
Chapter 3

Flat Spaces

In this chapter, the term “linear space” will be used as a shorthand for
“linear space over the real field R”. (Actually, many definitions remain
meaningful and many results remain valid when R is replaced by an arbitrary
field. The interested reader will be able to decide for himself when this is
the case.)

31 Actions of Groups

Let E be a set and consider the permutation group Perm E , which consists
of all invertible mappings from E onto itself. Perm E is a group under
composition, and the identity mapping 1E is the neutral of this group (see
Sect. 06).

Definition 1: Let E be a non-empty set and G a group. By an action

of G on E we mean a group homomorphism τ : G → PermE .

We write τg for the value of τ at g ∈ G. To say that τ is an action of G
on E means that τcmb(g,h) = τg ◦ τh for all g, h ∈ G, where cmb denotes the
combination of G (see Sect. 06). If n is the neutral of G, then τn = 1E , and
if rev(g) is the group-reverse of g ∈ G, then τrev(g) = τ←g .

Examples:

1. If G is any subgroup of Perm E , then the inclusion mapping 1G⊂Perm E

is an action of G on E . For subgroups of Perm E it is always understood
that the action is this inclusion.

2. If E is a set with a prescribed structure, then the automorphisms of E
form a subgroup of Perm E which acts on E by inclusion in Perm E as
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102 CHAPTER 3. FLAT SPACES

explained in Example 1. For instance, if V is a linear space, then the
lineon group LisV acts on V.

3. If V is a linear space, define τ : V → PermV by letting τv be the
operation of adding v ∈ V, so that τv(u) := u + v for all u ∈ V. It is
easily seen that τ is a homomorphism of the additive group of V into
the permutation group PermV, i.e., τ is an action of V on itself.

4. If V is a linear space, define mult : P× → PermV by letting multλ :=
λ1V be the operation of taking the λ-multiple, so that multλ(v) = λv

for all v ∈ V. It is evident that mult is a homomorphism of the
multiplicative group P× into PermV and hence an action of P× on V.
mult>(P×) is a subgroup of LisV that is isomorphic to P×; namely,
mult>(P×) = P×1V .

Let τ be an action of G on E . We define a relation ∼τ on E by

x ∼τ y :⇐⇒ y = τg(x) for some g ∈ G. (31.1)

It is easily seen that ∼τ is an equivalence relation. The equivalence
classes are called the orbits in E under the action τ of G. If x ∈ E , then
{τg(x) | g ∈ G} is the orbit to which x belongs, also called the orbit of x.

Definition 2: An action τ of a group G on a non-empty set E is said
to be transitive if for all x, y ∈ E there is g ∈ G such that τg(x) = y.
The action is said to be free if τg, with g ∈ G, can have a fixed point (see
Sect.03) only if g = n, the neutral of G.

To say that an action is transitive means that all of E is the only orbit
under the action. Of course, since τn = 1E , all points in E are fixed points
of τn.

If the action τ of G on E is free, one easily sees that τ : G → Perm E
must be injective, and hence that τ>(G) is a subgroup of Perm E that is an
isomorphic image of G.

Proposition 1: An action τ of a group G on a non-empty set E is both
transitive and free if and only if for all x, y ∈ E there is exactly one g ∈ G
such that τg(x) = y.

Proof: Assume the action is both transitive and free and that x, y ∈ E
are given. If τg(x) = y and τh(x) = y, then x = (τg)

←(y) = τrev(g)(y) =
τrev(g)(τh(x)) = (τrev(g) ◦ τh)(x) = τcmb(rev(g),h)(x). Since the action is free,
it follows that cmb(rev(g), h) = n and hence g = h. Thus there can be at
most one g ∈ G such that τg(x) = y. The transitivity of the action assures
the existence of such g.
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Assume now that the condition is satisfied. The action is then transitive.
Let τg(x) = x for some x ∈ E . Since τn(x) = 1E(x) = x it follows from the
uniqueness that g = n. Hence the action is free.

32 Flat Spaces and Flats

Definition 1: A flat space is a non-empty set E endowed with structure
by the prescription of

(i) a commutative subgroup V of Perm E whose action is transitive.

(ii) a mapping sm : R × V → V which makes V a linear space when
composition is taken as the addition and sm as the scalar multiplication
in V.

The linear space V is then called the translation space of E.
The elements of E are called points and the elements of V translations

or vectors. If ξ ∈ R and v ∈ V we write, as usual, ξv for sm(ξ,v). In V,
we use additive notation for composition, i.e., we write u + v for v ◦ u, −v

for v←, and 0 for 1E .
Proposition 1: The action of the translation space V on the flat space

E is free.
Proof: Suppose that v ∈ V satisfies v(x) = x for some x ∈ E . Let y ∈ E

be given. Since the action of V is transitive, we may choose u ∈ V such that
y = u(x). Using the commutativity of the group V, we find that

v(y) = v(u(x)) = (v ◦ u)(x) = (u ◦ v)(x) = u(v(x)) = u(x) = y.

