		54
Characterization of Dimension		17		58
Characterization of Gradients		63		219
Characterization of Regular Subspaces		41		137
Characterization of the Trace		26		89
Cluster Point Theorem	08,	55	33,	187
Compact Image Theorem		58		200
Compactness Theorem		58		201
Composition Theorem for Continuity		56		194
Composition Theorem for Uniform Continuity		56		195
Connection Components, Th. on.		73		286
Congruence Theorem		46		153
Constrained-Extremum Theorem		69		252
Continuity of Uniform Limits, Th. on.		56		196
Contraction Fixed Point Theorem		64		227
Convex Hull Theorem		37		124
Curl-Gradient Theorem		611		261
Deviation Components, Th. on.		73		287
Difference-Quotient Theorem	08,	61	35,	211
Differentiation Theorem for Lineonic Exponentials		612		268
Differentiation Theorem for Integral Representations		610		258
Differentiation Theorem for Inversion Mappings		68		246
Dimension of Annihilators, Formula for		21		73

	Section	Page
Dimensions of Range and Nullspace, Th. on.	17	60
Elementary Decomposition Theorem	91	350
Elimination of Unknowns, Th. on.	16	57
Extreme Spectral Values of a Symmetric Lineon, Th. on.	84	312
Extremum Theorem	$08, \ 69$	35, 251
Flat Span Theorem	35	117
Fundamental Theorem of Calculus	08, 610	36, 255
General Chain Rule	63	219
General Product Rule	66	235
Half-Space Inclusion Theorem	38	126
Half-Space Intersection Theorem	54	183
Induced Inner-Product, Th. on the	44	144
Implicit Mapping Theorem	68	245
Inner-Product Index Theorem	47	157
Inner-Product Inequality	42	139
Inner-Product Signature Theorem	47	155
Interchange of Partial Gradients, Th. on.	611	264
Inversion Rule for Flat Mappings	33	111
Lineonic Logarithm Theorem	85	320
Lineonic Square-Root Theorem	85	318
Local Inversion Theorem	68	245
Norm-Duality Theorem	52	175
Norm-Equivalence Theorem	51	170
Partial Gradient Theorem	65	232
Pigeonhole Principle	05	21
Pigeonhole Principle for Linear Mappings	17	60
Polar Decomposition Theorem	86	322
Prime Polynomials over \mathbb{C} and \mathbb{R} , Th. on.	92	357
Real and Imaginary Parts, Th. on.	89	338

Index of Theorem Titles

	Section	Page
Representation Theorem for Linear Forms		0
on a Space of Linear Mappings	26	89
Similarity Theorem for Lineons	95	368
Smoothness of the Strict Lineonic Square Root, Th. on.	85	318
Specification of Flat Mappings, Th. on.	33	109
Spectral spaces, Th. on.	82	308
Spectral Theorem	84	313
Spectral Theorem for Normal C-Lineons	810	342
Striction Estimate for Differentiable Mappings	64	224
Strong Convex Hull Theorem	37	125
Structure Theorem for Elementary Lineons	93	358
Structure Theorem for Normal Lineons	88	330
Structure Theorem for Orthogonal Lincons	88	333
Structure Theorem for Perpendicular Turns	87	326
Structure Theorem for Skew Lineons	87	328
Subadditivity of Magnitude	42	139
Symmetry of Second Gradients, Th. on.	611	263
Uniform Continuity Theorem	58	200
Unique Existence of Barycenters, Th. on.	34	112

