
Chapter 8

Spectral Theory

In this chapter, it is assumed that all linear spaces under consideration are
over the real field R and that all linear and inner-product spaces are finite-
dimensional. However, in Sects.89 and 810 we deal with linear spaces over
R that are at the same time linear spaces over the complex field C. Most
of this chapter actually deals with a given finite-dimensional genuine inner-
product space. Some of the definitions remain meaningful and some of the
results remain valid if the space is infinite-dimensional or if R is replaced by
an arbitrary field.

81 Disjunct Families, Decompositions

We assume that a linear space V and a finite family (Ui | i ∈ I) of subspaces
of V are given. There is a natural summing mapping from the product space×(Ui | i ∈ I) (see Sect.14) to V, defined by

(u 7→ ΣIu) : ×
i∈I

Ui → V. (81.1)

This summing mapping is evidently linear.
Definition 1: We say that the finite family (Ui | i ∈ I) of subspaces of

V is disjunct if the summing mapping (81.1) of the family is injective; we
say that the family is a decomposition of V if the summing mapping is
invertible.

It is clear that every restriction of a disjunct family is again disjunct. In
other words, if (Ui | i ∈ I) is disjunct and J ∈ Sub I, then (Uj | j ∈ J) is
again disjunct. The union of a disjunct family cannot be the same as its sum
unless all but at most one of the terms are zero-spaces. A disjunct family
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(Ui | i ∈ I) is a decomposition of V if and only if its member-wise sum is V,
i.e.

∑

(Ui | i ∈ I) = V (see (07.14)).
Since the summing mapping is injective if and only if its nullspace is

zero, we have the following result:
Proposition 1: A finite family (Ui | i ∈ I) of subspaces is disjunct if

and only if, for every family u ∈ ×(Ui | i ∈ I),
∑

(ui | i ∈ I) = 0 is
possible only when ui = 0 for all i ∈ I.

The following result gives various characterizations of disjunct families
and decompositions.

Proposition 2: Let (Ui | i ∈ I) be a finite family of subspaces of V.
Then the following are equivalent:

(i) The family (Ui | i ∈ I) is disjunct [a decomposition of V].

(ii) For every j ∈ I, Uj and
∑

(Ui | i ∈ I\{j}) are disjunct [supplementary
in V].

(iii) If I 6= ∅ then for some j ∈ I, Uj and
∑

(Ui | i ∈ I \ {j}) are disjunct
[supplementary in V] and the family (Ui | i ∈ I \ {j}) is disjunct.

Proof: We prove only the assertions concerning disjunctness. The rest
then follows from

∑

(Ui | i ∈ I) = Uj +
∑

(Ui | i ∈ I \ {j}),

valid for all j ∈ I.
(i) ⇒ (ii): Assume that (Ui | i ∈ I) is disjunct and that j ∈ I and

w ∈ Uj ∩
∑

(Ui | i ∈ I \{j}) are given. Then we may choose (ui | i ∈ I \{j})
such that w =

∑

(ui | i ∈ I \{j}) and hence (−w)+
∑

(ui | i ∈ I \{j}) = 0.
By Prop.1, it follows that w = 0. We conclude that Uj∩

∑

(Ui | i ∈ I\{j}) =
{0}.

(ii) ⇒ (i): Assume that (Ui | i ∈ I) fails to be dis-
junct. By Prop.1 we can then find j ∈ I and w ∈ U×j
such that w +

∑

(ui | i ∈ I \ {j}) = 0 for a suitable choice of u ∈×(Ui | i ∈ I \ {j}). Then w ∈ Uj ∩
∑

(Ui | i ∈ I \ {j}) and hence, since
w 6= 0, Uj and

∑

(Ui | i ∈ I \ {j}) are not disjunct.
(i) ⇒ (iii): This follows from (i) ⇒ (ii) and the fact that a restriction

of a disjunct family is disjunct.

(iii) ⇒ (i): Choose j ∈ I according to (iii) and let u ∈×(Ui | i ∈ I)
such that

∑

(ui | i ∈ I) = 0 be given. Then uj = −∑

(ui | i ∈ I \ {j}) and
hence uj = 0 because Uj and

∑

(Ui | i ∈ I \ {j}) are disjunct. It follows
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that
∑

(ui | i ∈ I \ {j}) = 0 and hence u|I\{j} = 0 because (Ui | i ∈ I \ {j})
is disjunct. We conclude that u = 0 and hence, by Prop.1, that (Ui | i ∈ I)
is disjunct.

It follows from Prop.2 that a pair (U1,U2) of subspaces of V is disjunct
[a decomposition of V] if and only if U1 and U2 are disjunct [supplementary
in V] in the sense of Def.2 of Sect.12.

The following result is an easy consequence of Prop.2.

Proposition 3: Let (Ui | i ∈ I) be a disjunct family of subspaces of
V, let J be a subset of I, and let Wj be a subspace of Uj for each j ∈ J .
Then (Wj | j ∈ J) is again a disjunct family of subspaces of V. Moreover, if
(Wj | j ∈ J) is a decomposition of V, so is (Ui | i ∈ I) and we have Wj = Uj

for all j ∈ J and Ui = {0} for all i ∈ I \ J .

Using Prop.2 above and Prop.4 of Sect.17 one easily obtains the following
result by induction.

Proposition 4: A finite family (Ui | i ∈ I) of subspaces of V is disjunct
if and only if

dim(
∑

i∈I

Ui) =
∑

i∈I

dimUi. (81.2)

In particular, if (Ui | i ∈ I) is a decomposition of V, then
dimV =

∑

(dimUi | i ∈ I).

Let (fi | i ∈ I) be a finite family of non-zero elements in V. This
family is linearly independent, or a basis of V, depending on whether the
family (Lsp{fi} | i ∈ I) of one-dimensional subspaces of V is disjunct, or a
decomposition of V, respectively.

The following result generalizes Prop.4 of Sect.19 and is easily derived
from that proposition and Prop.2.

Proposition 5: Let (Ui | i ∈ I) be a decomposition of V. Then there is
a unique family (Pi | i ∈ I) of projections Pi : V → Ui such that

v =
∑

i∈I

Piv for all v ∈ V, (81.3)

and we have

Ui ⊂ Null Pj for all i, j ∈ I with i 6= j. (81.4)

Also, there is a unique family (Ei | i ∈ I) of idempotent lineons on V such
that Ui = RngEi,

∑

i∈I

Ei = 1V , (81.5)
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and

EiEj = 0 for all i, j ∈ I with i 6= j. (81.6)

We have

Null Ej =
∑

i∈I\{j}
Ui for all j ∈ I (81.7)

and

Ei = Pi|V and Pi = Ei|Ui for all i ∈ I. (81.8)

The family (Pi | i ∈ I) is called the family of projections and the
family (Ei | i ∈ I) the family of idempotents associated with the given
decomposition.

The following result, a generalization of Prop.5 of Sect.19 and Prop.2 of
Sect.16, shows how linear mappings with domain V are determined by their
restrictions to each term of a decomposition of V.

Proposition 6: Let (Ui | i ∈ I) be a decomposition of V. For every
linear space V ′ and every family (Li | i ∈ I) with Li ∈ Lin(Ui,V ′) for all
i ∈ I, there is exactly one L ∈ Lin(V,V ′) such that

Li = L|Ui
for all i ∈ I. (81.9)

It is given by

L :=
∑

i∈I

LiPi, (81.10)

where (Pi | i ∈ I) is the family of projections associated with the decompo-
sition.

Notes 81

(1) I introduced the term “disjunct” in the sense of Def.1 for pairs of subspaces (see
Note (2) to Sect.12); J. J. Schäffer suggested that the term be used also for arbitrary
families of subspaces.

(2) In most of the literature, the phrase “V is the direct sum of the family (Ui | i ∈ I)”
is used instead of “(Ui | i ∈ I) is a decomposition of V”. The former phrase is
actually absurd because it confuses a property of the family (Ui | i ∈ I) with a
property of the sum of the family (see also Note (3) to Sect.12). Even Bourbaki
falls into this trap.
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82 Spectral Values and Spectral Spaces

We assume that a linear space V and a lineon L ∈ LinV are given. Recall that
a subspace U of V is called an L-space if it is L-invariant, i.e. if L>(U) ⊂ U
(Def.1 of Sect.18). Assume that U is an L-space. Then we can consider the
adjustment L|U ∈ LinU . It is clear that a subspace W of U is an L-space if
and only if it is a L|U -space.

Proposition 1: A subspace U of V is L-invariant if and only if its
annihilator U⊥ is L⊤-invariant.

Proof: Assume that U is L-invariant, i.e. that L>(U) ⊂ U . By the
Theorem on Annihilators and Transposes of Sect.21 we then have

U⊥ ⊂ (L>(U))⊥ = (L⊤)<(U⊥),

which means that U⊥ is L⊤-invariant. Interchanging the roles of L = (L⊤)⊤

and L⊤ and of U⊥ and U = (U⊥)⊥ we see that the L⊤-invariance of U⊥
implies the L-invariance of U .

Definition 1: For every σ ∈ R, we write

SpsL(σ) := Null (L − σ1V). (82.1)

This is an L-space; if it is non-zero, we call it the spectral space of L for
σ. The spectrum of L is defined to be

SpecL := {σ ∈ R | SpsL(σ) 6= {0}}, (82.2)

and its elements are called the spectral values of L. If σ ∈ SpecL, then
the non-zero members of SpsL(σ) are called spectral vectors of L for σ.
The family (SpsL(σ) | σ ∈ SpecL) of subspaces of L is called the family of
spectral spaces of L. The multiplicity function multL : R → N of L
is defined by

multL(σ) := dim(SpsL(σ)); (82.3)

its value multL(σ) ∈ N
× at σ ∈ SpecL is called the multiplicity of the

spectral value σ.
We note that

SpecL = {σ ∈ R | multL(σ) 6= 0}, (82.4)

i.e. that SpecL is the support of multL (see Sect.07).
It is evident that σ ∈ R is a spectral value of L if and only if

Lu = σu (82.5)
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for some u ∈ V×. Every u ∈ V× for which (82.5) holds is a spectral vector
of L for σ. In fact, SpsL(σ) is the largest among the subspaces U of V for
which

L|U = σ1U⊂V . (82.6)

Proposition 2: If the lineons L and M commute, then every spectral
space of M is L-invariant.

Proof: Note that L and M commute if and only if L and M − σ1V
commute, no matter what σ ∈ R is. Hence, by (82.1), it is sufficient to show
that Null M is L-invariant. But for every u ∈ Null M, we have

0 = L(Mu) = (LM)u = (ML)u = M(Lu),

i.e. Lu ∈ Null M, which proves what was needed.
Let E ∈ LinV be an idempotent. By Prop.3, (iv) of Sect.19, we then

have
Rng E = SpsE(1). (82.7)

It is easily seen that SpsE(1) and SpsE(0) = Null E are the only spaces of
the form SpsE(σ), σ ∈ R, that can be different from zero and hence that
SpecE ⊂ {0, 1}. In fact, we have SpecE = {0, 1} unless E = 0 or E = 1V .
The multiplicities of the spectral values 0 and 1 of E are given, in view of
(26.11), by

multE(1) = trE, multE(0) = dimV − trE. (82.8)

The following result, which is easily proved, shows how linear isomor-
phisms affect invariance, spectra, spectral spaces, and multiplicity:

Proposition 3: Let V,V ′ be linear spaces, let A : V → V ′ be a linear
isomorphism, and let L ∈ LinV be a lineon, so that ALA−1 ∈ LinV ′.

(a) If U is an L-space then A>(U) is an (ALA−1)-space.

(b) For every σ ∈ R, we have

A>(SpsL(σ)) = SpsALA−1(σ).

(c) SpecL = Spec (ALA−1) and multL = multALA−1.

Theorem on Spectral Spaces: The spectrum of a lineon on V has at
most dimV members and the family of its spectral spaces is disjunct.

