
Chapter 9

The Structure of General

Lineons

In this chapter, it is assumed again that all linear spaces under consideration
are finite-dimensional except when a statement to the contrary is made.
However, they may be spaces over an arbitrary field F. If F is to be the field
R of real numbers or the field C of complex numbers, it will be explicitly
stated. We will make frequent use of the definitions and results of Sects.81
and 82, which remain valid for finite-dimensional spaces over F even if F is
not R.

91 Elementary Decompositions

Let L be a lineon on a given linear space V.

Definition 1: We say that a subspace M of V is a minimal L-space
[maximal L-space] if M is minimal [maximal] (with respect to inclusion)
among all L-subspaces of V that are different from the zero space {0} [the
whole space V].

If V is not itself a zero-space, then there always exist minimal and max-
imal L-spaces. In fact, if U is an L-space and U 6= {0} [ U 6= V], then U
includes [is included in] a minimal [maximal] L-space. The following result
follows directly from Def.1.

Proposition 1: Let U be an L-subspace of V. If M is a minimal L-
space, then either M∩U = {0} or else M ⊂ U . If W is a maximal L-space,
then either W + U = V or else U ⊂ W.

The next result is an immediate consequence of Prop.2 of Sect.21 and
Prop.1 of Sect.82.
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Proposition 2: A subspace M of V is a minimal [maximal] L-space if
and only if the annihilator M⊥ of M is a maximal [minimal] L⊤-space.

Definition 2: We say that the lineon L on V is an elementary lineon
if there is exactly one minimal L-space. If L is an arbitrary lineon on V,
an L-subspace U of V is called an elementary L-space if L|U is elemen-
tary. We say that a decomposition of V (see Sect.81) is an elementary
L-decomposition of V if all of its terms are elementary L-spaces.

The following result is an immediate consequence of Def.2.
Proposition 3: Let L ∈ LinV be an elementary lineon and M its (only)

minimal L-space. If U is a non-zero L-space, then M ⊂ U and L|U ∈ Lin U
is again an elementary lineon and the (only) minimal L|U -space is again M.

We say that a lineon L ∈ LinV is simple if V 6= {0} and if there are no
L-subspaces other than {0} and V. A simple lineon is elementary; its only
minimal L-space is V and its only maximal L-space is {0}. If L is elementary
but not simple and if W is a maximal L-space, then W includes the only
minimal L-space of V. A lineon of the form λ1V , λ ∈ F, is elementary (and
then simple) if and only if dimV = 1.

The significance of Def.2 lies in the following theorem, which reduces the
study of the structure of general lineons to that of elementary lineons.

Elementary Decomposition Theorem: For every lineon L there ex-
ists an elementary L-decomposition.

The proof is based on three lemmas. The proof of the first of these will
be deferred to Sect.93; it is the same as Cor.2 to the Structure Theorem for
Elementary Lineons.

Lemma 1: A lineon L is elementary if and only if there is exactly one
maximal L-space.

Lemma 2: Let L ∈ LinV, let W be a maximal L-space and let E be an L-
space that is minimal among all subspaces of V with the property W+E = V.
Then E is an elementary L-space.

Proof: By Prop.1 we have E 6⊂ W and hence E∩WsubsetneqqE . Now let
U be an L-space that is properly included in E , i.e. an L|E -subspace of E other
than E . In view of the assumed minimality of E , we have W+UsubsetneqqV.
Using Prop.1 again, it follows that U ⊂ W and hence U ⊂ E ∩ W . We
conclude that W ∩ E is the only maximal L|E -space and hence, by Lemma
1, that E is elementary.

Lemma 3: Let L ∈ LinV and let E be an elementary L-space with
greatest possible dimension. Then there is an L-space that is a supplement
of E in V.

Proof: Let M be the (only) minimal L-space included in E . By Prop.2,
M⊥ is then a maximal L⊤-space. We choose a subspace Ẽ of V∗ that is
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minimal among all subspaces of V∗ with the property M⊥ + Ẽ = V∗. By
Lemma 2, Ẽ is an elementary L⊤-space.

In view of (21.11) and (22.5), we have {0} = V∗⊥ = (M⊥ + Ẽ)⊥ =
M⊥⊥ ∩ Ẽ⊥ = M ∩ Ẽ⊥ and hence M 6⊂ Ẽ⊥ and also M 6⊂ Ẽ⊥ ∩ E . Since
Ẽ⊥ ∩ E is an L-subspace of V, it follows from Prop.1 that

Ẽ⊥ ∩ E = {0}. (91.1)

Using Prop.4 of Sect.17 and the Formula (21.15) for Dimension of Annihi-
lators, we easily conclude from (91.1) that

dim Ẽ ≥ dim E . (91.2)

Since Ẽ is elementary, we can repeat the argument above with L replaced
by L⊤ and E replaced by Ẽ . Since L⊤⊤ = L, we thus find an elementary
L-subspace E ′ of V such that

dim E ′ ≥ dim Ẽ . (91.3)

Since E was assumed to have the greatest possible dimension, we must have
dim E ′ ≤ dim E and hence, by (91.2) and (91.3), dim Ẽ = dim E , which gives

dimV = dim Ẽ⊥ + dim Ẽ = dim Ẽ⊥ + dim E .

In view of (91.1), it follows from Prop.5 of Sect.17 that Ẽ⊥ is a supplement
of E .

Proof of the Theorem: We will show that there exists a collection of
elementary L-spaces which, when interpreted as a self-indexed family, is a
decomposition of V.

We proceed by induction over the dimension of DomL. If
dimDomL = 0, then the empty collection is an elementary L-
decomposition. Assume then, that L ∈ LinV with dimV > 0 is given and
that the assertion is valid for every lineon whose domain has a dimension
strictly less than dimV.

Since V is not the zero-space, there exist minimal L-spaces and hence
elementary L-spaces. We choose an elementary L-space E with great-
est possible dimension. By Lemma 3, we can choose an L-subspace U
that is a supplement of E in V. Since dimU = dimV − dim E < dimV,
we can apply the induction hypothesis to L|U and determine a collection
F of elementary L|U -spaces which, self-indexed, is a decomposition of U .
The elements of F are elementary L-spaces. Since E is a supplement of
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U =
∑

(F | F ∈ F), it follows from Prop.2,(iii) of Sect.81 that F∪ {E} is an
elementary L-decomposition of V.

We say that a lineon L ∈ LinV is semi-simple if there is an L-decompo-
sition (Ui | i ∈ I) of V such that L|Ui

is simple for each i ∈ I. Of course, such
a decomposition is an elementary decomposition.