Index of Special Notations

		Sec	tion	Pag	ge
$S \subset T$	(S is a subset of T)		01		3
$S \subsetneq T$	(S is a proper subset of T)		01		3
$S \setminus \overline{T}$	(set-difference of S and T)		01		4
$(a_i \mid i \in I)$	(family with index set I)		02		7
S^{I}	(set of all families in S with index set I)		02		$\overline{7}$
$M^{(I)}$	(set of all families in M with index				
	set I and finite support)		07		28
$(\mathbb{R}^{(I)})_{\nu}$	(set of all families in \mathbb{R}				
	with index set I , finite support, and sum ν)	35,	37	116	5,124
$X(A_i i \in I$)(set-product of the family $(A_i i \in I)$ of sets)		04		15
$f \times g$	(cross-product of the mappings f and g)		04		17
$X\left(f_{i} i\in I\right)$	(cross-product of the family $(f_i i \in I)$				
	of mappings)		04		17
$g^{ imes I}$	(I-cross-power of the mapping g)		04		18
$f_{>}$	(image mapping of f)		03		12
$f^{<}$	(pre-image mapping of f)		03		12
f^{\leftarrow}	(inverse of the mapping f)		03		11
$f^{\circ n}$	(n th iterate of the mapping f)		03		11
$f _A$	(restriction of f to A)		03		12
$f _A^B$	(adjustment of f range)		03		12
$f ^{\mathrm{Rng}}$	(adjustment of f to range)		03		13
$f_{ A }$	(A-adjustment of f when A is f -invariant)		03		13
$f_{(\mathcal{V})}$	(lineonic extension of f)		85		316
$c_{D \to C}$	(constant with domain D , codomain C , and				
	range $\{c\}$)		03		11
1_S	(identity mapping of S)		03		11
$1_{U \subset S}$	(inclusion mapping of U into S)		03		11
$(a, \cdot), (\cdot, b)$	("insertion" into a product of two sets)		04		18
(c.j)	("insertion" into a product of a family of sets)		04		19
$\sharp S$	(cardinal of S)		05		20
[x,y]	(closed interval; segment joining the points x				
	and y)	08,	37	32,	123
]x,y[(open interval; open segment joining the				
	points x and y)	08,	51	32,	163

		Sect	ion	Page
[a,b[,]a,b]	(half-open intervals)		08	31
\mathbb{R}	(extended-real-number set)		08	32
\mathbb{P}	(extended-positive-number set)		08	32
ι	(identity-mapping of \mathbb{R} ; "indeterminate")	08,	92	34, 353
$\partial_t f$	(derivative of f at t)	08,	61	34, 209
∂f	(derivative-function of f)	08,	61	34, 209
f^{ullet}	(derivative-function of f)	08,	61	35, 210
$\partial^n f, f^{(n)}$	(derivative of order n)	08,	61	35, 209
∇	(gradient)	33,	63	108, 218
$\nabla_{(1)}, \nabla_{(2)}$	(partial gradients)		65	228, 229
$\varphi_{,1}, \varphi_{,2}$	(partial derivatives)		65	228, 229
$\nabla_{(j)}, \varphi_{,j}$	(partial gradients and derivatives)		65	231
\triangle	(Laplacian)		67	241
$\mathbf{L}_1 \oplus \mathbf{L}_2$	("evaluation-sum" of \mathbf{L}_1 and \mathbf{L}_2)		14	49
$\bigoplus(\mathbf{L}_i i \in I)$	("evaluation-sum" of a family of			
	linear mappings)		14	50
δ^{I}	(standard basis of $\mathbb{F}^{(I)}$)		16	55
\mathcal{V}^*	(dual of the linear space \mathcal{V})		21	71
\mathbf{b}^*	(dual of the basis \mathbf{b})		23	78
\mathbf{L}^\top	$(\text{transpose of the linear mapping } \mathbf{L})$	21	71	
\mathcal{S}^{\perp}	(annihilator of the set \mathcal{S} ; orthogonal supplement)	21, 4	41,	$72,\!137$
\mathbf{B}^{\sim}	(switch of the bilinear mapping \mathbf{B})		24	83
$\mathbf{w}\otimesoldsymbol{\lambda}$	(tensor product of \mathbf{w} and $\boldsymbol{\lambda}$)		25	86
$\overline{\mathbf{S}}$	(quadratic form corresponding to the			
	bilinear form \mathbf{S})		27	94
$\overline{\mathbf{Q}}$	(bilinear form corresponding to the			
	quadratic form \mathbf{Q})		28	94
\overleftrightarrow{xy}	(line passing through the points x and y)		32	107
$\mathbf{v}^{\cdot 2}$	(inner square of \mathbf{v})		41	133
$\mathbf{u}\cdot\mathbf{v}$	(inner product of \mathbf{u} and \mathbf{v})		41	133
$\langle {f u} {f v} angle$	(unitary product of \mathbf{u} and \mathbf{v})		89	337
$ \mathbf{v} $	(magnitude of \mathbf{v})		42	139
$ \mathbf{L} _{ u, u'}$	(operator norm of L relative to ν, ν')		52	174
$ \mathbf{L} _{ u}$	(operator norm of the line on ${\bf L}$ relative to $\nu)$		52	174
$ \mathbf{L} $	(operator norm of L relative to magnitude)		52	176
$[\mathbf{L}]_{\mathbf{b}}$	(matrix of the lineon \mathbf{L} relative to the basis \mathbf{b})		18	63
$[\mathbf{h}]^c, [\mathbf{h}]_c, [\mathbf{T}]^c{}_d$	(components relative to a coordinate system)	71,	73	279,289