The proof will be based on the following Lemma:
Lemma: Let L ∈ LinV, let S be a finite subset of SpecL and let f :=

(fσ | σ ∈ S) be such that fσ ∈ (SpsL(σ))× for all σ ∈ S. Then f is linearly
independent.
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Proof: We proceed by induction over ♯S. The assertion is trivial when
♯S = 0, because f must then be the empty family. Assume, then, that ♯S ≥ 1
and that the assertion is valid when S is replaced by S′ with ♯S′ = ♯S − 1.
Let λ ∈ Null (lncf ) ⊂ R

S , so that
∑

(λσfσ | σ ∈ S) = 0. Since Lfσ = σfσ, it
follows that

0 = L(
∑

σ∈S

λσfσ) =
∑

σ∈S

λσσfσ.

Now choose τ ∈ S and put S′ := S \ {τ}. We then obtain

0 = τ
∑

σ∈S

λσfσ −
∑

σ∈S

λσσfσ =
∑

σ∈S′

λσ(τ − σ)fσ.

Since τ − σ 6= 0 for all σ ∈ S′ and since ♯S′ = ♯S − 1, we can apply the
induction hypothesis to ((τ − σ)fσ | σ ∈ S′) and conclude that λσ = 0 for
all σ ∈ S′, so that 0 =

∑

σ∈S λσfσ = λτ fτ . Since fτ 6= 0 it also follows
that λτ = 0 and hence that λ = 0. Since λ ∈ Null (lncf ) was arbitrary, we
conclude that Null (lncf ) = {0}.

Proof of the Theorem: The fact that ♯SpecL ≤ dimV follows
from the Lemma and the Characterization of Dimension of Sect.17. To
show that (SpsL(σ) | σ ∈ SpecL) is disjunct, we need only observe that
∑

(uσ | σ ∈ SpecL) = 0 with u ∈×(SpsL(σ) | σ ∈ SpecL) implies that
∑

(uσ | σ ∈ S) = 0, where S := Suptu. The Lemma states that this is
possible only when S = ∅, i.e. when uσ = 0 for all σ ∈ SpecL. By Prop.1,
this shows that the family (SpsL(σ) | σ ∈ SpecL) is disjunct.

Since a disjunct family with more than one non-zero term cannot have
V as its union, the following is an immediate consequence of the Theorem
just proved.

Proposition 4: If every v ∈ V× is a spectral vector of L ∈ LinV then
L = λ1V for some λ ∈ R.

Remark: If dimV = 0, i.e. if V is a zero space, then the spectrum of
the only member 1V = 0 of LinV is empty.

Proposition 5: If the sum of the family (SpsL(σ) | σ ∈ SpecL) of spec-
tral spaces of a lineon L ∈ LinV is V, and hence the family is a decomposition
of V, and if (Eσ | σ ∈ SpecL) is the associated family of idempotents, then

L =
∑

σ∈SpecL

σEσ (82.9)

and

trL =
∑

σ∈SpecL

(multL(σ))σ. (82.10)
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Proof: In view of (82.6), we have L|SpsL(σ) = σ1SpsL(σ)⊂V for all σ ∈
SpecL. It follows from Prop.6 of Sect.81 and (81.8) that (82.9) holds. The
equation (82.10) follows from (82.9) and (82.3) using Prop.5 of Sect.26.

Proposition 6: Let L ∈ LinV be given. Assume that Z is a finite subset
of R and that (Wσ | σ ∈ Z) is a decomposition of V whose terms Wσ are
non-zero L-spaces and satisfy

L|Wσ
= σ1Wσ for all σ ∈ Z. (82.11)

Then Z = SpecL and Wσ = SpsL(σ) for all σ ∈ Z.

Proof: Since Wσ is non-zero for all σ ∈ Z, it follows from (82.11) that
σ ∈ SpecL and Wσ ⊂ SpsL(σ) for all σ ∈ Z. The assertion is now an
immediate consequence of Prop.3 of Sect.81.

Notes 82

(1) A large number of terms for our “spectral value” can be found in the literature.
The most common is “eigenvalue”. Others combine the adjectives “proper”, “char-
acteristic”, “latent”, or “secular” in various combinations with the nouns “value”,
“number”, or “root”. I believe it is economical to use the adjective “spectral”,
which fits with the commonly accepted term “spectrum”.

(2) In infinite-dimensional situations, one must make a distinction between the sets
{σ ∈ R | (L − σ1V) is not invertible} and {σ ∈ R |Null (L − σ1V) 6= {0}}. It is
the former that is usually called the spectrum. The latter is usually called the
“point-spectrum”.

(3) When considering spectral values or spectral spaces, most people replace “spectral”
with “eigen”, or another of the adjectives mentioned in Note (1).

(4) The notation Sps
L
(σ) for a spectral space is introduced here for the first time. I

could find only ad hoc notations in the literature.

83 Orthogonal Families of Subspaces

We assume that an inner-product space V is given. We say that two subsets
S and T of V are orthogonal, and we write S⊥T , if every element of S
is orthogonal to every element of T , i.e. if u · v = 0 for all u ∈ S, v ∈ T .
This is the case if and only if S ⊂ T ⊥. We say that a family (Ui | i ∈ I)
of subspaces of V is orthogonal if its terms are pairwise orthogonal, i.e. if
Ui⊥Uj for all i, j ∈ I with i 6= j.
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Proposition 1: A family (Ui | i ∈ I) of subspaces of V is orthogonal if
and only if for all j ∈ I

∑

i∈I\{j}
Ui ⊂ Uj

⊥. (83.1)

Proof: If (83.1) holds for all j ∈ I, then

Uk ⊂
∑

i∈I\{j}
Ui ⊂ Uj

⊥

and hence Uk⊥Uj for all j, k ∈ I with j 6= k. If the family is orthogonal,
then Ui⊥Uj and hence Ui ⊂ Uj

⊥ for all j ∈ I and i ∈ I \ {j}. Since Uj
⊥ is a

subspace of V, (83.1) follows.
Using Prop.2 of Sect.1 and the Characterization of Regular Subspaces

of Sect.41 one immediately obtains the next two results.
Proposition 2: If the terms of an orthogonal family are regular sub-

spaces then it is a disjunct family.
Proposition 3: A family (Ui | i ∈ I) of non-zero subspaces of V is an

orthogonal decomposition of V if and only if all the terms of the family are
regular subspaces of V and

∑

i∈I\{j}
Ui = Uj

⊥ for all j ∈ I. (83.2)

Proposition 4: A decomposition of V is orthogonal if and only if all
the terms of the family of idempotents associated with the decomposition are
symmetric.

Proof: Let (Ui | i ∈ I) be a decomposition of V and let (Ei | i ∈ I) be
the family of idempotents associated with it (see Prop.5 of Sect.81). From
Prop.3 and (81.7) it is clear that the decomposition is orthogonal if and only
if Null Ej = Uj

⊥ = (RngEj)
⊥ for all j ∈ I; and this is equivalent, by Prop.3

of Sect.41, to the statement that all the terms of (Ei | i ∈ I) are symmetric.

Proposition 5: The family of spectral spaces of a symmetric lineon is
orthogonal.

Proof: Let S ∈ SymV and σ, τ ∈ SpecS with σ 6= τ be given. For all
u ∈ SpsS(σ) and w ∈ SpsS(τ) we then have Su = σu and Sw = τw. It
follows that

σ(w · u) = w · (σu) = w · Su = (Sw) · u = (τw) · u = τ(w · u),

and hence (σ − τ)(w · u) = 0 for all u ∈ SpsS(σ) and w ∈ SpsS(τ). Since
σ − τ 6= 0, we conclude that SpsS(σ)⊥SpsS(τ).
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84 The Structure of Symmetric Lineons

There are lineons with an empty spectrum, i.e. with no spectral values at
all. The concepts of spectral value and spectral space are insufficient for
the description of the structure of general lineons (see Chap.9). However,
a symmetric lineon on a genuine inner-product space is completely deter-
mined by its family of spectral spaces. The following theorem, whose proof
depends on the Theorem on Attainment of Extrema of Sect.58 and on the
Constrained Extremum Theorem of Sect.69, is the key to the derivation of
this result.

Theorem on the Extreme Spectral Values of a Symmetric Li-
neon: If V is a non-zero genuine inner-product space, then every symmetric
lineon S ∈ SymV has a non-empty spectrum. In fact, the least and greatest
members of SpecS are given by

minSpecS = minS |UsphV , (84.1)

max SpecS = maxS |UsphV , (84.2)

where S : V → R is the quadratic form associated with S (see (27.13)) and
where UsphV is the unit sphere of V defined by (42.9).

Proof: UsphV is not empty because V is non-zero, and UsphV is closed
and bounded because it is the boundary of the unit ball UblV (see Prop.3
of Sect.52 and Prop.12 of Sect.53). By Prop.3 of Sect.66, S is of class
C1 and hence continuous. By the Theorem on Attainment of Extrema, it
follows that S |UsphV attains a maximum and a minimum. Assume that one
of these extrema is attained at u ∈ UsphV. By Cor.1 to the Constrained
Extremum Theorem, we must have ∇u S = σ∇usq for some σ ∈ R. Since
(∇usq)v = 2u · v and ∇u S v = σ(Su) · v for all v ∈ V by (66.17), we
conclude that 2(Su) · v = σ(2u · v) for all v ∈ V, i.e. Su = σu. Since
|u| = 1, it follows that σ ∈ SpecS and that S(u) = u · Su = σ|u|2 = σ. We
conclude that the right sides of both (84.1) and (84.2) belong to SpecS.

Now let τ ∈ SpecS be given. We may then choose u ∈ UsphV such that
Su = τu. Since u · u = 1, we have τ = (τu) · u = (Su) · u = S (u) ∈
Rng S |UsphV . Since τ ∈ SpecS was arbitrary, the assertions (84.1) and
(84.2) follow.

The next theorem, which completely describes the structure of symmet-
ric lineons on genuine inner product spaces, is one of the most important
theorems of all of mathematics. It has numerous applications not only in
many branches of mathematics, but also in almost all branches of theoretical
physics, both classical and modern. The reason is that symmetric lineons
appear in many contexts, often unexpectedly.
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Spectral Theorem: Let V be a genuine inner-product space. A li-
neon on V is symmetric if and only if the family of its spectral spaces is an
orthogonal decomposition of V.

Proof: Let S ∈ SymV be given. Since all spectral spaces of S are S-
invariant, so is their sum U :=

∑

(SpsS(σ) | σ ∈ SpecS). By Prop.1 of
Sect.82, the orthogonal supplement U⊥ of U is also S-invariant, and S|U⊥ ∈
SymU⊥ is meaningful. Now, by the preceding theorem, if U⊥ is non-zero,
S|U⊥ must have a spectral vector w ∈ (U⊥)×. Of course, w is then also

a spectral vector of S and hence w ∈ U . Therefore, U⊥ 6= {0} implies
U ∩ U⊥ 6= {0}, which contradicts the fact that, in a genuine inner-product
space, all subspaces are regular. It follows that U⊥ = {0} and hence V =
U =

∑

(SpsS(σ) | σ ∈ SpecS). By Props.2 and 5 of Sect.83 it follows that
(SpsS(σ) | σ ∈ SpecS) is an orthogonal decomposition of V.

Assume, now, that L ∈ LinV is such that (SpsL(σ) | σ ∈ SpecL) is
an orthogonal decomposition of V. We can then apply Prop.5 of Sect.82
and conclude that (82.9) holds. Since the decomposition was assumed to be
orthogonal, each of the idempotents Eσ in (82.9) is symmetric by Prop.4 of
Sect.83. Therefore, by (82.9), L is symmetric.

We assume now that a genuine inner-product space V is given. We list
two corollaries to the Spectral Theorem. The first follows by applying Prop.5
of Sect.81, Prop.5 of Sect.82, and Prop.4 of Sect.83.