If V is a genuine inner product space, then every normal lineon N (and
hence every skew, symmetric, or orthogonal lineon) on V is semi-simple.
Indeed, if we choose a basis e as in the Corollary to the Structure Theorem
for Normal Lineons of Sect.88 and then define

Uk :=

{

Lsp{e2k−1, e2k} for all k ∈ m]

Lsp{e2m+k} for all k ∈ (n − m)] \ m]

}

, (91.4)

then (Uk | k ∈ (n−m)]) is a decomposition of V such that L|Uk
is simple for

each k ∈ (n − m)].

Pitfall: The collection of subspaces that are the terms of an elementary
L-decomposition is, in general, not uniquely determined by L. For example,
if L = 1V , and if b := (bi | i ∈ I) is a basis of V, then (Lsp{bi} | i ∈ I)
is an elementary 1V -decomposition of V. If dimV > 1, then the collection
{Lsp{bi} | i ∈ I} depends on the choice of the basis b and is not uniquely
determined by V.

Notes 91

(1) The concept of an elementary lineon and the term “elementary” in the sense of
Def.2, were introduced by me in 1970 (see Part E of the Introduction). I chose this
term to correspond to the commonly accepted term “elementary divisor”. In fact,
the elementary divisors of a lineon can be matched, if counted with appropriate
multiplicity, with the terms of any elementary decomposition of the lineon (see
Sect.95).

(2) The approach to the structure of general lineons presented in this Chapter was
developed by me before 1970 and is very different from any that I have seen in the
literature. The conventional approaches usually arrive at an elementary decom-
position only after an intermediate (often called “primary”) decomposition, which
I was able to bypass. Also, the conventional treatments make heavy use of the
properties of the ring of polynomials over F (unique factorization, principal ideal
ring property, etc.). My approach uses only some of the most basic concepts and
facts of linear algebra as presented in Chaps.1 and 2. Not even determinants are
needed. The proofs are all based, in essence, on dimensional considerations.
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92 Lineonic Polynomial Functions

Let F be any field. The elements of F(N), i.e. the sequences in F indexed on
N and with finite support (see (07.10)), are called polynomials over F. As
we noted in Sect.14, F(N) is a linear space over F. It is infinite-dimensional.
We use the abbreviation

ι := δN

1 , (92.5)

where δN is the standard basis of F(N) (see Sect.16). The space F(N) acquires
the structure of a commutative ring (see Sect.06) if we define its multiplica-
tion (p, q) 7→ pq by

(pq)n :=
∑

k∈n[

pkqn−k for all n ∈ N. (92.6)

This multiplication is characterized by the condition that the n’th power ιn

of ι be given by
ιn = δN

n for n ∈ N. (92.7)

The unity of F(N) is ι0 = δN
0 . We identify F with the subring Fι0 of F(N) and

hence write
ξ = ξι0 = ξδN

0 for all ξ ∈ F, (92.8)

so that 1 = ι0 denotes the unity of both F and F(N). We have

p =
∑

k∈N

pkι
k for all p ∈ F(N). (92.9)

The degree of a non-zero polynomial p is defined by

deg p := maxSupt p = max{k ∈ N | pk 6= 0} (92.10)

(see (07.9)). If p ∈ F(N) is zero or if deg p ≤ n, then

p =
∑

k∈(n+1)[

pkι
k. (92.11)

We have
deg (pq) = deg p + deg q (92.12)

for all p, q ∈
(

F(N)
)×

. We say that p ∈
(

F(N)
)×

is a monic polynomial if
pdeg p = 1. If this is the case, then

p = ιdeg p +
∑

k∈(deg p)[

pkι
k. (92.13)
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The polynomial function (ξ 7→ p(ξ)) : F → F associated with a given
polynomial p ∈ F(N) is defined by

p(ξ) :=
∑

k∈N

pkξ
k for all ξ ∈ F. (92.14)

We call p(ξ) the value of p at ξ. For every given ξ ∈ F, the mapping
(p 7→ p(ξ)) : F(N) → F is linear and preserves products, i.e. we have

p(ξ)q(ξ) = (pq)(ξ) for all p, q ∈ F(N). (92.15)

Remark: If F := R, then there is a one-to-one correspondence between
polynomials and the associated polynomial functions. In fact, using only
basic facts of elementary calculus, one can show that f : R → R is a poly-
nomial function if and only if, for some n ∈ N, f is n times differentiable and
f (n) = 0 (see Problem 4 in Chap.1). If this is the case, then there is exactly
one p ∈ R(N) such that f = (ξ 7→ p(ξ)) and, if f 6= 0, then deg p < n. In the
case when F := R, one often identifies the ring R(N) of polynomials over R

with the ring of associated polynomial functions; then ι as defined by (92.1)
becomes identified with the identity mapping of R as in the abbreviation
(08.26).

If F is any infinite field, one can easily show that there is still a one-to-one
correspondence between polynomials and polynomial functions. However, if
F is a finite field, then every function from F to F is a polynomial function
associated with infinitely many different polynomials.

Let V be a linear space over F. The lineonic polynomial function
(L 7→ p(L)) : LinV → LinV associated with a given p ∈ F(N) is defined by

p(L) :=
∑

k∈N

pkL
k for all L ∈ LinV. (92.16)

We call p(L) the value of p at L. Again, for every given L ∈ LinV, the
mapping (p 7→ p(L)) : F(N) → LinV is linear and preserves products, i.e. we
have

p(L)q(L) = (pq)(L) for all p, q ∈ F(N). (92.17)

The following statements are easily seen to be valid for every lineon
L ∈ LinV and every polynomial p ∈ F(N).

(I) L commutes with p(L).

(II) Every L-invariant subspace of V is also p(L)-invariant.
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(III) Null p(L) and Rng p(L) are L-invariant.

(IV) If U is an L-subspace of V, then

p(L|U) = p(L)|U . (92.18)

(V) We have
p(L⊤) = (p(L))⊤. (92.19)

Pitfall: To call p(ξ), as defined by (92.10), and p(L), as defined by
(92.12), the value of the polynomial p at ξ and L, respectively, is merely a
figure of speech. One must often carefully distinguish between the polyno-
mial p, the polynomial function associated with p, and the lineonic polyno-
mial functions associated with p. For example, if p is a polynomial over C,
the polynomial function associated with the termwise complex-conjugate p
of p is not the same as the value-wise complex-conjugate of the polynomial
function associated with p. In some contexts it is useful to introduce explicit
notations for the polynomial functions associated with p (see, e.g. Problem
13 in Chapt.6).