Index of Multiple-Letter Symbols

		Section	Page
Acc	(set of accumulation points, of a set)	57	197
add	(addition mapping)	11	39
Aspec	(angle-spectrum, of a lineon)	88	333
Asps	(angle-spectral space, of a lineon)	88	333
Ball	(ball, in a genuine Euclidean space)	46	153
Bdy	(boundary, of a set)	53	179
Box	(norming box, determined by a basis)	51	168
Ce	(Norming cell, of a norm)	51	164
$^{\mathrm{ch}}$	(characteristic family or function, of a set)	$02, \ 03$	8, 10
$^{\mathrm{chp}}$	(characteristic polynomial, of a lineon)	95	370
Clo	(closure, of a set)	53	178
Cod	(codomain, of a mapping)	03	9
Comm	(commutant algebra, of a lineon)	18	62
Conf	(set of confined mappings)	62	213, 216
Curl	(curl, of a mapping)	611	261
cxc	(convex-combination mapping, of a family in a		
	flat space)	37	124
Cxh	(convex hull, of a subset of a flat space)	37	123
dd	(directional derivative)	65	233
deg	(degree, of a polynomial)	92	353
\det	(determinant)	73	287
diam	(diameter)	52	173
diff	(point-difference mapping)	32	103
\dim	(dimension, of a linear space or a flat space)	17, 32	58, 107
div	(divergence)	67	239
Dmd	(norming diamond, determined by a basis)	51	168
Dom	(domain, of a mapping)	03	9
dst	(distance function, of a genuine Euclidean space)	46	152
Eis	(group of Euclidean automorphisms)	45	149
emult	(elementary multiplicity function, of a lineon)	95	370
ev	(evaluation, on a set-product or a set of mappings)	04, 22,	16,17,74

		Sec	tion	Pag	ge	
\exp	(exponential, lineonic exponential)	08,	612	2 34,	266	
Fin	(set of all finite subsets, of a set)		05		21	
Fis	(group of flat automorphisms)		33		111	
flc	(flat combination mapping, of a family in a flat space)		35		116	
Flf	(space of flat functions)		36		120	
Fsp	(flat span, of a subset of a flat space)		32		107	
Gr	(graph, of a mapping)		03		10	
ind	(index, of an inner-product space)		47		157	
Inj	(set of all injective mappings from a given set					
	to another)		04		16	
\inf	(infinum, of a set)		08		32	
ins	(insertion mapping)	14,	15	48,	52	
Int	(interior, of a set)		53		177	
inv	(inversion mapping)		68		246	
ip	(inner-product)		41		133	
Ker	(kernel, of a homomorphism)		06		24	
lim	(limit)	08,	55,	57 34,	186, 19	98
Lin	(space of linear mappings, from a given linear space					
	to another; algebra of lineons)	14,	18	47,	61	
Lin_2	(space of bilinear mappings)		24		81	
Lis	(set of linear isomorphism, from a given linear space					
	to another; linear group)	14,	18	48,	62	
lnc	(linear combination mapping, of a family in a					
	linear space)		15		51	
log	(lineonic logarithm)		85		320	
lp	(polar decomposition, left positive part)		86		324	
Lsp	(linear span, of a subset of a linear space)	12,	92	42,	355	
Map	(set of all mappings, from a given set to another)		04		16	
max	(maximum, of a set)		08		32	
\min	(minimum, of a set)		08		32	
mult	(multiplicity function, of a lineon)	82,	81() 307	,340	
Nhd	(collection of neighborhoods, of a point)	,	53		177	