Corollary 1: For every S ∈ SymV there is exactly one family
(Eσ | σ ∈ SpecS) of non-zero symmetric idempotents such that

EσEτ = 0 for all σ, τ ∈ SpecS with σ 6= τ, (84.3)

∑

σ∈SpecS

Eσ = 1V , (84.4)

and
∑

σ∈SpecS

σEσ = S. (84.5)

The family (Eσ | σ ∈ SpecS) is called the spectral resolution of S.
Its terms are called the spectral idempotents of S.

The second corollary is obtained by choosing orthonormal bases in each
of the spectral spaces of S.

Corollary 2: A lineon S on V is symmetric if and only if there exists
an orthonormal basis e := (ei | i ∈ I) of V whose terms are spectral vectors
of S. If this is the case we have

Sei = λiei for all i ∈ I, (84.6)
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where λ := (λi | i ∈ I) is a family of real numbers whose range is SpecS. In
fact each σ ∈ SpecS occurs exactly multS(σ) times in the family λ.

The matrix of S relative to the basis e is diagonal.
Of course, the orthonormal basis e in Cor.2 is not uniquely determined

by S if dimV > 0. For example, if we replace any or all the terms of e
by their opposites, we get another orthonormal basis whose terms are also
spectral vectors of S.

Proposition 1: Let V and V ′ be genuine inner product spaces. Then
S ∈ SymV and S′ ∈ SymV ′ have the same multiplicity function, i.e. multS =
multS′ if and only if there is an orthogonal isomorphism R : V → V ′ such
that

S′ = RSR−1 = RSR⊤. (84.7)

If (84.7) holds, then

R>(SpsS(σ)) = SpsS′(σ) for all σ ∈ SpecS. (84.8)

Proof: Assume that multS = multS′ . By Cor.2 above, we may then
choose orthonormal bases e := (ei | i ∈ I) and e′ := (e′i | i ∈ I) of V and V ′,
respectively, such that (84.6) and

S′e′i = λie
′
i for all i ∈ I (84.9)

hold with one and the same family λ := (λi | i ∈ I). Let R : V → V ′ be the
linear isomorphism for which Rei = e′i for all i ∈ I. By Prop.4 of Sect.43,
R is an orthogonal isomorphism. By (84.9) and (84.6) we have

S′Rei = λi(Rei) = R(λiei) = RSei

for all i ∈ I. Since e is a basis, it follows that S′R = RS, which is equivalent
to (84.7).

If (84.7) holds, then (84.8) and the equality multS = multS′ follow from
Prop.3 of Sect.82.

Using Prop.1 above and Prop.2 of Sect.82, we immediately obtain
Proposition 2: S ∈ SymV commutes with R ∈ OrthV if and only if

the spectral spaces of S are R-invariant.
In the special case when all spectral values of S have multiplicity 1, the

condition of Prop.2 is equivalent to the following one: If e is an orthonormal
basis such that the matrix of S relative to e is diagonal (see Cor.2 above),
then the matrix of R relative to e is also diagonal and its diagonal terms
are either 1 or -1.

We are now able to prove the result (52.20) already announced in Sect.52.
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Proposition 3: If V and V ′ are genuine inner-product spaces and if
n := dimV > 0, then

|L| ≥ ||L|| ≥ 1√
n
|L| for all L ∈ Lin(V,V ′). (84.10)

Proof: Let L ∈ Lin(V,V ′) be given. The inequality |L| ≥ ||L|| is an
immediate consequence of (52.4), with both ν and ν ′ replaced by | · |, and
Prop.3 of Sect.44.

Since S := L⊤L belongs to SymV, we can consider the spectral resolution
(Eσ | σ ∈ SpecS) of S mentioned in Cor.1 above. By (84.5) and (26.11), we
obtain

trS =
∑

σ∈SpecS

σ trEσ =
∑

σ∈SpecS

σ dimRngEσ. (84.11)

Since (Rng Eσ | σ ∈ SpecS) is a decomposition of V, it follows from (84.11)
and Prop.4 of Sect.81 that

trS ≤ nmax(SpecS).

Using the Theorem on the Extreme Spectral Values of a Symmetric Lineon,
we conclude that

trS ≤ nmaxS |UsphV .

Since S (v) = v · Sv = v · L⊤Lv = |Lv|2 for all v ∈ V, it follows that

trS ≤ nmax{|Lv|2 | v ∈ UsphV} .

Since trS = tr(L⊤L) = |L|2 by (44.13), it follows from (52.3), with both ν

and ν ′ replaced by | · |, that |L|2 ≤ n||L||2.
Remark: If L is a tensor product, i.e. if L = w⊗v for some v ∈ V ∼= V∗

and w ∈ V ′, then |L| = ||L||, as easily seen from (44.14) and Part (a) of
Problem 7 in Chap.5. If L is orthogonal, we have ||L|| = 1√

n
|L| by Problem

5 in Chap.5. Hence either of the inequalities in (84.10) can become an
equality.

85 Lineonic Extensions

Lineonic Square Roots and Logarithms

We assume that a genuine inner-product space V is given. In Sect.41,
we noted the identification

SymV ∼= Sym2(V2, R)
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and in Sect. 27, we discussed the isomorphism
(S 7→ S ) : Sym2(V2, R) → QuV . We thus see that each symmetric lineon
S on V corresonds to a quadratic form S on V given by

S (u) := S(u,u) = (Su) · u for all u ∈ V. (85.1)

The identity lineon 1V ∈ SymV is identified with the inner product ip on
V and hence 1V = ip = sq. In view of Def.1 of Sect.27, it is meaningful
to speak of positive [strictly positive] symmetric lineons. We use the
notations

PosV := {S ∈ SymV | S (u) ≥ 0 for all u ∈ V} (85.2)

and

Pos+V := {S ∈ SymV | S (u) > 0 for all u ∈ V×} (85.3)

for the sets of all positive and strictly positive symmetric lineons, respec-
tively. Since V is genuine, we have 1V ∈ Pos+V. By Prop.3 of Sect.27 we
have

L⊤SL = S ◦L (85.4)

for all S ∈ SymV and all L ∈ LinV.

The following result is an immediate consequence of (85.4):

Proposition 1: If S ∈ PosV and L ∈ LinV, then L⊤SL ∈ PosV.
Moreover, L⊤SL is strictly positive if and only if S is strictly positive and
L is invertible. In particular, we have L⊤L ∈ PosV, and L⊤L ∈ Pos+V if
and only if L is invertible.

The following result is a corollary to the Theorem on the Extreme Spec-
tral Values of a Symmetric Lineon (see Sect.84).

Proposition 2: A symmetric lineon is positive [strictly positive] if and
only if all its spectral values are positive [strictly positive]. In other words,

PosV = {S ∈ SymV | SpecS ⊂ P}, (85.5)

Pos+V = {S ∈ SymV | SpecS ⊂ P
×}. (85.6)

Let a function f : R → R be given. We define the lineonic extension
f(V) : SymV → SymV of f by

f(V)(S) :=
∑

σ∈SpecS

f(σ)Eσ (85.7)
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when (Eσ | σ ∈ SpecS) is the spectral resolution of S ∈ SymV. If the domain
of f is P or P

× instead of R, we still use (85.7), but, in view of Prop.2, the
domain of f(V) must be taken to be PosV or Pos+V, respectively. A similar
observation applies to the codomains of f and f(V).

Let f and g be functions whose domains and codomains are one of R, P,
P× each. The following rules are evident from the definition (85.7):

(I) For all S ∈ SymV, S ∈ PosV, or S ∈ Pos+V, as appropriate, the
spectrum of f(V)(S) is given by

Spec (f(V)(S)) = f>(SpecS). (85.8)

Moreover, if f |SpecS is injective, then f(V)(S) and S have the same
spectral spaces and the same spectral idempotents.

(II) If Dom f = Cod g, then Dom f(V) = Cod g(V) and

(f ◦ g)(V) = f(V) ◦ g(V). (85.9)

(III) If f is invertible, so is f(V) and

(f(V))
← = (f←)(V). (85.10)

As an example, we consider the lineonic extension ιn(V) : SymV → SymV
of the real nth power function ιn : R → R.

By (85.7), we have

ιn(V)(S) =
∑

σ∈SpecS

σnEσ for all n ∈ N. (85.11)

when (Eσ | σ ∈ SpecS) is the spectral resolution of S ∈ SymV. Using the
fact that E2

σ = Eσ for all σ ∈ SpecS and that EσEτ = 0 for all σ, τ ∈ SpecS
with σ 6= τ (see (81.6)), one easily infers from (85.11) by induction that

ιn(V)(S) = Sn for all S ∈ SymV. (85.12)

Hence, the lineonic extension of the real nth power is nothing but the ad-
justment pown|SymV of the lineonic nth power defined by (66.18).

Of particular importance is the lineonic extention of the real square
function ι2|P, adjusted to P. This function is invertible and the inverse is

the positive real square root function
√

:= (ι2|P)← : P → P. We call the

lineonic extension of
√

the lineonic square root and denote it by

sqrt :=
√

(V) : PosV → PosV.
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We also write
√

S := sqrt(S) when S ∈ PosV. By (85.7) we have

sqrt(S) =
√

S =
∑

σ∈SpecS

√
σEσ (85.13)

when (Eσ | σ ∈ SpecS) is the spectral resolution of S ∈ PosV.
The following result follows directly from the rules (I) and (III) above

and from (85.12).
Lineonic Square Root Theorem: For every S ∈ PosV, the lineonic

square root
√

S given by (85.13) is the only solution of the equation

? T ∈ PosV, T2 = S. (85.14)

The spectrum of
√

S is given by

Spec
√

S = {√σ | σ ∈ SpecS}, (85.15)

and we have

Sps√
S
(
√

σ) = SpsS(σ) for all σ ∈ SpecS. (85.16)

It turns out that the domain PosV of the lineonic square root sqrt is not
an open subset of the linear space SymV and hence it makes no sense to ask
whether sqrt is differentiable. However, as we will see, Pos+V is an open
subset of SymV and the restriction of sqrt to Pos+V is of class C1. Actually,
Pos+V is sqrt-invariant because the lineonic extension of the strictly positive
real square function (ι2|P×)← must be the adjustment

sqrt+ := sqrt|Pos+V (85.17)

of the square root. By (85.12) and the rule (III) above, sqrt+ is the inverse
of the adjustment to Pos+V of the lineonic square function pow2:

sqrt+ = (pow2
+)←, where pow2

+ := pow2|Pos+V . (85.18)

We call sqrt+ the strict lineonic square root.
Theorem on the Smoothness of the Strict Lineonic Square

Root: The set Pos+V of strictly positive lineons is an open subset of SymV
and the strict lineonic square-root sqrt+ : Pos+V → Pos+V is of class C1.

Proof: Let S ∈ Pos+V be given and let σ be the least spectral value of
S. By Prop.2, σ is strictly positive and by (84.1), we have

(Sv) · v ≥ σ|v|2 for all v ∈ V. (85.19)
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In view of (52.19), we have |Tv| ≤ ||T|| |v| for every T ∈ SymV and all
v ∈ V, where ||T|| is the operator-norm of T. Therefore, the Inner-Product
Inequality of Sect.42 yields

(Tv) · v ≥ −|Tv| |v| ≥ −||T|| |v|2 for all v ∈ V. (85.20)

Combining (85.19) and (85.20), we see that

((S + T)v) · v ≥ (σ − ||T||)|v|2 for all v ∈ V.

It follows that S + T is strictly positive if ||T|| < σ i.e. if T ∈ σCe(|| · ||).
Hence Pos+V includes the neighborhood S + σ(Ce(|| · ||) ∩ SymV) of S in
SymV. Since S ∈ Pos+V was arbitrary, it follows that Pos+V is open in
SymV.

Since Pos+V is open in SymV, it makes sense to say, and it is true by
Prop.4 of Sect.66, that pow2

+ is of class C1. By (66.19), the gradient of
pow2

+ is given by

(∇Spow2
+)U = US + SU for all U ∈ SymV. (85.21)

Let U ∈ Null (∇Spow2
+) be given, so that US + SU = 0. We then have

(S + γU)2 = S2 + γ(SU + US) + γ2U2 = S2 + γ2U2

= S2 − γ(SU + US) + γ2U2 = (S − γU)2

for all γ ∈ P
×. Since Pos+V is open in SymV, we may choose γ ∈ P

× such
that both S + γU and S − γU belong to Pos+V. We then have

pow2
+(S + γU) = pow2

+(S− γU).