Let a lineon L ∈ LinV be given. It is clear that the intersection of any
collection of L-invariant subspaces of V is again L-invariant. We denote
the span-mapping corresponding to the collection of all L-subspaces of V by
LspL (see Sect.03). If S ∈ SubV we call LspLS the linear L-span of S; it
is the smallest L-space that includes the set S. It is easily seen that

LspLS = Lsp{Lkv | v ∈ S, k ∈ N}, (92.20)

and, for each v ∈ V,

LspL{v} = {p(L)v | p ∈ F(N)}. (92.21)

Proposition 1: If p ∈
(

F(N)
)×

and v ∈ Null p(L), then

dimLspL{v} ≤ deg p. (92.22)

Proof: We put m := deg p. Since v ∈ Null p(L), we have

0 = p(L)v = pm(Lmv) +
∑

k∈m[

pk(L
kv).

Since pm 6= 0, it follows that Lmv ∈ Lsp{Lkv | k ∈ m[}. Hence, for every
r ∈ N, we have

Lm+rv ∈ (Lr)>(Lsp{Lkv | k ∈ m[}) = Lsp{Lk+rv | k ∈ m[}.
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Using induction over r ∈ N, we conclude that Lm+rv ∈ Lsp{Lkv | k ∈ m[}
for all r ∈ N and hence, in view of (92.16), that

LspL{v} = Lsp{Lkv | k ∈ m[}.

Since the list (Lkv | k ∈ m[) has m = deg p terms, it follows from the
Characterization of Dimension of Sect.17 that (92.18) holds.

Proposition 2: For every lineon L ∈ LinV, there is a unique monic
polynomial p of least degree whose value at L is zero. This polynomial p is
called the minimal polynomial of L.

Proof: Since LinV is finite-dimensional, the sequence (Lk | k ∈ N) must
be linearly dependent. In view of (92.12) this means that there is a p ∈
(

F(N)
)×

such that p(L) = 0. It follows that there is a monic polynomial q
of least degree such that q(L) = 0. If q′ were another such polynomial, then
(q − q′)(L) = 0. If q 6= q′, then deg (q − q′) < deg q = deg q′, and hence
a suitable multiple of q − q′ would be a monic polynomial with a degree
strictly less than deg q whose value at L is still zero.

If L ∈ LinV is given and if U is an L-subspace of V then the mini-
mal polynomial of L|U is the monic polynomial of least degree such that
U ⊂ Null q(L). Using poetic license, we sometimes call this polynomial the
minimal polynomial of U .

Proposition 3: Let L ∈ LinV and v ∈ V be given, and let q be the
minimal polynomial of L. If V = LspL{v}, then dimV = deg q.

Proof: Put n := dimV and consider the list (Lkv | k ∈ (n + 1)[). Since
this list has n + 1 terms, it follows from the Characterization of Dimension
that it must be a linearly dependent list. This means that

0 =
∑

k∈(n+1)[

hk(L
kv) = h(L)v

for some non-zero polynomial h with deg h ≤ n. By (92.13), we have

h(L)(p(L)v) = (hp)(L)v = ((ph)(L))v = p(L)(h(L)v) = 0

for all p ∈ F(N). Since V = {p(L)v | p ∈ F(N)} by (92.17), it follows that h
has the value zero at L. Therefore, since q is the minimal polynomial of L,
we have deg q ≤ deg h ≤ n. On the other hand, application of Prop.1 to q
yields n = dimV ≤ deg q.

We say that a polynomial p is prime if (i) p is monic, (ii) deg p > 0, (iii)
p is not the product of two monic polynomials that are both different from
p. We will see in the next section that in order to understand the structure
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of elementary lineons, one must know the structure of prime polynomials.
Unfortunately, for certain fields F (for example for F := Q) it is very difficult
to describe all possible prime polynomials over F. However in the case when
F is C or R, the following theorem gives a simple description.

Theorem on Prime Polynomials Over C and R: A polynomial p
over C is prime if and only if it is of the form p = ι − ζ for some ζ ∈ C.

A polynomial p over R is prime if and only if it is either of the form
p = ι − λ for some λ ∈ R or else of the form p = (ι − µ)2 + κ2 for some
(µ, κ) ∈ R × P×.

The proof of this theorem depends on the following Lemma.
Lemma 1: If p is a polynomial over C with deg p ≥ 1, then the equation

? z ∈ C, p(z) = 0 has at least one solution.
The assertion of this Lemma is included in Part (d) of Problem 13 in

Chap.6. The proof is quite difficult, but Problem 13 in Chap.6 gives an
outline from which the reader can construct a detailed proof.

Lemma 2: Let p be a monic polynomial over a field F and let ξ ∈ F be
such that p(ξ) = 0. Then there is a unique monic polynomial q over F such
that

p = (ι − ξ)q. (92.23)

The proof of this lemma, which is easy, is based on what is usually called
“long division” of polynomials. We also leave the details to the reader.

Proof of the Theorem: Let p be a prime polynomial over C. By
Lemma 1, we can find ζ ∈ C such that p(ζ) = 0. By Lemma 2, we then
have p = (ι − ζ)q for some monic polynomial q and hence, since p is prime,
p = ι − ζ and q = 1.

Let now p be a prime polynomial over R. If there exists a λ ∈ R such
that p(λ) = 0 we have p = (ι− λ)q for some monic polynomial q and hence,
since p is prime, p = (ι − λ) and q = 1. Assume, then, that p(λ) 6= 0 for all
λ ∈ R. Since R ⊂ C and hence R(N) ⊂ C(N), p is also a monic polynomial
over C. Hence, by Lemma 1, we can find ζ ∈ C \ R such that p(ζ) = 0 and
hence, by Lemma 2, a monic polynomial q ∈ C(N) such that p = (ι − ζ)q.
Since p ∈ R(N), we have

0 = p(ζ) = p(ζ) = p(ζ) = 0.

where p denotes the termwise complex-conjugate of p. It follows that
(ζ − ζ)q(ζ) = 0. Since ζ ∈ C \ R we have ζ − ζ 6= 0 and hence q(ζ) = 0.
Using Lemma 2 again, we can find a monic polynomial r ∈ C(N) such that
q = (ι − ζ)r and hence

p = (ι − ζ)q = (ι − ζ)(ι − ζ)r.
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If we put µ := Re ζ and κ := |Im ζ| then (ι − ζ)(ι − ζ) = (ι − µ)2 + κ2 and
hence

p = ((ι − µ)2 + κ2)r. (92.24)

Now, since p = p, it follows from (92.20) that

0 = ((ι − µ)2 + κ2)(r − r).