$Index \ of \ Multiple-Letter \ Symbols$

		Sec	tion	Pa_{2}	ge
no	(norm, of a norming cell)		51		165
Null	(nullspace, of a linear mapping)		13		46
opp	(opposition mapping)		11		39
or	(polar decomposition, orthogonal part)		86		324
Orth	(set of orthogonal mappings, from a given				
	inner-product space to another; orthogonal group)		43	141	1,142
Perm	(set of all permutations, of a given set)		04		16
Pos	(set of positive symmetric lineons)		85		316
Pos^+	(set of strictly positive symmetric lineons)		85		316
pow	(lineonic power)		66		237
Pspec	(pair-spectrum, of a lineon)		88		330
\mathbf{Psps}	(pair-spectral space, of a lineon)		88		330
${ m Qu}$	(space of quadratic forms)		27		94
Qspec	(quasi-spectrum, of a lineon)		87		327
Qsps	(quasi-spectral space, of a lineon)		87		327
Rng	(range, of a family or a mapping)	02,	03	7,	10
rp	(polar decomposition, right positive part)		86		324
sep	(separation function, of a Euclidean space)		45		148
sgn	(sign-function)		08		32
sig	(signature, of an inner-product space)		47		155
Skew	(space of skew linear mappings or lineons)	27,	41	92,	135
Skew_2	(space of skew bilinear mappings)		24		83
sm	(scalar-multiple mapping)	11,	89	39,	335
Small	(set of small mappings)		62	212	2,216
Spec	(spectrum, of a lineon)	82,	810	307	7,340
Sph	(sphere, in a genuine Euclidean space)		46		153
Sps	(spectral space, of a lineon)	82,	810	307	7,340
\mathbf{sq}	(inner square)		41		133
sqrt	(lineonic square root)		85		317
sqrt^+	(strict lineonic square root)		85		318
ssq	(sum-sequence, of a sequence)	08,	55	33,	191
str	(striction, of a mapping relative to given norms;				
	absolute striction)		64	223	3,227

$Index \ of \ Multiple-Letter \ Symbols$

		Section	Page
Sub	(subsetset, of a set)	01	3
sum	(summation mapping)	15	51
sup	(supremum of a set)	08	32
Supt	(support, of a family)	07	28
Sym	(space of symmetric linear mappings or lineons)	27, 41	92, 135
Sym_2	(space of symmetric bilinear mappings)	24	83
tr	(trace, of a lineon)	26	89
Ubl	(unit ball, in a genuine inner-product space)	42	140
Unit	(set of unitary mappings, from a given unitary		
	space to another; unitary group)	89	339
Usph	(unit sphere, in a genuine inner-product space)	42	140

		ball	152, 169, 172
l^1 -norm	172	barycenter	112, 116
l^{∞} -norm	172	barycentric coordinates	119
		basis	52
abelian	26	basis field	278
absolute striction	227	big oh	217
absolute value	31	bijection	11
accumulation point	34, 197	bilinear form	92
action, of a group	101	bilinear mapping	80
addition	25, 39	Borel-Lebesgue Theorem	204
additive decomposition	322	boundary	126, 179
adjoint	74	bounded	32
adjustment, of a mapping	13	bounded above [bounded below]	32
affine function	122	bounded sequence	187
affine hull	108	bounded set	172
affine mapping	112	Bourbaki	306
affine space	108	box	168
affine subset	108	Bunyakovsky's inequality	141
affine transformation	111		
algebra of lineons	62	cancellation law	24
alternating	85	cancellative	24
angle-spectrum	333	canonical matrix	363
angle-spectrum space	333	Carathéodory's Theorem	126
annihilator	72	cardinal	20
anti-Hermitian	340	Cartesian Coordinates	290
anti-linear	340	Cartesian decomposition	85
anticommute	70	Cartesian product	9
antiderivative	36	Cauchy Convergence Criterion	192
antisymmetric	85	Cauchy sequence	192
antitome	32	Cauchy's inequality	141
average	120	cell	163

cell modelled on a norming cell center of mass centralizer centroid 113 characteristic family characteristic function characteristic polynomial characteristic value charge distribution Christoffel symbols class ${\cal C}^n$ 35. class C^{∞} 35class \mathbf{C}^1 class \mathbf{C}^2 closed ball closed interval closed set closure closure, of a cell closure, of a norming cell cluster point 33 codomain, of a mapping collection column, of a matrix combination, in a pre-monoid commutant-algebra commutative commutative ring $\operatorname{commute}$ compact complement complementary complex dual space complex inner-product complex space complexification