Since pow2
+ is injective, it follows that S+γU = S−γU and hence that U =

0. It follows that Null (∇Spow2
+) = {0}. By the Pigeonhole Principle for

Linear Mappings, it follows that ∇Spow2
+ is invertible. The Local Inversion

Theorem yields that sqrt+ = (pow2
+)← is of class C1.

Since, by (68.4), we have

∇Ssqrt = (∇√
S
pow2

+)−1 for all S ∈ Pos+V,

we can conclude from (85.21) that for every S ∈ Pos+V and every V ∈
SymV, the value (∇Ssqrt+)V is the unique solution of the equation

? U ∈ SymV, V = U
√

S +
√

SU. (85.22)
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If V commutes with S then the solution of (85.22) is given by

(∇Ssqrt+)V =
1

2

√
S
−1

V, (85.23)

which is consistent with the formula for the derivative of the square-root
function of elementary calculus. If V does not commute with S, then there
is no simple explicit formula for (∇Ssqrt+)V.

As another example of a lineonic extension we consider (exp |P×
)(V),

where exp is the real exponential function (see Sect.08).
Proposition 3: The lineonic extension of exp |P×

coincides with an
adjustment of the lineonic exponential defined in Prop.2 of Sect.612. Specif-
ically, we have

(exp |P×
)(V) = expV |Pos+V

SymV . (85.24)

Proof: Let S ∈ SymV be given and let (Eσ |σ ∈ SpecS) be its spectral
resolution. We define F : R → LinV by

F :=
∑

σ∈SpecS

(exp ◦(ισ))Eσ. (85.25)

Differentiation gives

F· =
∑

σ∈SpecS

(exp ◦(ισ))σEσ. (85.26)

Using the fact that E2
σ = Eσ for all σ ∈ SpecS and that EσEτ = 0 for all

σ, τ ∈ SpecS with σ 6= τ , we infer from (84.5), (85.25), and (85.26) that
F· = SF. Since, by (85.25) and (84.4), F(0) =

∑

(Eσ |σ ∈ SpecS) = 1V we
can use Prop.4 of Sect.612 to conclude that F = expV ◦(ιS). Evaluation of
(85.25) at 1 ∈ R hence gives

(exp |P×
)(V)(S) = F(1) = expV(S).

Since S ∈ SymV was arbitrary, (85.24) follows.
Since exp |P×

is invertible, and since its inverse is the logarithm log :=
(exp |P×

)← : P
× → R, it follows from Prop.3 and rule (III) above that

expV |Pos+V
SymV is invertible and that log(V) is its inverse. We call log(V) the

lineonic logarithm and also write logS := log(V)(S) when S ∈ Pos+V. In
sum, we have the following result.

Lineonic Logarithm Theorem: For every S ∈ Pos+V, the lineonic
logarithm logS, given by

logS =
∑

σ∈SpecS

(log σ)Eσ, (85.27)
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where (Eσ |σ ∈ SpecS) is the spectral resolution of S, is the only solution
of the equation

? T ∈ SymV, expV(T) = S. (85.28)

The spectrum of logS is given by

Spec (logS) = log>(SpecS) (85.29)

and we have

Spslog S(log σ) = SpsS(σ) for all σ ∈ SpecS. (85.30)

Remark: Since Dom log(V) = Pos+V is an open subset of SymV by the
Theorem on Smoothness of the Strict Lineonic Square Root, it is meaningful
to ask whether log(V) is of class C1. In fact it is, but the proof is far from
trivial. (See Problem 6 at the end of this chapter.)

Notes 85

(1) The terms “positive semidefinite” instead of “positive” and “positive definite” in-
stead of “strictly positive” are often used in the literature in connection with sym-
metric lineons. (See also Note (1) to Sect.27.)

(2) The Theorem on the Smoothness of the Lineonic Square Root, with a proof some-
what different from the one above, was contained in notes that led to this book.
These notes were the basis of the corresponding theorem and proof in “An Intro-
duction to Continuum Mechanics” by M.E. Gurtin (Academic Press, 1981). I am
not aware of any other place in the literature where the Theorem is proved or even
mentioned.

86 Polar Decomposition

Let V be a genuine inner-product space. In view of the identifications
LinV ∼= Lin2(V2, R), SymV ∼= Sym2(V2, R), and SkewV ∼= Skew2(V2, R) (see
Sect.41), we can phrase Prop.6 of Sect.24 in the following way:

Additive Decomposition Theorem: To every lineon L ∈ LinV cor-
responds a unique pair (S,A) of lineons such that

L = S + A, S ∈ SymV, A ∈ SkewV. (86.1)

In fact, S and A are given by

S =
1

2
(L + L⊤), A =

1

2
(L − L⊤). (86.2)
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The pair (S,A) is called the additive decomposition of L.
The following theorem asserts the existence and uniqueness of certain

multiplicative decompositions for invertible lineons.
Polar Decomposition Theorem To every invertible lineon L ∈ LisV

corresponds a unique pair (R,S) such that

L = RS, R ∈ OrthV, S ∈ Pos+V. (86.3)

In fact, S and R are given by

S =
√

L⊤L, R = LS−1. (86.4)

Also, there is a unique pair (R′,S′) such that

L = S′R′, R′ ∈ OrthV, S′ ∈ Pos+V. (86.5)

In fact, R′ coincides with R, and S′ is given by

S′ = RSR⊤. (86.6)

The pair (R,S) [(R′,S′)] for which (86.3) [(86.5)] holds is called the
right [left] polar decomposition of L.

Proof: Assume that (86.3) holds for a given pair (R,S). Since S⊤ = S
and R⊤R = 1V we then have

L⊤L = (RS)⊤(RS) = S⊤R⊤RS = S2.

Since L⊤L as well as S belongs to Pos+V (see Prop.1 of Sect.85), it follows
from the Lineonic Square Root Theorem that (86.4) must be valid and
hence that S and R, if they exist, are uniquely determined by L. To prove
existence, we define S and R by (86.4). We then have L = RS and S ∈
Pos+V. To prove that R ∈ OrthV we need only observe that

R⊤R = (LS−1)⊤(LS−1) = S−1L⊤LS−1 = S−1S2S−1 = 1V .

Assume now that (86.5) holds for a given pair (R′,S′). We then have

L = S′R′ = (R′R
′⊤)S′R′ = R′(R

′⊤S′R′).

In view of Prop.1 of Sect.85, R
′⊤S′R′ belongs to Pos+V. It follows from

the already proved uniqueness of the pair (R,S) that R′ = R and that
S = R

′⊤S′R′, and hence (86.6) holds. Therefore, R′ and S′, if they exist,
are uniquely determined by S and R, and hence by L. To prove existence,
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we need only define R′ and S′ by R′ := R and S′ := RSR⊤. It is then
evident that (86.5) holds.

If we apply the Theorem to the case when L is replaced by L⊤, we obtain

S′ =
√

LL⊤, R′ = R = S
′−1L⊤. (86.7)

The polar decompositions can be illustrated geometrically. Assume that
(86.3) holds, choose an orthonormal basis e := (ei | i ∈ I) of spectral vectors
of S (see Cor.2 to the Spectral Theorem), and consider the “unit cube”

C := Box(
1

2
e) := {v ∈ V | |v · ei| ≤

1

2
for all i ∈ I}.

Since S is strictly positive, we have Sei = λiei for all i ∈ I where λ :=
(λi | i ∈ I) is a family of strictly positive numbers. The lineon S will “stretch
and/or compress” the cube C = Box(1

2e) into the “rectangular box”

S>(C) = Box(
λi

2
ei | i ∈ I),

whose sides have the lengths λi, i ∈ I. Finally, the orthogonal lineon R
will “rotate” or “rotate and reflect” (see end of Sect.88) the rectangular box
S>(C), the result being the rectangular box

L>(C) = R>(S>(C)) = Box(
λi

2
Rei | i ∈ I)

congruent to S>(C). Thus, the right polar decomposition (86.3) shows that
the transformation of the cube C into the rectangular box L>(C) can be
obtained by first “stretching and/or compressing” and then “rotating” or
“rotating and reflecting”. The left polar decomposition (86.5) can be used to
show that L>(C) can be obtained from C also by first “rotating” or “rotating
and reflecting” and then “stretching and/or compressing”. In the case when
dimV = 2 these processes are illustrated in Figure 1.
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The Polar Decomposition Theorem shows that there are mappings

or : LisV → LinV,

rp : LisV → Pos+V,

lp : LisV → Pos+V,

such that Rng or ⊂ OrthV and

L = or(L)rp(L) = lp(L)or(L) (86.8)

for all L ∈ LisV. For L := 1V , we get

or(1V) = rp(1V) = lp(1V) = 1V . (86.9)

In view of (86.4), we have

rp(L) = sqrt+(L⊤L), or(L) = L(rp(L))−1 (86.10)

for all L ∈ LisV, where sqrt+ is the strict lineonic square-root function
defined in the previous section. It is easily seen, also, that

lp(L) = rp(L⊤) = sqrt+(LL⊤) for all L ∈ LisV. (86.11)

Proposition 1: The mappings or, rp, and lp characterized by the Polar
Decomposition Theorem are of class C1. Their gradients at 1V are given by

(∇1Vor)M =
1

2
(M − M⊤), (86.12)

(∇1V rp)M = (∇1V lp)M =
1

2
(M + M⊤) (86.13)

for all M ∈ LinV.
Proof: Since (L 7→ L⊤L) : LisV → Pos+V is of class C1 by the General

Product Rule and since sqrt+ : Pos+V → Pos+V is of class C1 by the
Theorem on the Smoothness of the Strict Lineonic Square Root, it follows
from (86.10)1 and the Chain Rule that rp is of class C1. It is an immediate
consequence of (86.11)1 that lp is also of class C1 and that

(∇Llp)M = (∇L⊤rp)M⊤ (86.14)

for all L ∈ LisV, M ∈ LinV.
Using the Differentiation Theorem for Inversion Mappings of Sect.68 we

conclude from (86.10)2 that or is also of class C1.
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If we differentiate (86.8)1 with respect to L using the General Product
Rule, we obtain

M = ((∇Lor)M)rp(L) + or(L)((∇Lrp)M)

for all L ∈ LisV, M ∈ LinV. In view of (86.9), for L := 1V this yields

M = (∇1Vor)M + (∇1V rp)M for all M ∈ LinV. (86.15)

Since the codomain Pos+V of rp is an open subset of SymV, the codomain
of ∇Lrp is SymV for all L ∈ LisV. In particular,

(∇1V rp)M ∈ SymV for all M ∈ LinV. (86.16)

Since Rng or ⊂ OrthV, it follows from Prop.2 of Sect.66 that

(∇1Vor)M ∈ SkewV for all M ∈ LinV. (86.17)

Comparing (86.15)–(86.17) with (86.1), we see that for every M ∈ LinV,

U := (∇1V rp)M, A := (∇1Vor)M

gives the additive decomposition (U,A) of M. Hence (86.12) and (86.13)
follow from the Additive Decomposition Theorem.

There are no simple explicit formulas for ∇Lrp,∇Lor, and ∇Llp when
L 6= 1V .

The results (86.12) and (86.13) show, roughly, that for “infinitesimal”
M ∈ LinV, the right and left polar decompositions of 1V + M coincide and
are given by (1V + A,1V + U) when (U,A) is the additive decomposition
of M.

Notes 86

(1) In the literature on continuum mechanics (including some of my own papers, I must
admit) Prop.1 is taken tacitly for granted. I know of no other place in the literature
where it is proved.

87 The Structure of Skew Lineons

A genuine inner-product space V is assumed to be given. First, we deal with
an important special type of skew lineons:
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Definition 1: We say that a lineon on V is a perpendicular turn if
it is both skew and orthogonal.