Since r − r ∈ R(N) and since the polynomial function associated with
((ι − µ)2 + κ2) has strictly positive values, the polynomial function asso-
ciated with r − r must be the zero function. In view of the Remark above,
it follows that r = r and hence r ∈ R(N). Since p is prime, it follows from
(92.20) that p = (ι − µ)2 + κ2 and r = 1.

It is easy to see that polynomials of the forms described in the Theorem
are in fact prime.

93 The Structure of Elementary Lineons

s The following result is the basis for understanding the structure of elemen-
tary lineons.

Structure Theorem for Elementary Lineons: Let L ∈ LinV be an
elementary lineon and let M be the (only) minimal L-space. Then:

(a) There is a unique monic polynomial q such that

M = Null q(L) and deg q = dimM. (93.1)

This polynomial q is prime.

(b) dimV is a multiple of dimM, i.e. there is a (unique) d ∈ N× such
that

dimV = d dimM. (93.2)

(c) There are exactly d + 1 L-spaces; they are given by

Hk := Null qk(L) = Rng qd−k(L), k ∈ (d + 1)[, (93.3)

and their dimensions are

dimHk = k dimM, k ∈ (d + 1)[. (93.4)
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In particular, we have

H0 = {0}, H1 = M, Hd = V. (93.5)

The polynomial q will be called the prime polynomial of L and the
number d the depth of L.

Proof of Part (a): Let q be a polynomial that satisfies (93.1). We
choose v ∈ M×. Since {v} ⊂ M and since LspL{v} is the smallest L-space
that includes {v}, it follows that LspL{v} ⊂ M. On the other hand, since
LspL{v} is a non-zero L-subspace, it follows from Prop.3 of Sect.91 that
M ⊂ LspL{v}. We conclude that M = LspL{v} = LspL|M

{v}. By Prop.3
of Sect.92, it follows that dimM is the degree of the minimal polynomial of
L|M. Since q has the value zero at L|M by (93.1) and since deg q = dimM, it
follows that q must be the minimal polynomial of L|M, and hence is uniquely
determined by L.

On the other hand, if q is defined to be the minimal polynomial of L|M,
it is not hard to verify, using Prop.3 of Sect.91 and Props.1 and 3 of Sect.92,
that (93.1) holds.

To prove that q is prime, assume that q = q1q2, where q1 and q2 are
monic polynomials. It cannot happen that both Null q1(L) := {0} and
Null q2(L) = {0}, because this would imply M = Null p(L) = {0}. As-
sume, for example, that Null q1(L) 6= {0} and choose v ∈ (Null q1(L))×.
By Prop.3 of Sect.91 it follows that M ⊂ LspL{v} and hence, by Prop.1 of
Sect.92, that deg q = dimM ≤ dim LspL{v} ≤ deg q1. In view of (92.8),
this is possible only when deg q = deg q1 and deg q2 = 0 and hence q1 = q
and q2 = 1.

The proof of the remaining assertions will be based on the following

Lemma: There is a d ∈ N× such that

qd(L) = 0, dimV = d dimM, (93.6)

and

dimRng qk(L) = (d − k) dimM for all k ∈ d]. (93.7)

Proof: Let j ∈ N be given and assume that qj(L) 6= 0, i.e. that U :=
Rng qj(L) is not the zero-space. By Prop.3 of Sect.91 we then have M ⊂ U .
By Part (a), it follows that M = Null q(L) = Null (q(L)|U). Noting that
Rng (q(L)|U) = Rng qj+1(L), we can apply the Theorem on Dimensions of
Range and Nullspace of Sect.17 to q(L)|U and obtain

dim Rng qj+1(L) + dimM = dimRng qj(L) (93.8)
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for all j ∈ N such that qj(L) 6= 0. For j = 0 (93.8) reduces to

dim Rng q(L) + dimM = dimV. (93.9)

Using induction, we conclude from (93.8) and (93.9) that

dimRng qj+1(L) = dimV − (j + 1) dimM (93.10)

for all j ∈ N for which qj(L) 6= 0. Since the right side of (93.10) becomes
negative for large enough j, there must be a d ∈ N× such that qd(L) = 0
and 0 = dimV − d(dimM), which proves (93.6). We have qk−1(L) 6= 0 for
all k ∈ d]. Hence, if we substitute j := k − 1 and dimV = d(dimM) into
(93.10), we obtain (93.7).

The part (93.6)2 of the Lemma asserts the validity of Part (b) of the
Theorem.

Proof of Part (c): Let k ∈ (d + 1)[ be given and put

Hk := Null qk(L). (93.11)

We apply the Theorem on Dimensions of Range and Nullspace to qk(L) and
use the Lemma to obtain

dimHk = dimV − dimRng qk(L) = k dimM, (93.12)

which proves (93.4). On the other hand, by (93.6)1, we have

{0} = Rng qd(L) = qk(L)>(Rng qd−k(L))

and hence Rng qd−k(L) ⊂ Hk. But by (93.12) and (93.7) we have dimHk =
dim Rng qd−k(L) and hence Hk = Rng qd−k(L), which proves (93.3).

Now let U be an L-subspace of V. If U = {0}, then U = H0. If
U 6= {0}, then Prop.3 of Sect.81 applies. Hence we can apply the Lemma
to L|U instead of to L and conclude that there is a k ∈ N× such that
dimU = k dimM and

0 = qk(L|U ) = qk(L)|U , i.e. U ⊂ Null qk(L) = Hk.

Since dimU = k dimM = dimHk by (93.12), it follows that Hk = U . Since
U was an arbitrary L-subspace of V, Part (c) follows.

We now list several corollaries. The first is an immediate consequence of
Part (c) of the Theorem.

Corollary 1: A lineon L ∈ LinV is elementary if and only if the collec-
tion of L-spaces is totally ordered by inclusion, which means that, given any
two L-spaces, one of them must be included in the other.
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The next two corollaries will be proved together.
Corollary 2: A lineon L is elementary if and only if there is exactly

one maximal L-space.
Corollary 3: If the lineon L is elementary, so is L⊤, and L⊤ has the

same prime polynomial and the same depth as L.
Proof: If L is elementary, with prime polynomial q and depth d, then,

by Part (c) of the Theorem, Hd−1 := Null qd−1(L) is the only maximal
L-space.