Since y ∈ E was arbitrary, it follows that v = 1E .
This Prop.1 and Prop.1 of Sect.31 have the following immediate conse-

quence:
Proposition 2: There is exactly one mapping

diff : E × E −→ V

such that
(diff(x, y))(y) = x for all x, y ∈ E . (32.1)

We call diff(x, y) ∈ V the point-difference between x and y and use
the following simplified notations:

x − y := diff(x, y) when x, y ∈ E ,
x + v := v(x) when x ∈ E ,v ∈ V.
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The following rules are valid for all x, y, z ∈ E and for all u,v ∈ V.

x − x = 0,

x − y = −(y − x),

(x − y) + (y − z) = x − z,

(x + u) + v = x + (u + v),

x + v = y ⇐⇒ v = y − x.

In short, an equation involving points and vectors is valid if it is valid accord-
ing to the rules of ordinary algebra, provided that all expressions occurring
in the equation make sense. Of course, an expression such as x+ y does not
make sense when x, y ∈ E .

The following notations, which are similar to notations introduced in
Sect.06., are very suggestive and useful. They apply when x ∈ E ,v ∈ V,
H,Y ∈ Sub E , S ∈ SubV.

x + S := {x + s | s ∈ S},

H + v := v>(H) = {x + v | x ∈ H},

H + S :=
⋃

s∈S

s>(H) = {x + s | x ∈ H, s ∈ S},

H−Y := {x − y | x ∈ H, y ∈ Y}.

The first three of the above are subsets of E , the last is a subset of V. We
have V = E −E and we sometimes use E - E as a notation for the translation
space of E .

Flat spaces serve as mathematical models for physical planes and spaces.
The vectors, i.e. the mappings in V (except the identity mapping 0 = 1E),
are to be interpreted as parallel shifts (hence the term “translation”). If
a vector v ∈ V is given, we can connect points x, y, . . ., with their images
x + v, y + v, . . ., by drawing arrows as shown in Figure 1. In this sense,
vectors can be represented pictorially by arrows. The commutativity of V
is illustrated in Figure 2. The assumption that the action of V is transitive
corresponds to the fact that given any two points x and y, there exists a
vector that carries x to y.
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It often happens that a set E , a linear space V, and an action of the
additive group of V on E are given. If this action is transitive and injective,
then E acquires the structure of a flat space whose translation space is
the isomorphic image of V in Perm E under the given action. Under such
circumstances, we identify V with its isomorphic image and, using poetic
license, call V itself the translation space of E . If we wish to emphasize the
fact that V becomes the translation space only after such an identification,
we say that V acts as an external translation space of E .

Let V be a linear space. The action τ : V → PermV described in
Example 3 of the previous section is easily seen to be transitive and injective.
Hence we have the following trivial but important result:

Proposition 3: Every linear space V has the natural structure of a flat
space. The space V becomes its own external translation space by associating
with each v ∈ V the mapping u 7→ u + v from V to itself.

The linear-space structure of V embodies more information than its flat-
space structure. As a linear space, V has a distinguished element, 0, but
as a flat space it is homogeneous in the sense that all of its elements are of
equal standing. Roughly, the flat structure of V is obtained from its linear
structure by forgetting where 0 is.

Note that the operations involving points and vectors introduced earlier,
when applied to the flat structure of a linear space, reduce to ordinary
linear-space operations. For example, point-differences reduce to ordinary
differences.

Of course, the set R of reals has the natural structure of a flat space
whose (external) translation space is R itself, regarded as a linear space.

We now assume that a flat space E with translation space V is given.
A subset F of E will inherit from E the structure of a flat space if the
translations of E that leave F invariant can serve, after adjustment (see
Sect.03), as translations of F . The precise definition is this:
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Definition 2: A non-empty subset F of E is called flat subspace of E,
or simply a flat in E, if the set

U := {u ∈ V | F + u ⊂ F} (32.2)

is a linear subspace of V whose additive group acts transitively on F under
the action which associates with every u ∈ U the mapping u|F of F onto
itself.

The action of U on F described in this definition endows F with the
natural structure of a flat space whose (external) translation space is U . We
say that U is the direction space of F . The following result is immediate
from Def.2.

Proposition 4: Let U be a subspace of V. A non-empty subset F of E
is a flat with direction space U if and only if

F − F ⊂ U and F + U ⊂ F . (32.3)

Let U be a subspace of V. The inclusion of the additive group of U in
the group Perm E is an action of U on E . This action is transitive only when
U = V. The orbits in E under the action of U are exactly the flats with
direction space U . Since x + U is the orbit of x ∈ E we obtain:

Proposition 5: Let U be a subspace of V. A subset F of E is a flat with
direction space U if and only if it is of the form

F = x + U (32.4)

for some x ∈ E .
We say that two flats are parallel if the direction space of one of them is

included in the direction space of the other. For example, two flats with the
same direction space are parallel; if they are distinct, then their intersection
is empty.

The following result is an immediate consequence of Prop.4.
Proposition 6: The intersection of any collection of flats in E is either

empty or a flat in E. If it is not empty, then the direction space of the
intersection is the intersection of the direction spaces of the members of the
collection.

In view of the remarks on span-mappings made in Sect.03, we have the
following result.