167	complexor		334
107	component		52
64	component-family		279
04	composite		11
, 110	Composition Rule		222
0	confined	213,	216
10 270	congruence		154
37U 210	congruent		153
$\frac{310}{111}$	conjugate-complex structure		335
111	conjugate-linear mapping		336
288	connected		226
, 209	connection components		281
, 209	constant		11
218	constraint		252
218 159	constricted mapping		222
152	contained, in a set		3
32 170	continuous	34,	192
179	contraction		230
	contravariant components	138,	289
107	convergence, of a sequence	33,	186
104	convex hull		123
, 180	convex set		123
9	convex-combination		124
3	coordinate		54
8	coordinate curve		280
22	coordinate system		277
22	coordinate transformation		281
62 95	COS		273
25	covariant components	138,	289
26	covariant derivatives		285
11	covector		71
199	covector field		279
5	cover	5,	199
44	cross-polytope	,	172
330	cross-power		18
340	cross-product, of a family of		
334	mappings		18
347			

386

curl	261	dual norm	175
curvilinear coordinate		dual space	71
system	280	dual, of a basis	78
cyclic lineon	362	dyadic product	88
cylindrical coordinates	293		
		eigenvalue	310
D'Alembertian	241	elementary	
decomposition, of a		\mathbf{L} -decomposition	350
linear space	303	elementary \mathbf{L} -space	350
definite quadratic form	92	elementary divisor	352, 370
degree, of a polynomial	275, 353	elementary lineon	350
depth, of an elementary		elementary multiplicity	370
lineon	359	ellipsoid	344
derivative	34, 209	elliptical coordinates	300
determinant	287, 370	empty set	3
deviation components	281	enumeration	20
diagonal matrix	8	equivalence classes	6
diagonal, of a matrix	8	equivalence relation	6
diameter	173	Euclidean isomorphism	149
diamond	168	Euclidean mapping	148
differentiable	34, 209, 218	Euclidean norm	143
differential	222	Euclidean space	148
dimension	58,107	Euclidean vector space	141
Dini's Theorem	208	evaluation	16, 17
direct product	9	evaluation mapping	17
direct sum	44, 51, 306	exponential	34
direction space	106	exponential, lineonic	266
directional derivative	233	extended-real-number	32
disjoint	4, 5	external translation	
disjunct	43, 303	space	105
distance	196	extremum	35
distance function	152		
distributive law	25	family	7
divergence	239	Feéchet derivative	222
domain, of a mapping	9	field	26
dot product	138	fixed point	11
double-signed	94	flat	106
doubleton	3	flat basis	118
dual	74	flat coordinate system	280
dual basis field	278	flat function	120

flat isomorphism	111	hype
flat mapping	108	
flat space	101	idem
flat span	106	idem
flat-combination	117	iden
flatly independent family	118	iden
flatly spanning family	118	imag
frame	120	imag
free action	102	inclu
frontier	182	inclu
function	9	inde
function of two variables	18	inde
functional	9	inde
fundamental sequence	192	inde
Fundamental Theorem of		inde
Algebra	275	spa
future-directed	161	Inert
		infin
Gamma symbols	285	infin
Gaussian elimination	58	injec
general linear group	64	injec
genuine Euclidean space	152	injec
genuine inner product	133	inne
genuine interval	31	inne
genuine unitary space	337	inne
genuinely orthonormal	136	inne
gradient	218	inser
Gram-Schmidt		integ
orthogonalization	159	integ
graph, of a mapping	10	integ
group	22	integ
group-isomorphism	24	inter
groupable	23	inter
		inter
half-line	32	inter
half-open interval	32	inva
half-space	126	inve
harmonic function	241	inve
Heine-Borel Theorem	204	inve
Hermitian	340	isola
homomorphism	24	isom
-		