If there is only one maximal L-space W , then W⊥ is the only minimal
L⊤-space and hence L⊤ is elementary. In particular, if L is elementary, so is
L⊤. Hence, if L has only one maximal L-space, we can apply this observaton
to L⊤ and conclude that (L⊤)⊤ = L must be elementary. Thus, Cor.2 and
the first assertion of Cor.3 are proved.

If q is the prime polynomial of L, then W := Hd−1 = Rng q(L) is the
only maximal L-space and hence

W⊥ = (Rng q(L))⊥ = Null q(L)⊤ = Null q(L⊤)

(see (21.13) and (92.15)) is the only minimal L⊤-space. We have

dimW⊥ = dimV − dimW = dimV − dim Rng q(L)

= dimNull q(L) = dimM = deg q

by the Formula for Dimension of Annihilators, the Theorem on Dimensions
of Range and Nullspace and Part (a) of the Theorem. The uniqueness
assertion of Part (a) of the Theorem, applied to L⊤ instead of to L, shows
that q is also the prime polynomial of L⊤. Since dimV∗ = dimV and
dimW⊥ = dimM, it follows from part (b) of the Theorem that d is also
the depth of L⊤.

Corollary 4: If L ∈ LinV is elementary, if W is the (only) maximal
L-space and if v ∈ V \W, then V = LspL{v}.

Proof: We have LspL{v} 6⊂ W . Since all L-spaces other than V must
be included in W , it follows that LspL{v} = V.

Corollary 5: Let L ∈ LinV be an elementary lineon with prime polyno-
mial q and depth d. Then dimV = deg qd and qd is the minimal polynomial
of L.

Proof: Since V = Null qd(L) by Part (c) of the Theorem, qd has the
value zero at L. By Cor.4 and Prop.3 of Sect.92, the degree of the minimal
polynomial of L must be dimV. On the other hand, by (92.8), (93.1)2, and
(93.2), we have deg qd = d deg q = d(dimM) = dimV. Hence qd must be
the minimal polynomial of L.
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Remark: Another proof of the Structure Theorem can be based on the
fact, known to readers familiar with algebra, that the ring F(N) of polyno-
mials is a principal-ideal ring. The proof goes as follows: First, one shows
that if L ∈ LinV is cyclic in the sense that V = LspL{v} for some v ∈ V,
then a subspace U of V is an L-space if and only if U = Rng p(L) for some
monic divisor p of the minimal polynomial of L. One deduces from this that
if there is only one maximal L-space, the minimal polynomial of L must be
of the form qd, where q is a prime polynomial. Using an argument like the
one used in the proofs of Cor.2, and 3, one proves that Cor.2 and 3 are valid.
The remainder of the proof is then very easy.

As in the case when F := R (see Sect.82) the spectrum of a lineon L
on a linear space V over F is defined by

SpecL := {σ ∈ F | Null (L − σ1V) 6= {0}}. (93.13)

If L is elementary, then SpecL is non-empty only in the exceptional case
described as follows.

Proposition 1: If L ∈ LinV is elementary and has a non-empty spec-
trum, then this spectrum is a singleton, the only minimal L-space is one-
dimensional, the prime polynomial of L is ι − σ when σ :∈ SpecL, and the
depth of L is n := dimV. Also, there are exactly n+1 L-subspaces and they
are given by

Hk := Null (L − σ1V)k = Rng (L − σ1V)n−k, k ∈ (n + 1)[. (93.14)

Proof: Let L ∈ LinV by given. If σ ∈ SpecL, then every
one-dimensional subspace of Null (L−σ1V) is evidently a minimal L-space.
Therefore, if SpecL has more than one element or if dim Null (L − σ1V) ≥ 2
for some σ ∈ SpecL, there are at least two distinct minimal L-spaces. Hence,
if L is elementary, SpecL can have only one element. If σ is this element,
then Null (L− σ1V) is one-dimensional and it is the only minimal L-space.
The remaining statements follow immediately from the Structure Theorem
for Elementary Lineons.

A lineon L is said to be nilpotent if Lm = 0 for some m ∈ N×. The
least such m is then called the nilpotency of L.

Proposition 2: A lineon L ∈ LinV is both elementary and
non-invertible if and only if it is nilpotent with a nilpotency equal to dimV.

Proof: By Prop.1 of Sect.18 and (93.13), L is non-invertible if and only
if 0 ∈ SpecL. In view of this fact, the assertion follows immediately from
Prop.1.
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Notes 93

(1) The use of the terms “prime polynomial” and “depth” in the sense described in the
Structure Theorem for Elementary Lineons was recently proposed by J. J. Schäffer.

(2) What we call simply the “nilpotency” of a nilpotent lineon is sometimes called the
“index of nilpotence”.

94 Canonical Matrices

We assume that a linear space V over the field F is given. In this section, we
suggest methods for finding bases of V relative to which a given lineon on
L has a matrix of a simple and illuminating form. Such a matrix is called
a canonical matrix. In view of the Elementary Decomposition Theorem
of Sect.91, it is sufficient to consider only elementary lineons. Indeed, let
(Ei | i ∈ I) be an elementary L-decomposition for a given L ∈ LinV and let,
for each i ∈ I, a basis b(i) be determined such that the matrix Mi of L|Ei

relative to b(i) is canonical. Then one can “put together” (possibly with
the help of reindexing) the bases b(i), i ∈ I, to obtain a basis b of V such
that the only non-zero terms of the matrix M of L relative to b are those
in blocks of the form Mi along the diagonal. An illustration will be given at
the end of this section.

We first deal with elementary lineons having a non-empty spectrum.

Proposition 1: If L ∈ LinV is elementary and if its spectrum is not
empty, then there is a list-basis b := (bi | i ∈ n]), n := dimV, and σ ∈ F

such that

Lbi =

{

σbi if i = 1

σbi + bi−1 if i ∈ n] \ {1}

}

. (94.1)

Proof: By Prop.1 of Sect.93, there is σ ∈ F such that SpecL = {σ} and
the only maximal L-space is Hn−1 = Rng (L−σ1V). We choose v ∈ V\Hn−1

and define the list b by bi := (L − σ1V)n−iv for all i ∈ n]. We then have
(L−σ1V)b1 = (L−σ1V)nv = 0 and (L−σ1V)bi = bi−1 for all i ∈ n] \{1},
which proves (94.1).