Proposition 7: Given any non-empty subset S of E, there is a unique
smallest flat that includes S. More precisely: There is a unique flat that
includes S and is included in every flat that includes S. It is called the flat
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span of S and is denoted by FspS. We have FspS = S if and only if S is
a flat.

If x and y are two distinct points in E , then

←→
xy := Fsp{x, y} (32.5)

is called the line passing through x and y.
It is easily seen that, if S ⊂ E and if q ∈ S, then Lsp(S − q) is the

direction space of FspS and hence, by Prop.5,

FspS = q + Lsp(S − q). (32.6)

Let E1, E2 be flat spaces with translation spaces V1,V2. The set-product
E1 ×E2 then has the natural structure of a flat space as follows: The (exter-
nal) translation space of E1 ×E2 is the product space V1 ×V2. The action of
V1 ×V2 on E1 ×E2 is defined by associating with each (v1,v2) ∈ V1 ×V2 the
mapping (x1, x2) 7→ (x1 +v1, x2 +v2) of E1 ×E2 onto itself. More generally,

if (Ei | i ∈ I) is any family of flat spaces, then ×(Ei | i ∈ I) has the
natural structure of a flat space whose (external) translation space is the

product-space ×(Vi | i ∈ I), where Vi is the translation space of Ei for

each i ∈ I. The action of×(Vi | i ∈ I) on×(Ei | i ∈ I) is defined by

(xi | i ∈ I) + (vi | i ∈ I) := (xi + vi | i ∈ I). (32.7)

We say that a flat space E is finite-dimensional if its translation space
is finite-dimensional. If this is the case, we define the dimension of E by

dim E := dim (E − E). (32.8)

Let E be any flat space. The only flat in E whose direction space is V :=
E − E is E itself. The singleton subsets of E are the zero-dimensional flats,
their direction space is the zero-subspace {0} of V. The one-dimensional
flats are called lines, the two-dimensional flats are called planes, and, if
n := dim E ∈ N×, then the (n−1)-dimensional flats are called hyperplanes.
The only n-dimensional flat is E itself.

Let V be a linear space, which is its own translation space when regarded
as a flat space (see Prop.3). A subset U of V is then a subspace of V if and
only if it is a flat in V and contains 0.
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Notes 32

(1) The traditional term for our “flat space” is “affine space”. I believe that the term
“flat space” is closer to the intuitive content of the concept.

(2) A fairly rigorous definition of the concept of a flat space, close to the one given
here, was given 65 years ago by H. Weyl (Raum, Zeit, Materie; Springer, 1918).
After all these years, the concept is still not used as much as it should be. One finds
explanations (often bad ones) of the concept in some recent geometry and abstract
algebra textbooks, but the concept is almost never introduced in analysis. One of
my reasons for writing this book is to remedy this situation, for I believe that flat
spaces furnish the most appropriate conceptual background for analysis.

(3) Strictly speaking, the term “point” for an element of a flat space and the term
“vector” for an element of its translation space are appropriate only if the flat
space is used as a primitive structure to describe some geometrical-physical reality.
Sometimes a flat space may come up as a derived structure, and then the terms
“point” and “vector” may not be appropriate to physical reality. Nevertheless, we
will use these terms when dealing with the general theory.

(4) What we call a “flat” or a “flat subspace” is sometimes called a “linear manifold”,
“translated subspace”, or “affine subset”, especially when it is a subset of a linear
space.

(5) What we call “flat span” is sometimes called “affine hull” and the notation affS is
then used instead of FspS.

33 Flat Mappings

Let E , E ′ be flat spaces with translation spaces V, V ′. We say that a mapping
α : E → E ′ is flat if, roughly, it preserves translations and scalar multiples of
translations. This means that if any two points in E are related by a given
translation v, their α-values must be related by a corresponding translation
v′, and if v is replaced by ξv then v′ can be replaced by ξv′. The precise
statement is this:

Definition 1: A mapping α : E → E ′ is called a flat mapping if for
every v ∈ V, there is a v′ ∈ V ′ such that

α ◦ (ξv) = (ξv′) ◦ α for all ξ ∈ R. (33.1)

If we evaluate (33.1) at x ∈ E and take ξ := 1, we see that
v′ = α(x + v) − α(x) is uniquely determined by v. Thus, the following re-
sult is immediate from the definition.

Proposition 1: A mapping α : E → E ′ is flat if and only if there is a
mapping ∇α : V → V ′ such that

(∇α)(v) = α(x + v) − α(x) for all x ∈ E and v ∈ V, (33.2)
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and
(∇α)(ξv) = ξ(∇α(v)) for all v ∈ V and ξ ∈ R. (33.3)

The mapping ∇α is uniquely determined by α and is called the gradient of
α.

Note that condition (33.2) is equivalent to

α(x) − α(y) = (∇α)(x − y) for all x, y ∈ E . (33.4)

Proposition 2: The gradient ∇α of a flat mapping α is linear, i.e.,
∇α ∈ Lin(V,V ′).