If U is a perpendicular turn and u ∈ V, then |Uu| = |u| because U
is orthogonal, and (Uu) · u = 0, i.e. Uu ⊥ u, because U is skew. Hence
U “turns” every vector into one that is perpendicular and has the same
magnitude.

The following two results are immediate consequences of the definition.

Proposition 1: A lineon U on V is a perpendicular turn if and only if
it satisfies any two of the following three conditions: (a) U ∈ SkewV, (b)
U ∈ OrthV, (c) U2 = −1V .

Proposition 2: Let U be a perpendicular turn on V and let u ∈ V be a
unit vector. Then (u,Uu) is an orthonormal pair and its span Lsp{u,Uu}
is a two-dimensional U-space.

The structure of perpendicular turns is described by the following result.

Structure Theorem for Perpendicular Turns: If U is a perpen-
dicular turn, then there exists an orthonormal subset c of V such that
(Lsp{e,Ue} | e ∈ c) is an orthogonal decomposition of V whose terms are
two-dimensional U-spaces. The set c can be chosen so as to contain any
single prescribed unit vector. We have 2♯c = dimV.

Proof: Consider orthonormal subsets c of V such that
(Lsp{e,Ue} | e ∈ c) is an orthogonal family of subspaces of V. It is a trivial
consequence of Prop.2 that the empty subset of V and also singletons with
unit vectors have this property. Choose a maximal set c with this property.
It is clear that c can be chosen so as to contain any prescribed unit vector.
Since all the spaces Lsp{u,Uu} are U-spaces by Prop.2, it follows that the
sum

U :=
∑

e∈c

Lsp{e,Ue}

of the family (Lsp{e,Ue} | e ∈ c) is also a U-space. Since U is skew, it
follows from Prop.1 of Sect.82 that the orthogonal supplement U⊥ of U is
also a U-space. Now if U⊥ 6= {0}, we may choose a unit vector f ∈ U⊥.
Since U⊥ is a U-space, we have Lsp{f ,Uf} ⊂ U⊥. It follows that c ∪ {f}
is a subset of V such that (Lsp{e,Ue} | e ∈ c ∪ {f}) is an orthogonal
family, which contradicts the maximality of c. We conclude that U⊥ = {0}
and hence U = V, which means that (Lsp{e,Ue} | e ∈ c) is an orthogonal
decomposition of V. By Prop.2, the terms of the decomposition are two-
dimensional and by Prop.4 of Sect.81, we have 2(♯c) = dimV.

Corollary: Perpendicular turns on V can exist only when dimV is even.
Let U be such a turn and let m := 1

2 dimV. Then there exists an orthonormal
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basis e := (ei | i ∈ (2m)]) such that

Uei =

{

ei+1 when i is odd
−ei−1 when i is even

}

(87.1)

for all i ∈ (2m)].
Proof: The basis e is obtained by choosing an orthonormal set c as in

the Theorem, so that ♯c = m, and enumerating it by odd numbers, so that
c = {ei | i ∈ 2(m])−1}. The ei for i ∈ 2(m]) are then defined by ei := Uei−1.
Since U2 = −1V by (c) of Prop.1, we have Uei = U2ei−1 = −ei−1 when
i ∈ 2(m]).

If m is small, then the (2m)-by-(2m) matrix [U]e of U relative to any
basis for which (87.1) holds can be recorded explicitly in the form

[U]e =

























0 −1
1 0

0 −1
1 0

·
·

0 −1
1 0

























, (87.2)

where zeros are omitted.
In order to deal with skew lineons, we need the following analogue of

Def.1 of Sect.82.
Definition 2: Let L be a lineon on V. For every κ ∈ P

×, we write

QspsL(κ) := Null (L2 + κ21V). (87.3)

This is an L-space; if it is non-zero, we call it the quasi-spectral space
of L for κ. The quasi-spectrum of L is defined to be

Qspec L := {κ ∈ P
× | QspsL(κ) 6= {0}}. (87.4)

In view of Def.1 of Sect.82 we have

Qspec L = {√σ | σ ∈ Spec (−L2) ∩ P
×} (87.5)

and
QspsL(κ) = Sps−L2(κ2) for all κ ∈ P

× (87.6)

for all L ∈ LinV.
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The proof of the following result is based on the Spectral Theorem.

Structure Theorem for Skew Lineons: A lineon A on V is skew if
and only if (i) Rng A = (Null A)⊥, (ii) the family of quasi-spectral spaces of
A is an orthogonal decomposition of Rng A, and (iii) for each κ ∈ Qspec A
we have

A|Wκ
= κUκ, (87.7)

where Wκ := QspsA(κ) and where Uκ ∈ LinWκ is a perpendicular turn.

Proof: Assume that A is skew. It follows from (22.9) that RngA =
Rng (−A) = Rng (A⊤) = (Null A)⊥, i.e. that (i) is valid. Since A⊤A =
(−A)A = −A2 is positive by Prop.1 of Sect.85, it follows from Prop.2 of
Sect.85 that Spec (−A2) ⊂ P. Hence it follows from (87.5) that

Qspec A = {√σ |σ ∈ Spec (−A2) \ {0}}.

In view of (87.6) we conclude that the spectral spaces of −A2 are QspsA(κ)
with κ ∈ Qspec A, and also Sps−A2(0) if this subspace is not zero. Since
it is easily seen that Sps−A2(0) = Null A2 = Null A, it follows from the
Spectral Theorem, applied to −A2, that (QspsA(κ) | κ ∈ Qspec A) is an
orthogonal decomposition of (Null A)⊥ = RngA, i.e. that (ii) is valid. Now
let κ ∈ Qspec A be given. By (87.3) we have (A2 + κ21V)|Wκ

= 0 when

Wκ := QspsA(κ) and hence, since Wκ is an A-space, ( 1
κ
A|Wκ

)2 = −1Wκ .

Since 1
κ
A|Wκ

∈ SkewWκ, it follows from Prop.1 that (iii) is valid.

Assume now that the conditions (i), (ii), and (iii) hold and put W◦ :=
Null A and K := (Qspec A)∪{0}. Then (Wκ |κ ∈ K) is an orthogonal de-
composition of V. Let (Eκ |κ ∈ K) be the associated family of idempotents
(see Prop.5 of Sect.81). Using Prop.6 of Sect.81, (81.8), and (87.7), we find
that

A =
∑

κ∈Qspec A

κUκ|VEκ|Wκ . (87.8)

Since Uκ ∈ SkewWκ and, by Prop.4 of Sect.83, Eκ ∈ SymV for each κ ∈
Qspec A, it is easily seen that each term in the sum on the right side of
(87.8) is skew and hence that A is skew.

Assume that A ∈ SkewV. It follows from (iii) of the Theorem just proved
and the Corollary to the Structure Theorem for Perpendicular Turns that
dimWκ is even for all κ ∈ QspecA. Hence, by (ii) and Prop.3 of Sect.81,
we obtain the following

Proposition 3: If A is a skew lineon on V, then dim(RngA) is even.
In particular, if the dimension of V is odd, then there exist no invertible
skew lineons on V.
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The following corollary to the Structure Theorem above is obtained by
choosing, in each of the quasi-spectral spaces, an orthonormal basis as de-
scribed in the Corollary to the Structure Theorem for Perpendicular Turns.

Corollary: Let A be a skew lineon on V and put n := dimV, m :=
1
2 dim(Rng A). Then there is an orthonormal basis e := (ei | i ∈ n]) of V
and a list (κk | k ∈ m]) of strictly positive real numbers such that

Ae2k−1 = κke2k

Ae2k = −κke2k−1

}

for all k ∈ m], (87.9)

Aei = 0 for all i ∈ n] \ (2m)].

The only non-zero terms in the matrix [A]e of A relative to a basis e for

which (87.9) holds are those in blocks of the form

[

0 −κk

κk 0

]

along the

diagonal. For example, if dimV = 3 and A 6= 0, then [A]e has the form

[A]e =





0 −κ 0
κ 0 0
0 0 0



 for some κ ∈ P
×. (87.10)

Notes 87

(1) I am introducing the term “perpendicular turn” here for the first time; I believe it
is very descriptive.

(2) The concepts of a quasi-spectrum, quasi-spectral space, and the notations of Def.2
are introduced here for the first time.

88 Structure of Normal and Orthogonal Lineons

Again, a genuine inner-product space V is assumed to be given.

Definition 1: We say that a lineon on V is normal if it commutes with
its transpose.

It is clear that symmetric, skew, and orthogonal lineons are all normal.

Proposition 1: A lineon N ∈ LinV is normal if and only if the two
terms S := 1

2(N + N⊤) and A := 1
2(N−N⊤) of the additive decomposition

(S,A) of N commute. If this is the case, then any two of N,N⊤,S and A
commute.
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Proof: We have N = S + A and, since S ∈ SymV, A ∈ SkewV, N⊤ =
S−A. It follows that NN⊤−N⊤N = 2(AS−SA). Therefore, N and N⊤

commute if and only if S and A commute.

Proposition 2: A lineon N ∈ LinV is normal if and only if

|Nv| = |N⊤v| for all v ∈ V. (88.1)

If this is the case, then Null L = Null L⊤.

Proof: We have |Nv|2 = Nv · Nv = v · N⊤Nv and
|N⊤v|2 = v · NN⊤v for all v ∈ V. Hence (88.1) holds if and only if the
quadratic forms corresponding to N⊤N and NN⊤ are the same (see (85.1)).
This is the case if and only if N⊤N and NN⊤ are the same (see Sect.27).

Proposition 3: An invertible lineon N ∈ LisV is normal if and only if
the two terms of its right [left] polar decomposition commute (see Sect.86).

Proof: It is clear from the Polar Decomposition Theorem of Sect.86
that the terms of the right or of the left polar decomposition commute if
and only if the right and the left polar decompositions coincide, i.e. if and
only if S = S′ in the notation of the statement of this theorem. But by
(86.4)1 and (86.7)1, we have S = S′ if and only if NN⊤ = N⊤N.

In order to deal with the structure of normal lineons, we need the fol-
lowing analogue of Def.2 of Sect.87.

Definition 2: Let L be a lineon on V. For every ν ∈ R × P
× we write

PspsL(ν) := Null ((L − ν11V)
2 + ν2

21V). (88.2)

This is an L-space; if it is not zero, we call it the pair-spectral space of
L for ν. The pair-spectrum of L is defined to be

PspecL := {ν ∈ R × P
× | PspsL(ν) 6= {0}}. (88.3)

The proof of the following theorem is based on the Structure Theorem
for Skew Lineons and the Spectral Theorem.

Structure Theorem for Normal Lineons: A lineon N on V is nor-
mal if and only if the family of its pair-spectral spaces is an orthogonal
decomposition of V and, for each ν ∈ PspecN, we have

N|Wν
=

{

ν11Wν if ν2 = 0
ν11Wν + ν2Uν if ν2 6= 0

}

, (88.4)

where Wν := PspsN(ν), and where Uν ∈ LinWν is a perpendicular turn.

First we prove an auxiliary result:
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Lemma: If N ∈ LinV is normal and if (S,A) is the additive decompo-
sition of N, then

PspsN((σ, κ)) =

{

SpsS(σ) ∩ QspsA(κ) if κ 6= 0
SpsS(σ) ∩ Null A if κ = 0

}

(88.5)

for all σ ∈ R and all κ ∈ P.
Proof: Let σ ∈ R and κ ∈ P be given and put M := N − σ1V and

T := S− σ1V . Then M is normal and (T,A) is the additive decomposition
of M. Using the fact that any two of M,M⊤,T and A commute (see
Prop.1), we obtain

(M2 + κ21V)
⊤(M2 + κ21V) = (M⊤M)2 + κ2(M⊤2

+ M2) + κ41V
= ((T− A)(T + A))2 + κ2((T− A)2 + (T + A)2) + κ41V
= T4 + 2(AT)⊤(AT) + 2κ2T2 + (A2 + κ21V)

2.