The matrix [L]b of L relative to a basis b for which (94.1) holds is a
canonical matrix. It is given by

([L]b)i,j =







σ if j = i
1 if j = i + 1
0 otherwise







. (94.2)
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If n is small, it can be recorded explicitly in the form

[L]b =

















σ 1
σ 1

· ·
· ·

σ 1
σ

















, (94.3)

where zeros are omitted.

From now on we confine ourselves to the case when F := C or F := R.

Let V be a linear space over C, let L ∈ LinV be an elementary lineon,
and let q be its prime polynomial. By the Theorem on Prime Polynomials
over C and R of Sect.92, q must be of the form q = ι − σ for some σ ∈ C.
By (93.1) the minimal L-space is M = Null q(L) = Null (L − σ1V). Since
M 6= {0}, it follows that σ belongs to the C-spectrum of L. Hence this
spectrum is not empty. Therefore, Prop.1 applies and one can find a basis
b := (bi | i ∈ n]) such that the matrix [L]b is given by (94.2).

In sum, if F := C, the situation covered by Prop.1 of Sect.93 and Prop.1
above is general rather than exceptional.

We now assume that V is a linear space over R and that L ∈ LinV is
an elementary lineon. Let q be its prime polynomial. By the Theorem on
Prime Polynomials over C and R, we must have either q = ι − λ for some
λ ∈ R or else q = (ι−µ)2 +κ2 for some (µ, κ) ∈ R×P×. In the former case,
Prop.1 applies again. The latter case is covered by the following result.

Proposition 2: Let L ∈ LinV be an elementary lineon whose prime
polynomial is q = (ι − µ)2 + κ2, (µ, κ) ∈ R × P×, and whose depth is d.
Then there is a list-basis b := (bi | i ∈ n]), n := dimV = 2d, such that

Lb1 = µb1 + κb2,
Lb2 = −κb1 + µb2,

}

(94.4)

Lb2k+1 = µb2k+1 + κb2k+2 + b2k−1

Lb2k+2 = −κb2k+1 + µb2k+2 + b2k

}

for all k ∈ (d − 1)]. (94.5)

For each k ∈ d], the space Lsp{b2k−1,b2k} is a supplement of the L-space
Hk in the L-space Hk−1 (see (93.3)).

Proof: By the Structure Theorem for Elementary Lineons of Sect.93,
the L-subspaces are given by (93.3), and Hd−1 = Null qd−1(L) is the only
maximal L-space. We use the abbreviation D := L − µ1V , so that q(L) =
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D2 + κ21V . We choose v ∈ V \ Hd−1 and define the lists e := (ek | k ∈ d])
and f := (fk | k ∈ d]) recursively by

e1 := v, f1 :=
1

κ
De1, (94.6)

ek+1 := Dek + κfk
fk+1 := Dfk − κek

}

for all k ∈ (d − 1)]. (94.7)

An easy calculation shows that

κe1 = 1
κ
q(L)e1 − Df1,

κek+1 = q(L)fk −Dfk+1 for all k ∈ (d − 1)],

and

κek+1 = q(L)(Dfk−1 − fk) + 2κ2fk for all k ∈ (d − 1)].

Since q(L)d = 0, it follows that

qd−1(L)ek = − 1
κ
Dqd−1(L)fk for all k ∈ d],

qd−1(L)fk = 1
2κ

qd−1(L)ek+1 for all k ∈ (d − 1)]

}

. (94.8)

Using the fact that v = e1 /∈ Hd−1 = Null qd−1(L) and hence
q(L)d−1e1 6= 0, we conclude from (94.8), by induction, that

q(L)d−1ek 6= 0 and q(L)d−1fk 6= 0 for all k ∈ d]. (94.9)

We now define the list b := (bi | i ∈ n]) by

b2k−1 := q(L)d−kek

b2k := q(L)d−kfk

}

for all k ∈ d]. (94.10)

It follows easily from (94.6) and (94.7) that (94.4) and (94.5) hold and
hence that Lsp{bi | i ∈ n]} is L-invariant. On the other hand, we have
bn−1 = b2d−1 = ed by (94.10), and hence bn−1 /∈ Null q(L)d−1 = Hd−1 by
(94.9). Since Hd−1 is the only maximal L-space, it follows from Cor.4 of
Sect.93 that LspL{bn−1} = V. We conclude that Lsp{bi | i ∈ n]} = V and
hence, by the Theorem on Characterization of Dimension, that b is indeed
a basis of V.

The fact that Lsp{b2k−1,b2k} is a supplement of Hk in Hk−1 is an
immediate consequence of (94.9), (94.10), and (93.3).
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The matrix [L]b of L relative to a basis b for which (94.4) and (94.5)
hold is a canonical matrix. It is given by

([L]b)i,j =























µ if j = i
κ if j = i + 1 and i is odd

−κ if j = i − 1 and i is even
1 if j = i + 2
0 otherwise























. (94.11)

If n is small, it can be recorded explicitly in the form

[L]b =

































µ κ 1 0
−κ µ 0 1

µ κ 1 0
−κ µ 0 1

· ·
· ·

µ κ 1 0
−κ µ 0 1

µ κ
−κ µ

































, (94.12)

where zeros are omitted.
We now illustrate our results by considering a linear space V over R with

dimV = 4. If L is a lineon on V, we can then find a basis b := (bi | i ∈ 4])
such that the matrix [L]b has one of the following 9 forms (zeros are not
written):









λ1

λ2

λ3

λ4









,









σ 1
σ

λ1

λ2









,









µ κ
−κ µ

λ1

λ2









,









σ 1
σ 1

σ
λ









,









σ1 1
σ1

σ2 1
σ2









,









µ κ
−κ µ

σ 1
σ









,









µ1 κ1

−κ1 µ1

µ2 κ2

−κ2 µ2









,









σ 1
σ 1

σ 1
σ









,









µ κ 1
−κ µ 1

µ κ
−κ µ









.
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The number of terms in an elementary decomposition of L is 4 in the first
form, 3 in the second and third, 2 in the fourth up to the seventh, and 1 in the
last two. The first, third, and seventh forms apply when L is semi-simple.

Pitfall: If V is not the zero space, the basis relative to which the matrix
of an elementary lineon has the form (94.2) or (94.11) is never uniquely
determined by L. Indeed, the construction of these bases involved the choice
of an element outside the maximal L-space, and different choices give rise
to different bases.