111	hyperplane	107, 121
101	idempotent	64
106	idempotents, family of	306
117	identity	26
118	identity mapping	11
118	image mapping	12
120	imaginary part, of a C-lineon	343
102	included, in a set	3
182	inclusion mapping	11
9	indefinite quadratic form	96
18	indentification	2
9	index of nilpotence	363
192	index set	7
	index, of an inner-product	
275	space	157
161	Inertia, Law of	158
	infimum	32
285	infinite series	37
58	injection	11
64	injective family	7
152	injective mapping	10
133	inner product	133
31	inner square	133
337	inner-product components	285
136	inner-product space	133
218	insertion mapping	49, 52
	integral	35, 254
159	integral domain	27
10	integral representation	256
22	integral ring	26
24	interior	179
23	intersection	4, 5, 15
	intersection-stable	13
32	interval	31
32	invariant	13
126	inverse	11, 26
241	inversion mapping	246
204	invertible mapping	10
340	isolated point	197
24	isometry	154

isotone	32	linear span	42
isotropic	158	linear transformation	46, 64
iterate	11	linearly dependent family	52
		linearly independent family	52
Jacobian	251	lineon	61
Jordan matrix	367	lineon field	279
Jordan-algebra	98	lineon-group	62
		lineonic extension	316
kernel	24, 46	lineonic nth power	237, 317
Kronecker delta	58	lineonic polynomial function	354
		Lipschitz number	228
ℓ^{∞} -norm	172	Lipschitzian	228
ℓ^1 -norm	172	list	7
L-space	62, 307	local inverse	243
Lagrange multipliers	254	local maximum	
Laplacian	241	[local minimum]	251
latent root	310	locally invertible	243
Lebesgue number	204	locally uniform convergence	190
Lebesgue's Covering Lemma	204	logarithm, lineonic	320
left-inverse	11	Lorentz group	143
left-multiplication mapping	67	lower bound	32
length, of a list	7		
Lie-algebra	98	magnitude, of a vector	139
limit point	37	map	10
limit, of a function	34	mapping	9
limit, of a mapping	198	mass-point	113
limit, of a sequence	186	matrix	8,55,63
limit, of a sequence	33	matrix, of a bilinear form	93
line	107	matrix-algebra	64
linear \mathbf{L} -span	355	maximal \mathbf{L} -space	349
linear combination	51	maximum [minimum]	32, 35
linear form	71	Mean-Value Theorem	37
linear function	122	median	114
linear functional	74	member-wise difference	25
linear isomorphism	45	member-wise opposite	25
linear manifold	108	member-wise product	24
linear mapping	44	member-wise reciprocal	25
linear operator	46	member-wise sum	25, 29
linear operator	64	midpoint	114, 163
linear space	39	minimal \mathbf{L} -space	349

minimal polynomial	356		
mixed components	289	open segment	163
monic polynomial	353	open set	179, 192
monoid	22	open-half-space	126
monoidable	23	operator	9,64
multiple	28 28	operator norm	174
multiplication	- 0 24	opposite	25
multiplication of lineons	61	opposition	39
multiplicative group	26	orbit, under an action	102
multiplicity of a	20	origin	41, 280
spectral value	307	orthogonal	134, 310
spectral value	001	orthogonal family of	
negative	26	subspaces	310
negative quadratic or	20	orthogonal group	142
bilinear form	94	orthogonal isomorphism	141
negative-regular	155	orthogonal lineon	142
neighborhood	177 192	orthogonal mapping	141
neutral of a monoid	22	orthogonal projection	138
neutral-subgroup	23	orthogonal supplement	137
neutrality law	<u>-</u> 0 22	orthonormal	136
nilpotency	69.362		
nilpotent lineon	69.362	pair	8
non-degenerate quadratic or	,	pair-spectral space	330
bilinear form	94	pair-spectrum	330
non-isotropic subspace	138	paraboloidal coordinates	301
non-singular subspace	138	parallel flats	106
norm	164	parallelepiped	172
normal lineon	334	parallelogram	130, 172
norming box	167	parallelogram law	160
norming cell	163	parallelotope	172
norming diamond	168	partial derivative	228, 231
null set	6	partial-gradient	228, 231
nullity	61	partition	5
nullspace	45	past-directed	161
		perfect field	374
one-to-one	14	permutation	16
one-to-one correspondence	14	permutation-group	23
onto	14	perpendicular projection	137
open interval	32	perpendicular turn	290, 326