Since T,T2 and (A2 + κ21V) are symmetric, it follows that

|(M2 + κ21V)v|2 = |T2v|2 + 2|ATv|2 + 2κ2|Tv|2 + |(A2 + κ21V)v|2

for all v ∈ V, from which we infer that v ∈ Null (M2 +κ21V) = PspsN(σ, κ)
if and only if v ∈ Null T ∩ Null (A2 + κ21V). Since Null T = SpsS(σ),
since Null (A2 + κ21V) = QspsA(κ) when κ 6= 0 by Def.2 of Sect.82, and
since Null A2 = Null A because A is skew, (88.5) follows.

Proof of Theorem: Assume that N is normal and that (S,A) is its
additive decomposition. Let σ ∈ SpecS be given and put U := SpsS(σ). By
Prop.2 of Sect.82, U is A-invariant and we may hence consider the adjust-
ment A|U ∈ SkewU . It is clear that Null A|U = U ∩ Null A and

QspsA|U
(κ) = U ∩ QspsA(κ) for all κ ∈ P

×.

Hence, by the Lemma, we conclude that

PspsN(σ, κ) =

{

QspsA|U
(κ) for all κ ∈ P

×

Null A|U if κ = 0

}

. (88.6)

Since S|U = σ1U , U is N-invariant and

N|U = σ1U + A|U . (88.7)

We now apply the Structure Theorem for Skew Lineons to A|U ∈ Skew U .
In view of (88.6), and since Qspec A|U ⊂ Qspec A, we have
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(PspsN(ν) | ν ∈ PspecN, ν1 = σ) is an orthogonal decomposition of U ,
and for all ν ∈ PspecN with ν1 = σ we have

A|Wν
= 0 if ν2 = 0 and A|Wν

= ν2Uν if ν2 6= 0,

where Wν := PspsN(ν) and where Uν ∈ LinWν is a perpendicular turn.
Using this result and (88.7), adjusted to the subspace Wν = W(σ,ν2) of U ,
we infer that (88.4) is valid.

By the Spectral Theorem (SpsS(σ) | σ ∈ SpecS) is an orthogonal decom-
position of V. Since, as we just have seen, (PspsN(ν) | ν ∈ PspecN, ν1 = σ)
is an orthogonal decomposition of SpsS(σ) for each σ ∈ SpecS, it follows
that (PspsN(ν) | ν ∈ PspecN) is an orthogonal decomposition of V. This
completes the proof of the “only-if” -part of the Theorem. The proof of
the “if”-part goes the same way as that of the “if”-part of the Structure
Theorem for Skew Lineons. We leave the details to the reader.

For a symmetric lineon we have S, PspecS = SpecS × {0} and
PspsS((σ, 0)) = SpsS(σ) for all σ ∈ SpecS. For a skew lineon A we have
PspecA = {0} × (SpecA ∪ Qspec A) and PspsA(0, κ) = QspsA(κ) for all
κ ∈ Qspec A, while PspsA((0, 0)) = Null A when A is not invertible.

As in the previous section, we obtain a corollary to the Structure Theo-
rem just given as follows.

Corollary: Let N be a normal lineon on V. Then there exists a number
m ∈ N with 2m ≤ n := dimV, an orthonormal basis e := (ei | i ∈ n])
of V, a list (µk | k ∈ m]) in R, a list (κk | k ∈ m]) in P

×, and a family
(λi | i ∈ n] \ (2m)]) in R such that

Ne2k−1 = µke2k−1 + κke2k

Ne2k = µke2k − κke2k−1

}

for all k ∈ m], (88.8)

Nei = λiei for all i ∈ n] \ (2m)].

The only non-zero terms in the matrix [N]e of N relative to a basis e
for which (88.8) holds are either on the diagonal or in blocks of the form
[

µk −κk

κk µk

]

along the diagonal. For example, if dimV = 3 and if N is not

symmetric, then [N]e has the form

[N]e =





µ −κ 0
κ µ 0
0 0 λ



 , κ ∈ P
×, λ, µ ∈ R. (88.9)

Orthogonal lineons are special normal lineons. To describe their struc-
ture, the following definition is useful.
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Definition 3: Let L be a lineon on V. For every θ ∈ ]0, π[ we write

AspecL(θ) := PspsL((cos θ, sin θ)) (88.10)

(see (88.2)). This is an L-space; if it is not zero, we call it the angle-
spectral space of L for θ. The angle-spectrum of L is defined to be

Aspec L := {θ ∈ ]0, π[ | AspsL(θ) 6= {0}}. (88.11)

The following result is a corollary to the Structure Theorem for Normal
Lineons.

Structure Theorem for Orthogonal Lineons: A lineon R on V is
orthogonal if and only if (i) Null (R+1V) ⊥ Null (R− 1V), (ii) the family
of angle-spectral spaces is an orthogonal decomposition of (Null (R + 1V) +
Null (R− 1V))⊥, and (iii) for each θ ∈ Aspec R we have

R|Uθ
= cos θ1Uθ

+ sin θVθ, (88.12)

where Uθ := AspsR(θ) and where Vθ ∈ Lin Uθ is a perpendicular turn.

Proof: The conditions (i), (ii), (iii) are satisfied if and only if the condi-
tions of the Structure Theorem for Normal Lineons are satisfied with N := R
and

PspecR ⊂ {(1, 0), (−1, 0)} ∪ {(cos θ, sin θ) | θ ∈ Aspec R}. (88.13)

Thus we may assume that R is normal. Since (PspsR(ν) | ν ∈ PspecR)
is an orthogonal decomposition of V whose terms Wν := PspsR(ν) are R-
invariant, it is easily seen that R is orthogonal if and only if R|Wν

is or-
thogonal for each ν ∈ PspecR. It follows from (88.4), with N := R, that
this is the case if and only if ν2

1 + ν2
2 = 1 for all ν ∈ PspecR, which is

equivalent to (88.13). If ν2 = 0 we have ν = (1, 0) or ν = (−1, 0) and
PspsR((1, 0)) = Null (R − 1V) and PspsR((−1, 0)) = Null (R + 1V). If
ν2 6= 0 we have ν = (cos θ, sin θ) for some θ ∈ ]0, π[ and (88.4) reduces to
(88.12) with Vθ := U(cos θ,sin θ).

As before we obtain a corollary as follows:

Corollary: Let R be an orthogonal lineon on V. Then there exist num-
bers m ∈ N and p ∈ N with 2m ≤ p ≤ n := dimV, an orthonormal basis
e := (ei | i ∈ n]) of V, and a list (θk | k ∈ m]) in ]0, π[ such that

Re2k−1 = cos θke2k−1 + sin θke2k

Re2k = cos θke2k − sin θke2k−1

}

for all k ∈ m]
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Rei = −ei for all i ∈ p] \ (2m)],

Rei = ei for all i ∈ n] \ p].
(88.14)

The only non-zero terms in the matrix [R]e of R relative to a basis e
for which (88.14) holds are either 1 or −1 on the diagonal or in blocks of

the form

[

cos θk − sin θk

sin θk cos θk

]

along the diagonal. For example, if dimV = 3

and if R is not symmetric, then [R]e has the form

[R]e =





cos θ − sin θ 0
sin θ cos θ 0

0 0 ±1



 , θ ∈ ]0, π[. (88.15)

If the + sign is appropriate, then R is a rotation by an angle θ about an
axis in the direction of e3. If the −sign is appropriate, then R is obtained
from such a rotation by composing it with a reflection in the plane {e3}⊥.

Notes 88

(1) The concepts of a pair-spectrum, pair-spectral space, angle-spectrum, and angle-
spectral space, and the notations of Defs.2 and 3 are introduced here for the first
time.

89 Complex Spaces, Unitary Spaces

Definition 1: A complex space is a linear space V (over R) endowed
with additional structure by the prescription of a lineon J on V that satisfies
J2 = −1V . We call J the complexor of V.

A complex space V acquires the natural structure of a linear space over
the field C of complex numbers if we stipulate that the scalar multiplication
smC : C × V → V of V as a space over C be given by

smC(ζ,u) = (Re ζ)u + (Im ζ)Ju for all ζ ∈ C, (89.1)

where Re ζ and Im ζ denote the real and imaginary parts of ζ. Indeed, it is
easily verified that smC satisfies the axioms (S1)–(S4) of Sect.11 if we take
F := C. The scalar multiplication sm : R × V → V of V as a space over R

is simply the restriction of smC to R × V :

sm = smC|R×V . (89.2)
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We use the simplified notation

ζu := smC(ζ,u) for all ζ ∈ C, u ∈ V (89.3)

as described in Sect.11.
Conversely, every linear space V over the field C of complex numbers

has the natural structure of a complex space in the sense of Def.1. The
structure of V as a linear space over R is obtained simply by restricting the
scalar multiplication of V to R ×V, and the complexor of V is the mapping
(u 7→ iu) : V → V.

Let V be a complex space. Most of the properties and constructions
involving V discussed in Chaps.1 and 2 depend on whether V is regarded as
a linear space over R or over C. To remove the resulting ambiguities, we use
the prefix “C” or a superscript C if we refer to the structure of V as a linear
space over C. For example, a non-empty subset c of V that is a C-basis is
not a basis relative to the structure of V as a space over R. However, it is
easily seen that c ∈ SubV is a C-basis set if and only if c ∪ J>(c) is a basis
set of V. If this is the case, then c∩J>(c) = ∅ and hence, since J is injective,
♯(c ∪ J>(c)) = 2(♯c). Therefore, the dimension of V is a linear space over R

is twice the dimension of V as a linear space over C:

dimV = 2dimC V. (89.4)

It follows that dimV must be an even number.
Let V and V ′ be complex spaces, with complexors J and J′, respectively.

The set of all C-linear mappings from V to V ′ is easily seen to be given by

LinC(V,V ′) = {L ∈ Lin(V,V ′) | LJ = J′L}. (89.5)

In particular, we have LinC(V,V) =: LinCV = CommJ, the commutant-
algebra of the complexor J (see 18.2). The set C1V := {ζ1V | ζ ∈ C} is a
subalgebra of LinCV and we have

J = i1V . (89.6)

Let J be the complexor of a complex space V. Since (−J)2 = J2 = −1V ,
we can also consider V as a complex space with −J rather than J as the
designated complexor. We call the resulting structure of V the conjugate-
complex structure of V. In view of (89.1), the corresponding scalar multi-
plication, denoted by smC : C × V → V, is given by

smC(ζ,u) = (Re ζ)u − (Im ζ)Ju for all ζ ∈ C (89.7)
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and we have

smC(ζ,u) = ζu for all ζ ∈ C, u ∈ V. (89.8)

where ζ denotes the complex-conjugate of ζ.

Let V and V ′ be complex spaces, with complexors J and J′, respectively.
We say that a mapping from V to V ′ is conjugate-linear if it is C-linear
when one of V and V ′ is considered as a linear space over C relative to its
conjugate-complex structure. The set of all conjugate-linear mappings from

V to V ′ will be denoted by Lin
C
(V,V ′), and we have

Lin
C
(V,V ′) = {L ∈ Lin(V,V ′) | LJ = −J′L}. (89.9)

A mapping L ∈ Lin(V,V ′) is conjugate-linear if and only if

L(ζu) = ζLu for all ζ ∈ C, u ∈ V. (89.10)

A mapping L : V → V ′ is C-linear when both V and V ′ are considered as
linear spaces over C relative to their conjugate-complex structures if and
only if it is C-linear in the ordinary sense.

Let V be a complex space with complexor J. Its dual V∗ then acquires the
natural structure of a complex space if we stipulate that the complexor of V∗
be J⊤ ∈ LinV∗. The dual V∗ := Lin(V, R) must be carefully distinguished
from the “complex dual” LinC(V, C) of V. However, the following result
shows that the two are naturally C-linearly isomorphic.