Proof: Choose x ∈ E . Using condition (33.2) three times, we see that

(∇α)(v + u) = α(x + (v + u)) − α(x)

= (α((x + v) + u) − α(x + v)) + (α(x + v) − α(x))

= (∇α)(u) + (∇α)(v)

is valid for all u,v ∈ V. Hence ∇α preserves addition. The condition (33.3)
states that ∇α preserves scalar multiplication.

Theorem on Specification of Flat Mappings: Let q ∈ E, q′ ∈ E ′ and
L ∈ Lin(V,V ′) be given. Then there is exactly one flat mapping α : E → E ′

such that α(q) = q′ and ∇α = L. It is given by

α(x) := q′ + L(x − q) for all x ∈ E . (33.5)

Proof: Using (33.4) with y replaced by q we see that (33.5) must be valid
when α satisfies the required conditions. Hence α is uniquely determined.
Conversely, if α : E → E ′ is defined by (33.5), one easily verifies that it is
flat and satisfies the conditions.

Examples:

1. All constant mappings from one flat space into another are flat. A flat
mapping is constant if and only if its gradient is zero.

2. If F is a flat in E , then the inclusion 1F⊂E is flat. Its gradient is the
inclusion 1U⊂V of the direction space U of F in the translation space
V of E .

3. A function a : R → R is flat if and only if it is of the form a = ξι + η
with ξ, η ∈ R. The gradient of a is ξι ∈ LinR, which one identifies
with the number ξ ∈ R (see Sect.25). The graph of a is a straight line
with slope ξ. This explains our use of the term “gradient” (gradient
means slope or inclination).
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4. The translations v ∈ V of a flat space E are flat mappings of E into
itself. They all have the same gradient, namely 1V . In fact, a flat
mapping from E into itself is a translation if and only if its gradient is
1V .

5. Let V and V ′ be linear spaces, regarded as flat spaces (see Prop.3 of
Sect.32). A mapping L : V → V ′ is linear if and only if it is flat and
preserves zero, i.e. L0 = 0′. If this is the case, then L is its own
gradient.

6. Let (Ei | i ∈ I) be a family of flat spaces and let (Vi | i ∈ I) be the fam-
ily of their translation spaces. Given j ∈ I, the evaluation mapping

evEj :×(Ei | i ∈ I) → Ej (see Sect.04) is a flat mapping when

×(Ei | i ∈ I) is endowed with the natural flat-space structure de-
scribed in the previous section. The gradient of evEj is the evaluation

mapping evVj :×(Vi | i ∈ I) → Vj (see Sect.14).

7. If E is a flat space and V := E − E , then ((x,v) 7→ x + v) : E × V → E
is a flat mapping. Its gradient is the vector-addition V × V → V.

8. The point-difference mapping defined by (32.1) is flat. Its gradient is
the vector-difference mapping

((u,v) 7→ (u − v)) : V × V −→ V.

Proposition 3: Let α : E → E ′ be a flat mapping, F a flat in E with
direction space U , and F ′ a flat in E ′ with direction space U ′. Then:

(i) α>(F) is a flat in E ′ with direction space (∇α)>(U).

(ii) α<(F ′) is either empty or a flat in E with direction space (∇α)<(U ′).

Proof: Using (33.4) and (33.2) one easily verifies that the conditions of
Prop.4 of Sect.32 are verified in the situations described in (i) and (ii).

If F ′ := {x′} is a singleton in Prop.3, then U ′ = {0}, and (ii) states that
α<({x′}) is either empty or a flat in E whose direction space is Null ∇α.
If F := E , then U = V and (i) states that Rng α is a flat in E ′ whose
direction space is Rng∇α. Therefore, the following result is an immediate
consequence of Prop.3.

Proposition 4: A flat mapping is injective [surjective] if and only if its
gradient is injective [surjective].
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The following two rules describe the behavior of flat mappings with re-
spect to composition and inversion. They follow immediately from Prop.1.

Chain Rule for Flat Mappings: The composite of two flat mappings
is again flat, and the gradient of their composite is the composite of their
gradients. More precisely: If E , E ′, E ′′ are flat spaces and α : E → E ′ and
β : E ′ → E ′′ are flat mappings, then β ◦α : E → E ′′ is again a flat mapping
and

∇(β ◦ α) = ∇β∇α. (33.6)

Inversion Rule for Flat Mappings: A flat mapping α : E → E ′ is
invertible if and only if its gradient ∇α ∈ Lin(V,V ′) is invertible. If this is
the case, then the inverse α← : E ′ → E is also flat and

∇(α←) = (∇α)−1. (33.7)

Hence every invertible flat mapping is a flat isomorphism.
The set of all flat automorphisms of flat space E , i.e. all flat isomorphism

from E to itself, is denoted by Fis E . It is a subgroup of Perm E . Let V be the
translation space of E and let h : Fis E → LisV be defined by h(α) := ∇α
for all α ∈ Fis E . It follows from the Chain Rule and Inversion Rule for
Flat Mappings that h is a group-homomorphism. It is easily seen that h is
surjective and that the kernel of h is the translation group V (see Sect.06).

Notes 33

(1) The traditional terms for our “flat mapping” are “affine mapping” or “affine trans-
formation”.