390

physical components	299		
pieces of a partition	200	quasi-spectral space	327
plane	107	quasi-spectrum	327
point	103		
point-difference	103	range, of a family	7
point-spectrum	310	range, of a mapping	10
Polar Coordinates	290	rank	61
polar decomposition	322	real part, of a \mathbb{C} -lineon	338
polynomial	275, 353	reciprocal	24
polynomial function	275, 354	reflection	334
positive definite	96. 321	regular subspace	136, 148, 155
positive quadratic or	00,011	Relativity	158
bilinear form	94	restriction, of a mapping	12
positive semidefinite	96. 321	resultant force	115
positive symmetric	00,011	reversion law	22
lineons	316	reversion, in a group	22
positive-regular	155	right-inverse	11
power set	6	ring	25
power-space	50	rng	27
pre-image mapping	12	rotation	334
pre-monoid	22	row, of a matrix	8
pre-ring	27		
primary decomposition	352	scalar field	279
prime polynomial	356	scalar product	138
prime polynomial, of an		scale	167
elementary lineon	359	Schwarz's inequality	141
principal direction, of an		second dual	74
ellipsoid	344	second gradient	218
process	209	secular value	310
product	24	segment	123
product, of a family	29	self-adjoint	340 7
product, of lineons	61	semi-indexed family	1 244
product-space	48, 49	semi-axes, or an empsoid	044 240
projection	19,64	semi simple lineen	040 252
projections, family of	306	somigroup	
proper number	310	separation function	20 1/8
proper subset	3	Separation Theorem	140
pseudo-Euclidean space	151		129 8 186
		series	37
quadratic form	94	set_difference	57
quadruple	8		4

set-power	7, 8	standard basis	55
set-product	8, 15	stream-function	272
set-square	8	striction	223
sign	31	strictly antitone	32
signal-like	158	strictly isotone	32
signature	155	strictly negative	2
similar lineons	367	strictly negative quadratic or	
simple lineon	350	bilinear form	94
simply connected	263	strictly positive	2
sin	273	strictly positive quadratic or	
single-signed	94	bilinear form	94
singlet	7	strictly positive symmetric	
singleton	3	lineons	316
singleton-partition	6	strip	181
singular matrix	58	sub-pre-monoid	22
singular subspace	155	subgroup	23
skew bilinear mapping	83	submonoid	23
skew lineon	135	subring	26
skew-Hermitian	340	subsequence	33, 187
skewsymmetric	85	subspace	42
small mapping	212, 216	subspace generated by	44
small oh	217	sum	25
space of linear mappings	47	sum-sequence	33, 191
space-like	158	summation mapping	51
span-mapping	13	supplement	43
spanned	42	supplementary	43
spanning family	52	supremum	32
spectral idempotents	313	surjective mapping	10
spectral radius	228	Sylvester's Law	158
spectral resolution	313	symmetric bilinear mapping	83
spectral space	307, 340, 345	symmetric lineon	135
spectral value	307	symmetric matrix	8
spectral vector	307	symmetry-group	154
spectrum	307, 340, 362		
sphere	152	tangent	218
Spherical Coordinates	295	tensor	64
square matrix	8	tensor product	86, 91
square root, lineonic	317	tensor product space	91
square root, strict lineonic	318	term, of a family	7

392

term-wise evaluation	17	value-
tetrahedron	114	value-
three-index symbols	285	value-
time-like	158	value-
total charge	111	value-
totally isotropic	158	vector
totally singular	155	Vector
trace	89, 111	vector
transformation	9	vector
transformation-monoid	23	vector
transitive action	102	void
translated subspace	108	
translation	103	Wave-
translation space	103	weak
transpose	8	Weier
transpose, of a linear		weight
mapping	71	world-
transposition	72	
triple	8	zero
trivial partition	6	zero-n
-		zero-s
uniformly continuous	194	
union	4, 5, 15	
unit	26	
unit ball	140, 172	
unit cube	323	
unit matrix	63	
unit sphere	140	
unit vector	139	
unitary group	339	
unitary isomorphism	339	
unitary mapping	339	
unitary product	337	
unitary space	337	
unity	24	
upper bound	32	
value, of a mapping	9	
value-wise absolute value	33	

,	value-wise n'th power	33
-	value-wise opposite	33
)	value-wise pair formation	17
;	value-wise product	33
	value-wise sum	33
;	vector	103
,	Vector Analysis	243, 264
	vector field	279
)	vector space	41
;	vector-curl	264
2	void	6
,		
5	Wave-Operator	241
;	weak boundedness	177
,	Weierstrass Comparison Test	19
	weight	116
	world-vector	158
2		
,	zero	25, 39
;	zero-mapping	45
	zero-space	42