Remark: Props.1 and 2 can be used to prove the following result: If V
is a field over C or R, then every L ∈ LinV has an additive decomposition
(N,S), N,S ∈ LinV, such that L = N+S, N is nilpotent, S is semi-simple,
and N and S commute. Indeed, if L is elementary, one can define S to be
the lineon whose matrix, relative to a basis for which (94.2) or (94.11) hold,
is obtained by replacing 1 on the right side of (94.2) or (94.11) by 0. Then
one can define N := L − S and prove that (N,S) is a decomposition with
the desired properties. The case when L is not elementary can be reduced
to the case when it is by applying the Elementary Decomposition Theorem.

Actually the result just described remains valid for a large class of fields
(often called perfect fields), and the decomposition can be proved to be
unique.

Notes 94

(1) A matrix of the type described by (94.2) or (94.3) is often called an “elementary
Jordan matrix”. A matrix whose only non-zero terms are in blocks of the form
described by (94.2) or (94.3) along the diagonal is often called a “Jordan matrix”,
“Jordan form”, or “Jordan canonical form”. Using this terminology, we may say,
in consequence of the results of Sects.91-93 and of Prop.1, that for every lineon on
a linear space over C, we can find a basis such that the matrix of the lineon relative
to that basis is a Jordan matrix.

95 Similarity, Elementary Divisors

Definitions We say that the lineon L ∈ LinV is similar to the lineon
L′ ∈ LinV ′ if there is a linear isomorphism A : V → V ′ such that

L′ = ALA−1, i.e. L′A = AL. (95.1)

Assume that L′ ∈ LinV ′ is similar to L ∈ LinV. By Cor. 2 to the
Characterization of Dimension (Sect.17) we then must have dimV = dimV ′.
Also, the following results, all easily proved, are valid.
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(I) A subspace U of V is L-invariant if and only if A>(U) is
L′-invariant. (See Prop.3 of Sect.82).

(II) L is elementary if and only if L′ is elementary. If this is the case, then
L and L′ have the same prime polynomial and the same depth.

(III) A decomposition (Ei | i ∈ I) of V is an elementary L-decomposition if
and only if (A>(Ei) | i ∈ I) is an elementary L′-decomposition of V ′.

Roughly, similar lineons have the same intrinsic structure.
The following result shows, roughly, that elementary decompositions of

similar lineons can be made to correspond.
Similarity Theorem for Lineons: Let (Ei | i ∈ I) and (E ′

i | i ∈ I ′) be
elementary decompositions of the given lineons L ∈ LinV and
L′ ∈ LinV ′, respectively. If L′ is similar to L, then there is an invertible
mapping ϕ : I → I ′ such that L|Ei

is similar to L|E′
ϕ(i)

for all i ∈ I.

The proof will be based on the following:
Lemma: Assume that (95.1) holds for given L ∈ LinV, L′ ∈ LinV ′, and

A ∈ Lis(V,V ′). Let E ,U be supplementary L-subspaces of V and let E ′,U ′

be supplementary L′-subspaces of V ′. Let E ∈ LinV be the idempotent for
which Null E = E and RngE = U and let F ∈ LinV ′ be the idempotent for
which Null F = U ′ and Rng F = E ′ (see Prop.4 of Sect.19). Then:

(a) Null (FA) is an L-subspace of V and Null (EA−1) is an L′-subspace
of V ′.

(b) A>(Null (FA|E)) = Null (EA−1|U ′).

(c) If dim E ≥ dim E ′ and Null (FA|E) = {0}, then L|E is similar to L′
|E′ ,

and L|U is similar to L′
|U ′.

Proof: It follows immediately from the definitions of E and F that E
commutes with L and that F commutes with L′.

Let v ∈ Null (FA) be given. Using (95.1) we obtain 0 = L′(FA)v =
F(L′A)v = F(AL)v = FA(Lv) and hence Lv ∈ Null (FA). Since
v ∈ Null (FA) was arbitrary, it follows that Null (FA) is L-invariant. In-
terchanging the roles of L and L′ we find that Null (EA−1) is L′ invariant.
Hence Part (a) is proved.

Let v ∈ V be given. Then

v ∈ Null (FA|E) = Null (FA) ∩ E
⇐⇒ v ∈ E = Null E and F(Av) = 0
⇐⇒ 0 = Ev = (EA−1)(Av) and Av ∈ Null F = U ′

⇐⇒ Av ∈ Null (EA−1) ∩ U ′ = Null (EA−1|U ′).
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Since v ∈ V was arbitrary, Part (b) follows.

If dim E ≥ dim E ′ and Null (FA|E) = {0} we can apply the Pigeon-
hole Principle for Linear Mappings of Sect.17 to (FA)|E

′

E and conclude that
dim E = dim E ′ and that (FA)|E

′

E is invertible. Using (95.1) we obtain

(FA)|E
′

E L|E = (FAL)|E
′

E = (FL′A)|E
′

E = (L′FA)|E
′

E = L′
|E′(FA)|E

′

E

and hence that L′
|E′ is similar to L|E . By part (b) we also have

Null (EA−1|U ′) = {0}. Since

dimU ′ = dimV ′ − dim E ′ = dimV − dim E = dimU

we can apply the same argument as just given to the case when L and L′

are interchanged and conclude that L|U is similar to L′
|U ′ .

Proof of the Theorem: We choose a space of greatest dimension from
the collection {Ei | i ∈ I} ∪ {E ′

i | i ∈ I ′}. Without loss of generality we
may assume that we have chosen Ej , j ∈ I. Let M be the (only) minimal
L-space included in Ej . Let (E′

i | i ∈ I) be the family of idempotents associ-
ated with the decomposition (E ′

i | i ∈ I ′) (see Prop.5 of Sect.81). By (81.5),
we have

∑

i∈I′

(E
′

iA)|M = (
∑

i∈I′

E
′

i)A|M = A|M.

Since A is invertible and M 6= {0}, we may choose j′ ∈ I ′ such that
(Ej′A)|M 6= {0}. We now abbreviate E := Ej , E ′ := E ′

j′ ,
U :=

∑

(Ei | i ∈ I \ {j}), U ′ :=
∑

(E ′
i | i ∈ I ′ \ {j′}) and F := E′

j′ . The
Lemma then applies. By part (a), Null (FA) is an L-subspace of V and so
is E ∩Null (FA) = Null (FA|E). Since FA|M 6= {0} and M ⊂ E , we cannot
have M ⊂ Null (FA|E). Hence, since E is elementary, it follows from Prop.3
of Sect.91 that Null (FA|E) = {0}. In view of the maximality assumption
on the dimension of E := Ej , we have
dim E ≥ dim E ′. Hence we can apply Part (c) of the Lemma to conclude
that dim Ej = dim E ′

j′ , that L|Ej
is similar to L′

|E′
j′
, and that L|Uj

is similar

to L′
|U ′

j′
. The desired result now follows immediately by induction, using

Prop.6 of Sect.81.