(2) In one recent textbook, the notation α♯ and the unfortunate term “trace” are used
for what we call the “gradient” ∇α of a flat mapping α.

34 Charge Distributions, Barycenters, Mass-

Points

Let E be a flat space with translation space V. By a charge distribution γ
on E we mean a family in R, indexed on E with finite support, i.e., γ ∈ R(E).
We may think of the term γx of γ at x as an electric charge placed at the
point x. The total charge of the distribution γ is its sum (see (15.2))

sumEγ =
∑

x∈E

γx =
∑

x∈Supt γ

γx. (34.1)
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Definition 1: We say that the charge distributions γ, β ∈ R(E) are
equivalent, and we write γ ∼ β, if γ and β have the same total charge, i.e.
sumEγ = sumEβ, and if

∑

x∈E

γx(x − q) =
∑

y∈E

βy(y − q) for all q ∈ E . (34.2)

It is easily verified that the relation ∼ thus defined is indeed an equiv-
alence relation on R(E). Moreover, we have γ ∼ β if and only if γ − β ∼ 0.
Also, one easily proves the following result:

Proposition 1: If γ, β ∈ R(E) have the same total charge, i.e. sumEγ =
sumEβ, and if (34.2) holds for some q ∈ E, then γ, β are equivalent, i.e.,
(34.2) holds for all q ∈ E.

Given any x ∈ E we define δx ∈ R(E) by

(δx)y =

{

0 if x 6= y
1 if x = y

}

; (34.3)

in words, the distribution δx places a unit charge at x and no charge any-
where else. Actually, δx is the same as the x-term δEx of the standard basis
δE of R(E) as defined in Sect.16.

The following result is an immediate consequence of Prop.1.
Proposition 2: Given γ ∈ R(E), b ∈ E and σ ∈ R, we have γ ∼ σδb if

and only if

σ = sumEγ and
∑

x∈E

γx(x − b) = 0.

The next result states that every charge distribution with a non-zero
total charge is equivalent to a single charge.

Theorem on Unique Existence of Barycenters: Let γ ∈ R(E) be
given so that σ := sumEγ 6= 0. Then there is exactly one b ∈ E such that
γ ∼ σδb. We have

b = q +
1

σ

∑

x∈E

γx(x − q) for all q ∈ E . (34.4)

The point b is called the barycenter of the distribution γ.
Proof: Assume that b ∈ E is such that γ ∼ σδb. Using (34.2) with

β := σδb we get
∑

(γx(x − q) | x ∈ E) = σ(b − q) for all q ∈ E . Since σ 6= 0,
it follows that (34.4) must hold for each q ∈ E . This proves the uniqueness
of b ∈ E . To prove existence, we choose q ∈ E arbitrarily and define b ∈ E
by (34.4). Using Prop.1, it follows immediately that γ ∼ σδb.
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Proposition 3: The barycenter of a charge distribution with non-zero
total charge belongs to the flat span of the support of the distribution. More
precisely, if γ ∈ R(E), b ∈ E and σ ∈ R× are such that γ ∼ σδb, then
b ∈ Fsp(Supt γ).

Proof: Let F be any flat such that Supt γ ⊂ F . Then γ|F ∈ R(F) is a
charge distrubution on F and has a barycenter in F . But this is also the
barycenter b in E and hence we have b ∈ F . Since F , with Supt γ ⊂ F , was
arbitrary, it follows that b ∈ Fsp(Supt γ).

We call a pair (µ, p) ∈ P× × E a mass-point. We may think of it as
describing a particle of mass µ placed at p. By the barycenter b of a non-
empty finite family ((µi, pi) | i ∈ I) of mass-points we mean the barycenter
of the distribution

∑

(µiδpi
| i ∈ I). It is characterized by

∑

i∈I

µi(pi − b) = 0 (34.5)

and satisfies

b = q +
1

sumIµ

∑

i∈I

µi(pi − q) (34.6)

for all q ∈ E .
Proposition 4: Let Π be a partition of a given non-empty finite set I

and let ((µi, pi) | i ∈ I) be a family of mass-points. For every J ∈ Π, let
λJ := sumJ(µ|J) and let qJ be the barycenter of the family ((µj, pj) | j ∈ J).
Then ((µi, pi) | i ∈ I) and ((λJ , qJ) | J ∈ Π) have the same barycenter.

Proof: Using (34.6) with I replaced by J , b by qJ and q by the barycen-
ter b of ((µi, pi) | i ∈ I), we find that

λJ(qJ − b) =
∑

j∈J

µj(pj − b)

holds for all J ∈ Π. Using the summation rule (07.5), we obtain

∑

J∈Π

λJ(qJ − b) =
∑

i∈I

µi(pi − b) = 0,

which proves that b is the barycenter of ((λJ , qJ) | J ∈ Π).
By the centroid of a non-empty finite family (pi | i ∈ I) of points we

mean the barycenter of the family ((1, pi) | i ∈ I).
Examples and Remarks:

1. If z is the barycenter of the pair ((µ, x), (λ, y)) ∈ (P× × E)2 i.e. of the
distribution µδx+λδy, we say that z divides (x, y) in the ratio λ : µ.
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By (34.5) z is characterized by µ(x − z) + λ(y − z) = 0 (see Figure 1).
If λ = µ, we say that z is the midpoint of (x, y).