Proposition 1: The mapping

(ω 7→ Re ω) : LinC(V, C) → V∗. (89.11)

is a C-linear isomorphism. Its inverse Γ ∈ LisC(V∗, LinC(V, C)) is given by

(Γλ)u = λu− i λ(Ju) for all u ∈ V, λ ∈ V∗. (89.12)

Proof: We put V† := LinC(V, C) and denote the mapping (89.11) by
Φ : V† → V∗, so that

(Φω)u = Re (ωu) for all ω ∈ V†, u ∈ V. (89.13)

It is clear that Φ is linear. By (22.3) and (89.6) we have

((J⊤Φ)ω)u = (Φω)(Ju) = Φω(iu)

= Φ(i (ωu)) = ((Φ(i1V†))ω)u
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for all ω ∈ V† and all u ∈ V, and hence

J⊤Φ = Φ(i1V†).

Since J⊤ is the complexor of V∗ and i1V† the complexor of V†, it follows
from (89.5) that Φ is C-linear.

We now define Γ : V∗ → V† by (89.12). Using (89.13), we then have

((ΓΦ)ω)u = (Γ(Φω))u = (Φω)u− i (Φω)(Ju)
= Re (ωu) − i Re (ω(Ju)) = Re (ωu) − i Re (i (ωu))
= Re (ωu) + i Im (ωu) = ωu

for all ω ∈ V† and all u ∈ V. It follows that ΓΦ = 1V† . In a similar way,
one proves that ΦΓ = 1V∗ and hence that Γ = Φ−1.

Definition 2: A unitary space is an inner-product space V endowed
with additional structure by the prescription of a perpendicular turn J on V
(see Def.1 of Sect.87).

We say that V is a genuine unitary space if its structure as an inner-
product space is genuine.

Since J2 = −1V by Prop.1 of Sect.87, a unitary space has the structure of
a complex space with complexor J in the sense of Def.1. The identification
V∗ ∼= V has to be treated with some care. The natural complex-space
structure of V∗ is determined by the complexor J⊤ but, since J⊤ = −J for
a perpendicular turn, the complex structure of V∗, when identified with V,
is the conjugate-complex structure of V, not the original complex structure.
The identification mapping (v 7→ v·) : V → V∗ (see Sect.41) is not C-linear
but conjugate-linear.

We define the unitary product up : V × V → C of a unitary space V
by

up(u,v) := Γ(v·)u for all u,v ∈ V, (89.14)

where Γ ∈ LisC(V∗, LinC(V, C)) is the natural isomorphism given by (89.12).
In view of the remarks above, up(·,v) : V → C is C-linear for all v ∈ V and
up(u, ·) : V → C is conjugate-linear for all u ∈ V. We use the simplified
notation

〈u|v〉 := up(u,v) when u,v ∈ V. (89.15)

It follows from (89.15), (89.14), and (89.12) that

〈u|v〉 = v · u − i (v · Ju) = u · v + i (u · Jv),

Re 〈u|v〉 = u · v, 〈u|u〉 = u·2
(89.16)
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for all u,v ∈ V. The properties of up are reflected in the following rules,
valid for all u,v,w ∈ V and all ζ ∈ C:

〈v|u〉 = 〈u|v〉, (89.17)

〈u + v|w〉 = 〈u|w〉 + 〈v|w〉, (89.18)

〈ζu|v〉 = ζ〈u|v〉 = 〈u|ζv〉. (89.19)

Let V be a unitary space. The following result, which is easily proved,
describes the properties of transposition of C-lineons.

Proposition 2: If L ∈ LinCV then L⊤ ∈ LinCV and L⊤ is characterized
by

〈Lu|v〉 = 〈u|L⊤v〉 for all u,v ∈ V. (89.20)

The mapping (L 7→ L⊤) : LinCV → LinCV is conjugate-linear, so that

(ζL)⊤ = ζL⊤ for all ζ ∈ C, L ∈ LinCV. (89.21)

We use the notation

SymCV = SymV ∩ LinCV (89.22)

for the set of all symmetric C-lineons. This set is a subspace, but not a
C-subspace, of LinCV. In fact, the following result shows how LinCV can be
recovered from SymCV:

Theorem on Real and Imaginary Parts: Let V be a unitary space.
We have

i SymCV = SkewV ∩ LinCV (89.23)

and i SymCV is a supplement of SymCV in LinCV, i.e. to every C-lineon L
corresponds a unique pair (H,G) such that

L = H + iG, and H,G ∈ SymCV. (89.24)

H is called the real part and G the imaginary part of L.
Proof: Let L ∈ LinCV be given. By (89.21) we have (iL)⊤ = −iL⊤ and

hence L = −L⊤ if and only if (iL) = (iL)⊤. Since L ∈ LinCV was arbitrary,
(89.23) follows.

Again let L ∈ LinCV be given and assume that (89.24) holds. Since
iG ∈ SkewV by (89.23), it follows that (H, iG) must be the additive decom-
position of L described in the Additive Decomposition Theorem of Sect.86
and hence that

H =
1

2
(L + L⊤), G =

i

2
(L⊤ − L), (89.25)
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which proves the uniqueness of (H,G). To prove existence, we define H
and G by (89.25) and observe, using (89.21), that they have the required
properties.

Since SymCV and i SymCV are linearly isomorphic subspaces of LinCV
we can use Props.5 and 7 of Sect.17 to obtain the following consequence of
the Theorem.

Corollary: Let n := dimC V = 1
2 dimV. Then dim LinCV =

2dimC LinCV = 2n2 and dimSymCV = dim(SkewV ∩ LinCV) = n2.
Let V,V ′ be complex spaces. We say that a mapping U : V → V ′ is

unitary if it is orthogonal and C-linear. It is easily seen that U : V → V ′ is
unitary if and only if it is linear and preserves the unitary product defined
by (89.14). The set of all unitary mappings from V to V ′ will be denoted by
Unit(V,V ′), so that

Unit(V,V ′) := Orth(V,V ′) ∩ LinC(V,V ′) (89.26)

If U is unitary and invertible, then U−1 is again unitary (see Prop.1 of
Sect.43). In this case, U is called a unitary isomorphism. We write
UnitV := Unit(V,V). It is clear that UnitV is a subgroup of OrthV and
hence of LisV. The group UnitV is called the unitary group of the unitary
space V.

Remark: Let I be a finite index set. The linear space C
I over C (see

Sect.14) has the natural structure of a unitary space whose inner square is
given by

λ·2 :=
∑

i∈I

|λi|2 for all λ ∈ C
i. (89.27)

Of course, the complexor is termwise multiplication by i. The unitary prod-
uct is given by

〈λ|µ〉 =
∑

i∈I

λiµi for all λ, µ ∈ C
I (89.28)

Notes 89

(1) As far as I know, the treatment of complex spaces as real linear spaces with ad-
ditional structure appears nowhere else in the literature. The textbooks just deal
with linear spaces over C. I believe that the approach taken here provides better
insight, particularly into conjugate-linear structures and mappings.

(2) The term “complexor” is introduced here for the first time.
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(3) Some people use the term “anti-linear” or the term “semi-linear” instead of
“conjugate-linear”.

(4) Most textbooks deal only with what we call “genuine” unitary spaces and use
the term “unitary space” only in this restricted sense. The term “complex inner-
product space” is also often used in this sense.

(5) What we call “unitary product” is very often called “complex inner-product” or
“Hermitian”.

(6) The notations 〈u,v〉 and (u,v) are often used for the value 〈u |v〉 of the unitary
product. (See also Note (3) to Sect.41.)

(7) In most of the literature on theoretical physics, the order of u,v in the notation
〈u |v〉 for the unitary product is reversed. Therefore, in textbooks on theoretical
physics, (89.19) is replaced by

〈u | ζv〉 = ζ〈u |v〉 = 〈ζu |v〉.

(8) Symmetric C-lineons are very often called “self-adjoint” or “Hermitian”. I do not
think a special term is needed.

(9) Skew C-lineons are often called “skew-Hermitian” or “anti-Hermitian”.

(10) The notations Un or U(n) are often used for the unitary group UnitCn.

810 Complex Spectra

Let V be a complex space. As we have seen in Sect.89, V can be regarded
both as a linear space over R and as a linear space over C. We modify Def.2
of Sect.82 as follows: Let L ∈ LinCV be given. For every ζ ∈ C, we write

SpsC

L(ζ) := Null (L − ζ1V), (810.1)

and, if it is non-zero, call it the spectral C-space of L for ζ. Of course, if
ζ is real, we have SpsC

L
(ζ) = SpsL(ζ).

The spectral C-spaces are C-subspaces of V. The C-spectrum of L is
defined by

SpecCL := {ζ ∈ C | SpsC
L(ζ) 6= {0}}. (810.2)

It is clear that

SpecL = (SpecCL) ∩ R. (810.3)

The C-multiplicity function multC
L : C → N of L is defined by

multC

L(ζ) := dimC(SpsC

L(ζ)) for all ζ ∈ C. (810.4)
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In view of (89.4) we have

multL(σ) = 2multC
L(σ) for all σ ∈ R. (810.5)

SpecCL is the support of multC
L.

The Theorem on Spectral Spaces of Sect.82 has the following analogue,
which is proved in the same way.

Proposition 1: The C-spectrum of a C-lineon L on a complex space V
has at most dimC V members and the family (SpsC

L
(ζ) | ζ ∈ SpecCL) of the

spectral C-spaces of L is disjunct.
The following are analogues of Prop.5 and Prop.6 of Sect.82 and are

proved in a similar manner.
Proposition 2: Let L ∈ LinCV be given and assume that the family

(SpsL(ζ) | ζ ∈ SpecCL) of spectral C-spaces is a decomposition of V. If
(Eζ | ζ ∈ SpecCL) is the associated family of idempotents then

L =
∑

ζ∈SpecC
L

ζEζ . (810.6)

Proposition 3: Let L ∈ LinCV be given. Assume that Z is a finite
subset of C and that (Wζ | ζ ∈ Z) is a decomposition of V whose terms are
non-zero L-invariant C-subspaces of V and satisfy

L|Wζ
= ζ1Wζ

for all ζ ∈ Z. (810.7)

Then Z = SpecCL and Wζ = SpsC

L
(ζ) for all ζ ∈ Z.

From now on we assume that V is a genuine unitary space.
Proposition 4: The C-spectrum of a symmetric C-lineon S ∈ SymCV

contains only real numbers, i.e. SpecCS = SpecS.
Proof: Let ζ ∈ SpecCS, so that Su = ζu for some u ∈ V×. Using

S = S⊤, (89.20), (89.19), and (89.16)4 we find

0 = 〈Su |u〉 − 〈u |Su〉 = 〈ζu |u〉 − 〈u | ζu〉
= (ζ − ζ)〈u |u〉 = (ζ − ζ)u·2.

Since V is genuine, we must have u·2 6= 0 and hence ζ = ζ, i.e. ζ ∈ R.
Remark: A still shorter proof of Prop.4 can be obtained by applying

the Spectral Theorem and Prop.2, but the proof above is more elementary
in that it makes no use of the Spectral Theorem.

Let S ∈ SymCV be given. By Prop.4, the family of spectral C-spaces of
S coincides with the family of spectral spaces in the sense of Def.1 of Sect.82.
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This family consists of C-subspaces of V and, by the Spectral Theorem, is an
orthogonal decomposition of V. All the terms Eσ in the spectral resolution
of S (see Cor.1 to the Spectral Theorem) are C-linear. There exists a C-basis
e := (ei | i ∈ I) of V and a family λ = (λi | i ∈ I) in R such that (84.6)
holds. Each σ ∈ SpecS occurs exactly multC

S(σ) times in the family λ.
For C-linear normal lineons, the Structure Theorem of Sect.88 can be

replaced by the following simpler version.
Spectral Theorem for Normal C-Lineons: Let V be a genuine uni-

tary space. A C-lineon on V is normal if and only if the family of its spectral
C-spaces is an orthogonal decomposition of V.

Proof: Let N ∈ LinCV be normal. Let H,G ∈ SymCV be the real and
imaginary parts of N as described in the Theorem on Real and Imaginary
Parts of Sect.89, so that N = H + iG. From this Theorem and Prop.1 of
Sect.88 it follows that H and G commute. Let Z := SpecH = SpecCH. By
Prop.2 of Sect.82, Uσ := SpsH(σ) is G-invariant for each σ ∈ Z. Hence we
may consider

Dσ := G|Uσ
for all σ ∈ Z.