If we apply the Similarity Theorem to the case when L′ = L we obtain

Corollary 1: All elementary L-decompositions for a given lineon L have
the same number of terms. Moreover, if two such decompositions are given,
then the terms of one decomposition can be matched with the terms of the
other such that the adjustments of L to the matched L-spaces are similar.



370 CHAPTER 9. THE STRUCTURE OF GENERAL LINEONS

In view of the statement (II) above, this Corollary implies that the prime
polynomials and the depths of the adjustments of a lineon L to the terms
in an elementary L-decomposition, if each is counted with an appropriate
“multiplicity”, do not depend on the decomposition but only on L. More
precisely, denoting the set of all powers of prime polynomials over F by P,
one can associate with each lineon L a unique elementary multiplicity
function

emultL : P → N

with the following property: In every elementary decomposition of L, there
are exactly emultL(qd) terms whose minimal polynomial is qd. The support
of emultL is finite and the members of this support are called the elemen-
tary divisors of L. They are all divisors of the characteristic polynomial
chp of L, which is defined by

chpL :=
∏

qd∈P

(qd)emultL(qd). (95.2)

It follows from Cor.5 of Sect.93 and Prop.4 of Sect.81 that the degree of the
characteristic polynomial (95.2) is dimV. It is evident that chpL(L) = 0.
Therefore the degree of the minimal polynomial of L cannot exceed the
dimension of the domain V of L.

Remark 1: In Vol.II we will give another definition of the character-
istic polynomial, a definition in terms of determinants. Then (95.2) and
chpL(L) = 0 will become theorems. The determinant of L will turn out to
be given by detL = (−1)dimV(chpL)0.

The following consequence of the Similarity Theorem is now evident.

Corollary 2: If the lineon L′ is similar to the lineon L, then L′ and
L have the same elementary multiplicity functions, the same elementary
divisors, and the same characteristic polynomial, i.e. we have emultL =
emultL′ and chpL = chpL′.

Remark 2: The converse of Cor.2 is also true: if emultL = emultL′

then L′ is similar to L (see Problem 2). However, if L and L′ merely have
the same set of elementary divisors (without counting multiplicity), or if L
and L′ merely have the same characteristic polynomial, then they need not
be equivalent.
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96 Problems for Chapter 9

(1) Consider

L :=





3 0 1
1 2 1
−1 0 1



 ∈ Lin R3.

(a) Find an elementary L-decomposition of R3.

(b) Determine the elementary divisors, the characteristic polynomial,
and the minimal polynomial of L.

(c) Find a basis b := (b1, b2, b3) of R3 such that the matrix [L]b is
canonical in the sense described in Sect.94.

(2) Let V and V ′ be linear spaces (over any field F). Let L ∈ LinV,
L′ ∈ LinV ′ be given and let q and q′ be their respective minimal
polynomials.

(a) Assume that q = q′ and deg q = dimV = dimV ′. Show that L′ is
then similar to L.

(d) Assume that L and L′ are both elementary and have the same
prime polynomial and depth. Show that L′ is then similar to
L. (Hint: Use Cor.5 to the Structure Theorem for Elementary
Lineons.)

(c) Assume that L and L′ have the same elementary multiplicity
function, i.e. that emultL = emultL′ (see Sect.95). Show that L′

is then similar to L. (Hint: Choose elementary decompositions
for L and L′, use Part (b) above, and then Prop.6 of Sect.81.)

(3) Let (Ei | i ∈ I) be a decomposition of a given linear space V and let
L ∈ LinV.

(a) Put

E ′
j :=

⋂

i∈I\{j} E
⊥
i for all j ∈ I. (P9.1)

Show that (E ′
j | j ∈ I) is a decomposition of V∗.

(b) Prove: If (Ei | i ∈ I) is an elementary L-decomposition, then
(E ′

j | j ∈ I) as defined by (P9.1), is an elementary

L⊤-decomposition and (L|Ei
)⊤ is similar to (L⊤)|E′

i
for each i ∈ I.
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(c) Prove that L⊤ is similar to L. (Hint: Use Cor.3 to the Structure
Theorem for Elementary Lineons and the results of Problem 2.)

(4) Let V be a linear space over R and let L be a lineon on V.

(a) Show: If L is elementary, then either SpecL is a singleton, in
which case PspecL (see Def.2 of Sect.88) is empty, or else SpecL
is empty, in which case PspecL is a singleton.

(b) Assume that L is elementary and that SpecL is a singleton. Put
σ :∈ SpecL. Show that

L = σ1V + N (P9.2)

for some nilpotent lineon N with nilpotency n := dimV (see
Sect.93).

(c) Assume that L is elementary and that SpecL is empty. Put
(µ, κ) :∈ PspecL. Show that dimV must be even and that

L = µ1V + κJ + N (P9.3)

for some J ∈ LinV satisfying J2 = −1V and some nilpotent lineon
N that commutes with L and has nilpotency d := 1

2 dimV.

(d) Prove: SpecL cannot be empty when dimV is odd and PspecL
cannot be empty when SpecL is empty.

(5) Let V be a linear space over R and let L be a lineon on V.

(a) Let (Ei | i ∈ I) be a decomposition of V all of whose terms are
L-spaces. Prove that the terms are then also (expV(L))-spaces,
that

(expV(L))|Ei
= expEi

(L|Ei
) for all i ∈ I, (P9.4)

and that

expV(L) =
∑

i∈I expEi
(L|Ei

)|VPi, (P9.5)

where (Pi | i ∈ I) is the family of projections associated with the
decomposition (see Prop.5 of Sect.81). (Hint: Use a proof similar
to the one of Prop.3 of Sect.85.)
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Remark: Since this result applies, in particular, to elementary
decompositions, we see that the problem of evaluating the expo-
nential of an arbitrary lineon is reduced to the problem of evalu-
ating the exponential of elementary lineons.

(b) Assume that L is elementary. Show that

expV(L) = eσ
∑

k∈n[

1
k!N

k (P9.6)

if L is of the form (P9.2) of Problem 4 and that

expV(L) = eµ(cosκ1V + sinκJ)
∑

k∈d[

1
k!N

k (P9.7)

if L is of the form (P9.3). (Hint: Use the results of Problem 9 in
Chap.6.)