Thus, the midpoint of (x, y) is just the centroid of (x, y).

2. Consider a triple (x1, x2, x3) of points and let c be centroid of this
triple. If we apply Prop.4 to the partition {{1}, {2, 3}} of 3] and to
the case when µi = 1 for all i ∈ 3], we find that c is also the barycenter
of ((1, x1), (2, z)), where z is the midpoint of (x2, x3). In other words,
c divides (x1, z) in the ratio 2:1. (see Figure 2). We thus obtain
the following well known theorem of elementary geometry: The three
medians of a triangle all meet at the centroid, which divides each in
the ratio 2:1.

3. Let c be the centroid of a quadruple (x1, x2, x3, x4) of points. If we
apply Prop.4 to the partition {{1, 2}, {3, 4}} of 4] and to the case when
µi = 1 for all i ∈ 4], we find that c is also the midpoint of (y, z), where
y is the midpoint of (x1, x2) and z the midpoint of (x3, x4) (see Figure
3). We thus obtain the following geometrical theorem: The four line-
segments that join the midpoints of opposite edges of a tetrahedron
all meet at the centroid of the tetrahedron, which is the midpoint of
all four.
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If Prop.4 is applied to the partition {{1, 2, 3}, {4}} of 4] and to the
case when µi = 1 for all i ∈ 4] one obtains the following geometric
theorem: The four line segments that join the vertices of a tetrahedron
to the centroids of the opposite faces all meet at the centroid of the
tetrahedron, which divides each in the ratio 3:1.

4. If a non-empty finite family ((µi, pi) | i ∈ I) in P× × E is interpreted
physically as a system of point-particles then the barycenter of the
family is the center of mass of the system. If the system moves, then
the places pi will change in time, and so will the center of mass. New-
tonian mechanics teaches that the center of mass moves on a straight
line with constant speed if no external forces act on the system.

5. Let E , with dim E = 2, be a mathematical model for a rigid, plane,
horizontal plate. A distribution γ ∈ R(E) can then be interpreted as
a system of vertical forces. The term γx with x ∈ Supt γ gives the
magnitude and direction of a force acting at x. We take γx as positive
if the force acts downwards, negative if it acts upwards. If σ := sumEγ
is not zero and if b is the barycenter of γ, then the force system is
statically equivalent to a single resultant force σ applied at b; i.e. the
plate can be held in equilibrium by applying on opposite force −σ at
b.

6. We can define an “addition” add: (P× × E)2 → P× × E on P× × E by

add((µ, x), (λ, y)) := (µ + λ, z),

where z is the barycenter of the pair ((µ, x), (λ, y)), i.e., the point that
divides (x, y) in the ratio λ : µ. It is obvious that this addition is
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commutative. Application of Prop.4 to triples easily shows that this
addition is also associative and hence endows P××E with the structure
of a commutative pre-monoid (see Sect.06). We use additive notation,
i.e. we write

(µ, x) + (λ, y) := add((µ, x), (λ, y)).

For any non-empty finite family ((µi, pi) | i ∈ I) in P× × E we then
have

∑

i∈I

(µi, pi) = (sumIµ, b),

where b is the barycenter of the family. It is easily shown that the
pre-monoid P× × E is cancellative.

Pitfall: The statements “z divides (x, y) in the ratio λ : µ” and “z is
the midpoint of (x, y)” should not be interpreted as statements about the
distances from z to x and y. There is no concept of distance in a flat space
unless it is endowed with additional structure as in Chap.4.

Notes 34

(1) The terms “weight” or “mass” are often used instead of our “charge”. The trouble
with “weight” and “mass” is that they lead one to assume that their values are
positive.

(2) There is no agreement in the literature about the terms “barycenter” and “cen-
troid”. Sometimes “centroid” is used for what we call “barycenter” and sometimes
“barycenter” for what we call “centroid”.

35 Flat Combinations

We assume that a flat space E with translation space V and a non-empty
index set I are given. Recall that the summation mapping sumI : R(I) → R
defined by (15.2) is linear and hence flat. For each ν ∈ R, we write

(R(I))ν := sum<
I ({ν}) = {λ ∈ R(I) | sumIλ = ν}. (35.1)

It follows from Prop. 3 of Sect. 33 that (R(I))ν is a flat in R(I) whose
direction space is (R(I))0.

Definition 1: The mapping

flcp : (R(I))1 −→ E ,
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defined so that flcp(λ) is the barycenter of the distribution
∑

(λiδpi
| i ∈ I),

is called the flat-combination mapping for p. The value flcp(λ) is called
the flat combination of p with coefficient family λ.

By the Theorem on the Unique Existence of Barycenters of Sect.34, the
mapping flcp is characterized by

∑

i∈I

λi(pi − flcp(λ)) = 0 for all λ ∈ (R(I))1 (35.2)

and we have, for every q ∈ E ,

flcp(λ) = q +
∑

i∈I

λi(pi − q) for all λ ∈ (R(I))1. (35.3)

If F is a flat in E and if Rng p ⊂ F , one can apply Def.1 to F instead
of E and obtain the flat-combination mapping flcFp for p relative to F . It is

easily seen that flcFp coincides with the adjustment flcp|F .