It is clear that Dσ ∈ SymCUσ for all σ ∈ Z. Put Qσ := SpecDσ = SpecCDσ

and W(σ,τ) := SpsDσ
(τ) for all σ ∈ Z and all τ ∈ Qσ. It is easily seen that

W(σ,τ) is N-invariant and that

N|W(σ,τ)
= σ1W(σ,τ)

+ i τ1W(σ,τ)
= (σ + i τ)1W(σ,τ)

for all σ ∈ Z and all τ ∈ Qσ. Also, the family (W(σ,τ) | σ ∈ Z, τ ∈ Qσ)
is an orthogonal decomposition of V whose terms are C-subspaces of V. It
follows from Prop.3 that SpecCN = {σ + i τ | σ ∈ Z, τ ∈ Qσ} and that
SpsN(ζ) = W(Re ζ,Im ζ) for all ζ ∈ SpecCN.

Assume now that L ∈ LinCV is such that (SpsL(ζ) | ζ ∈ SpecCL)
is an orthogonal decomposition of V. We can apply Prop.2 and con-
clude that (810.6) holds. By Prop.4 of Sect.83, each of the idempotents
Eζ , ζ ∈ SpecCL, belongs to SymCV. Using this fact and (89.21) we derive
from (810.6) that

L⊤ =
∑

ζ∈SpecC
L

ζEζ

and hence, by (81.6), that

LL⊤ =
∑

ζ∈SpecC
L

(ζζ)Eζ = L⊤L,

i.e. that L is normal.
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The C-spectrum of a normal C-lineon is related to its pair-spectrum (see
Sect.88) by

PspecN = {(Re ζ, |Im ζ|) | ζ ∈ SpecCN}. (810.8)

A normal C-lineon is symmetric, skew, or unitary depending on whether
its C-spectrum consists only of real numbers, imaginary numbers, or num-
bers of absolute value 1, respectively. The angle-spectrum of a unitary lineon
U is related to its C-spectrum by

Aspec U = {ϕ ∈ ]0, π[ | ei ϕ ∈ SpecCU or e−iϕ ∈ SpecCU}. (810.9)

The Spectral Theorem for Normal C-lineons has two corollaries that are
analogues of Cors.1 and 2 to the Spectral Theorem in Sect.84. We leave the
formulation of these corollaries to the reader.

811 Problems for Chapter 8

(1) Let V be a linear space, let (Ui | i ∈ I) be a finite family of subspaces
of V, let Π be a partition of I (see Sect.01) and put

WJ :=
∑

j∈J Uj for all J ∈ Π (P8.1)

(see (07.14)). Prove that the family (Ui | i ∈ I) is disjunct [a decom-
position of V] if and only if the family (WJ | J ∈ Π) is disjunct [a
decomposition of V] and, for each J ∈ Π, the family (Uj | j ∈ J) is
disjunct.

(2) Let (Ei | i ∈ I) be a finite family of lineons on a given linear space V.

(a) Show: If (81.5) and (81.6) hold, then (RngEi | i ∈ I) is a de-
composition of V and (Ei | i ∈ I) is the family of idempotents
associated with this decomposition.

(b) Prove: If (81.5) alone holds and if Ei is idempotent for every
i ∈ I, then (RngEi | i ∈ I) is already a decomposition of V and
hence (81.6) follows. (Hint: Apply Prop.4 of Sect.81.)

(3) Let V be a genuine inner-product space and let S and T be symmetric
lineons on V.

(a) Show that ST is symmetric if and only if S and T commute.
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(b) Prove: If S and T commute then

Spec (ST) ⊂ {στ | σ ∈ SpecS, τ ∈ SpecT}. (P8.2)

(4) Let V be a genuine inner-product space and let S be a symmetric
lineon on V. Show that the operator norm of S, as defined by (52.19),
is given by

||S|| = max{|σ| | σ ∈ SpecS}. (P8.3)

(5) Let a genuine Euclidean space E with translation space V, a point
q ∈ E , and a strictly positive symmetric lineon S ∈ Pos+V be given.
Then the set

S := {x ∈ E | S(x − q) = 1}

is called an ellipsoid centered at q, and the spectral spaces of S are
called the principal directions of the ellipsoid. PutT := (

√
S)−1

(see Sect.85). The spectral values of T are called the semi-axes of S.

(a) Show that

S = q + T>(UsphV). (P8.4)

(see (42.9)).

(b) Show: If e is a spectral unit vector of S, then

S ∩ (q + Re) = {q − ae, q + ae}, (P8.5)

where a is a semi-axis of S.

(c) Let e be an orthonormal basis-set whose terms are spectral vectors
of S (see Cor.2 to the Spectral Theorem). Let Γ be the Cartesian
coordinate system with origin q which satisfies {∇c | c ∈ Γ} = e

(see Sect.74). Show that

S =

{

x ∈ E
∣

∣ .
∑

c∈Γ

c(x)2

a2
c

= 1

}

, (P8.6)

where (ac | c ∈ Γ) is a family whose terms are the semi-axes of
the ellipsoid S.
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(d) Let p ∈ E and ρ ∈ P
× be given and let α : E → E be an invertible

flat mapping. Show that the image α>(Sphp,ρE) under α of the
sphere Sphp,ρE (see (46.11)) is an ellipsoid centered at α(p) whose
semi-axes form the set

{

ρ
√

σ
∣

∣ σ ∈ Spec ((∇α)⊤∇α)
}

.

(6) Let S be a symmetric lineon on a genuine inner-product space V and
let (Eσ | σ ∈ SpecS) be the spectral resolution of S.

(a) Show that, for all σ ∈ SpecS, we have

∫ 1
0 expV ◦(ι(S− σ1V)) = Eσ +

∑

τ∈SpecS\{σ}

eτ−σ−1
τ−σ

Eτ . (P8.7)

(b) Show that, for every M ∈ LinV, every σ ∈ SpecS, and every
v ∈ SpsS(σ),

((∇S expV)M)v =



eσEσ +
∑

τ∈SpecS\{σ}

eτ−eσ

τ−σ
Eτ



Mv. (P8.8)

(c) Show that expV is locally invertible near S.

(d) Prove that the lineonic logarithm log(V) defined in Sect.85 is of

class C1.

(7) Consider L ∈ Lin R
3 and T ∈ Sym R

3 as given by

L :=
1

5





10 0 5
3 8 6
4 −6 8



 , T :=





5 0 4
0 4 0
4 0 5



 .

(a) Determine the spectrum and the spectral idempotents of T .

(b) Determine the right and left polar decompositions of L

(see Sect.86).

(c) Find the spectrum and angle-spectrum of R := or(L) ∈ Orth R
3

(see Sect.88).

(8) Let L be an invertible lineon on a genuine inner-product space V, and
let (R,S) be the right polar decomposition and (R,T) the left polar
decomposition of L. Show that the following are equivalent:
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(i) L ∈ SkewV,

(ii) R is a perpendicular turn that commutes with S or with T,

(iii) S = T and R ∈ SkewV,

(iv) SpsS(κ) = QspsL(κ) for all κ ∈ SpecS.

(9) Let V be a genuine inner-product space, let I ∈ Sub R be a genuine
interval, and let F : I → LisV be a lineonic process of class C1 with
invertible values. Define L : I → LinV by

L(t) := F•(t)F(t)−1 for all t ∈ I, (P8.9)

and define D : I → SymV and W : I → SkewV by the requirements
that (D(t),W(t)) be the additive decomposition of L(t) for all t ∈ I

(see Sect.86). For each t ∈ I, define F(t) : I → LisV by

F(t)(s) := F(s)F(t)−1 for all s ∈ I (P8.10)

and put R(t) := or ◦ F(t), U(t) := rp ◦ F(t), V(t) := lp ◦ F(t) (see
Sect.86). Prove that

R•(t)(t) = W(t), U•(t)(t) = V•(t)(t) = D(t) for all t ∈ I (P8.11)

(Hint: Use Prop.1 of Sect.86).

(10) Let V be a genuine inner-product space. Prove: If N ∈ LinV is normal
and satisfies N2 = −1V , then N is a perpendicular turn (see Def.1 of
Sect.87 and Def.1 of Sect.88).

(11) Let S be a lineon on a genuine inner product space V. Prove that the
following are equivalent:

(i) S ∈ SymV ∩ OrthV,

(ii) S ∈ SymV and SpecS ⊂ {1,−1},
(iii) S ∈ OrthV and S2 = 1V ,

(iv) S = E−F for some symmetric idempotents E and F that satisfy
EF = 0 and E + F = 1V ,

(v) S ∈ OrthV and Aspec S = ∅.
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(12) Let U be a skew lineon on a genuine inner product space. Show that
U is a perpendicular turn if and only if Null U = {0} and Aspec U =
{

π
2

}

.

(13) Let A be a skew lineon on a genuine inner-product space and let
R := expV(A).

(a) Show that R is orthogonal. (Hint: Use the Corollary to Prop.2
of Sect.66.)

(b) Show that the angle-spectrum of R is given, in terms of the quasi-
spectrum of A, by

AspecR =
{

κ − π⌊ κ
π

∣

∣ κ ∈ QspecA
}

, (P8.12)

where the floor ⌊a of a ∈ R is defined by
⌊a := max{n ∈ Z | n ≤ a}. (Hint: Use the Structure Theorems
of Sects.87 and 88 and the results of Problem 9 of Chap.6)

Remark: The assertion of Part (a) is valid even if the inner-product
space V is not genuine.

(14) Let V be a linear space and define J ∈ LinV2 by

J(v1,v2) = (−v2,v1) for all v ∈ V2. (P8.13)

(a) Show that J2 = −1V2 , and hence that V2 has the natural struc-
ture of a complex space with complexor J (see Def.1 of Sect.89).
The space V2, with this complex-space structure, is called the
complexification of V.

(b) Show that

(ξ + i η)v = (ξv1 − ηv2, ηv1 + ξv2) (P8.14)

for all ξ, η ∈ R and all v ∈ V2.

(c) Prove: If L,M ∈ LinV, then the cross-product L × M ∈ LinV2

(see (04.18)) is C-linear if and only if M = L and it is conjugate-
linear if and only if M = −L (see Sect.89).

(d) Let L ∈ LinV and ζ ∈ C be given. Show that ζ ∈ SpecC(L × L)
if and only if either Im ζ = 0 and ζ ∈ SpecL or else Im ζ 6= 0 and
(Re ζ, |Im ζ|) ∈ PspecL (see Def.2 of Sect.88). Conclude that
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ζ ∈ SpecC(L × L) ⇐⇒ ζ ∈ SpecC(L × L). (P8.15)

(e) Let L ∈ LinV and ζ ∈ SpecC(L × L) be given and put ξ :=
Re ζ, η := Im ζ, so that ζ = ξ + i η. Show that

SpsC
L×L

(ζ) = (SpsL(ξ))2 if η = 0 (P8.16)

while

SpsC
L×L(ζ) =

{

(v,
1

η
(ξ1V − L)v) | v ∈ PspsL(ξ, |η|)

}

if η 6= 0. (P8.17)

(15) Let V be an inner-product space and let V2 be the complexification
of V as described in Problem 14. Recall that V2 carries the natural
structure of an inner-product space (see Sect.44).

(a) Show that the complexor J ∈ LinV2 defined by (P8.14) is a per-
pendicular turn and hence endows V2 with the structure of a
unitary space.

(b) Show that the unitary product of V2 is given by

〈u |v〉 = u1 · v1 + u2 · v2 + i (u2 · v1 − u1 · v2) (P8.18)

for all u,v ∈ V2.

(c) Show that H ∈ LinV2 is a symmetric C-lineon on V2 if and only
if H = T × T + J ◦ (A × A) for some T ∈ SymV and some
A ∈ SkewV.