Proposition 1: The flat-combination mapping flcp is a flat mapping.
Its gradient is the restriction to (R(I))0 of the linear-combination mapping
lnc(p−q) for the family p− q := (pi − q | i ∈ I) in V, no matter how q ∈ E is
chosen.

Proof: It follows from (35.3) that

flcp(λ) − flcp(µ) =
∑

i∈I

(λi − µi)(pi − q) = lncp−q(λ − µ)

holds for all λ, µ ∈ (R(I))1. Comparison of this result with (33.4) gives the
desired conclusion.

If S is a non-empty subset of E , we identify S with the family (x | x ∈ S)
indexed on S itself (see Sect.02). Thus, the flat combination mapping
flcS : (R(S))1 → E has the following interpretation: For every γ ∈ (R(S))1,
which can be viewed as a charge distribution with total charge 1 and support
included in S, flcS(γ) is the barycenter of γ.

Flat Span Theorem: The set of all flat combinations of a non-
empty family p of points in E is the flat span of the range of p, i.e.
Rng flcp = Fsp(Rng p). In particular, if S is a non-empty subset of E, then
Rng flcS = FspS.

Proof: Noting that Rng flcp = Rng flcS if S = Rng p, we see that it is
sufficient to prove that Rng flcS = FspS for every non-empty S ∈ Sub E .

Let x ∈ S. Then δx ∈ (R(S))1 and flcS(δx) = x. Hence x ∈ Rng flcS .
Since x ∈ S was arbitrary, it follows that S ⊂ Rng flcS . Since flcS is a flat
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mapping by Prop.1, it follows, by Prop.3 of Sect.33, that Rng flcS is a flat
in E and hence that S ⊂ FspS ⊂ Rng flcS . On the other hand, by Prop.3
of Sect.34, we have flcS(γ) ∈ Fsp(Supt γ) ⊂ FspS for every γ ∈ (R(S))1 and
hence Rng flcS ⊂ FspS.

Applying the Flat Span Theorem to the case when p := (x, y) is a pair

of distinct points in E , we find that the line
←→
xy passing through x and y

(see (32.5)) is just the set of all flat combinations of (x, y):

←→
xy = {flc(x,y)(λ, µ) | λ, µ ∈ R, λ + µ = 1}. (35.4)

If V is a linear space, regarded as a flat space that is its own translation
space, and if f := (fi | i ∈ I) is a family of elements of V, then the flat
combination mapping flcf for f is nothing but the restriction to (R(I))1 of
the linear combination mapping for f , i.e. flcf = lncf |(R(I))1

. In other words
we have

∑

i∈I

λifi = flcf (λ) for all λ ∈ (R(I))1.

If E is a flat space that does not carry the structure of a linear space,
and if p := (pi | i ∈ I) is a family in E , we often use the symbolic notation

∑

i∈I

λipi := flcp(λ) for all λ ∈ (R(I))1, (35.5)

even though the terms λipi do not make sense by themselves. If p := (p1, p2)
is a pair of points, we write

λ1p1 + λ2p2 := flc(p1,p2)(λ1, λ2) (35.6)

for all (λ1, λ2) ∈ (R2)1, i.e. for all λ1, λ2 ∈ R with λ1 + λ2 = 1. Similar
notations are used for other lists with a small number of terms.

If p is a family of points in E and f a family of vectors in V, both with
the same index set I, then

p + f := (pi + fi | i ∈ I) (35.7)

is also a family of points in E .

Definition 2: A non-empty family p of points in E is said to be flatly

independent, flatly spanning, or a flat basis of E if the flat-combination
mapping flcp is injective, surjective, or invertible, respectively.

By the Flat Span Theorem, the family p is flatly spanning if and only if
the flat span of its range is all of E .
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Proposition 2: Let p = (pi | i ∈ I) be a non-empty family of points in
E and let k ∈ I. Then p is flatly independent, flatly spanning, or a flat basis
of E according as the family f := (pi − pk | i ∈ I \ {k}) of vectors is linearly
independent, spanning, or a basis of V, respectively.

Proof: Using (35.3) with the choice q := pk we see that

flcp(λ) = pk + lncf (λ|I\{k}) for all λ ∈ (R(I))1. (35.8)

Since the mapping (λ 7→ λ |I\{k}) : (R(I))1 → R(I\{k}) is easily seen to be
invertible, it follows from (35.8) that flcp is injective, surjective, or invertible
according as lncf is injective, surjective, or invertible, respectively. In view
of Def.2 of Sect.15, this is the desired result.

The following result follows from Prop.2 and the Theorem on Charac-
terization of Dimension (Sect.17).

Proposition 3: Let E be a finite-dimensional flat space and let
p := (pi | i ∈ I) be a family of points in E.

(a) If p is flatly independent then I is finite and ♯I ≤ dim E + 1, with
equality if and only if p is a flat basis.

(b) If p is flatly spanning, then ♯I ≥ dim E + 1, with equality if and only
if p is a flat basis.

Let p := (pi | i ∈ I) be a flat basis of E . Then, by Def.2, for every x ∈ E
there is a unique λ ∈ (R(I))1 such that x = flcp(λ). The family λ is called
the family of barycentric coordinates of x relative to the flat basis p.

The following result states that the flat mappings are exactly those that
“preserve” flat combinations. We leave its proof to the reader (see Problem
7 below).

Proposition 4: Let E , E ′ be flat spaces. A mapping α : E → E ′ is flat
if and only if for every non-empty family p of points in E we have

α ◦ flcp = flcα◦p. (35.9)

The following result is an analogue, and a consequence, of Prop.2 of
Sect.16.

Proposition 5: Let E , E ′ be flat spaces. Let p := (pi | i ∈ I) be a flat
basis of E and let p′ := (p′i | i ∈ I) be a family of points in E ′. Then there is
a unique flat mapping α : E → E ′ such that α ◦ p = p′. This α is injective,
surjective, or invertible depending on whether p′ is flatly independent, flatly
spanning, or a flat basis, respectively.
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Notes 35

(1) In the case when p is a list, the flat-combination flcp(λ) is sometimes called the
“average” of p with “weights” λ.

(2) The term “frame” is sometimes used for what we call a “flat basis”.

36 Flat Functions

In this section, we assume that E is a finite-dimensional flat space with
translation space V. We denote the set of all flat mappings from E into R
by Flf E and call its members flat functions. Given any q ∈ E , we use the
notation

FlfqE := {a ∈ Flf E | a(q) = 0} (36.1)

for the set of all flat functions that have the value 0 at the point q. The set
of all real-valued constants with domain E will be denoted by RE . Note that
the gradient ∇a of a flat function a belongs to the dual V∗ := Lin(V, R) of
the translation space V.

The following two basic facts are easily verified using Prop.1 of Sect.33.
Proposition 1: Flf E is a subspace of Map (E , R). The set RE is a one-

dimensional subspace of Flf E and, for each q ∈ E, Flfq E is a supplement of
RE in Flf E, so that RE ∩ Flfq E = {0} and

Flf E = RE + FlfqE . (36.2)

Proposition 2: The mapping GE : Flf E → V∗ defined by GEa := ∇a
is linear and surjective and has the nullspace Null GE = RE .

The next result follows from Prop.2 by applying the Theorem on Dimen-
sion of Range and Nullspace (Sect.14) and (21.1).

Proposition 3: We have

dim E = dim(FlfqE) = dim(Flf E) − 1 (36.3)

for all q ∈ E.
The following result states, among other things, that every flat function

defined on a flat in E can be extended to a flat function on all of E .
Proposition 4: Let F be a flat with direction space U . The restriction

mapping (a 7→ a|F ) : Flf E → Flf F is linear and surjective. Its nullspace
N := {a ∈ Flf E | a|F = 0} has the following properties:

(i) For every q ∈ F we have N = {a ∈ Flfq E | ∇a ∈ U⊥}.
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(ii) For every q ∈ E \ F there is an a ∈ N such that a(q) = 1.

Proof: The linearity of a 7→ a|F is evident. Now let q ∈ F be given. If
b ∈ Flf F is given we can choose, by Prop.6 of Sect.21, λ ∈ V∗ such that
λ|U = ∇b. By the Theorem on Specification of Flat Mappings (Sect.33),
we can define a ∈ Flf E by a(x) := b(q) + λ(x − q) for all x ∈ E . We then
have a|F = b. Since b ∈ Flf F was arbitrary, this shows the surjectivity of
a 7→ a|F .

The property (i) of N is an immediate consequence of Prop.1 of Sect.33.
Assume now that q ∈ E \ F is given and choose z ∈ F . Then

v := q − z /∈ U and hence U $ U + Rv. Using Prop.4 of Sect.22, it fol-
lows that (U +Rv)⊥ $ U⊥. Hence we can choose λ ∈ U⊥ such that λv 6= 0.
By the Theorem on Specification of Flat Mappings, we can define a ∈ Flf E
by

a(x) :=
1

λv
λ(x − z) for all x ∈ E .

It is evident that a ∈ N and a(q) = 1.
Consider now a non-constant flat function a : E → R. As stated in

Example 1 of Sect.33, we then have ∇a 6= 0. It follows from Prop.3 of Sect.33
that the direction space of a<({0}) is {∇a}⊥ = (R∇a)⊥. Since dim(R∇a) =
1, it follows from the Formula for Dimension of Annihilators (21.15) that
dim a<({0}) = dim{∇a}⊥ = n−1, i.e. that a<({0}) is a hyperplane. We say
that a<({0}) is the hyperplane determined by a. Given any hyperplane
F in E , it follows from Prop.4, (ii) that there is a non-constant a ∈ Flf E such
that F is the hyperplane determined by a. Also, Prop.4, (ii), and Prop.6 of
Sect.32 have the following immediate consequence.

Proposition 5: Every flat in E other than E itself is the intersection of
all hyperplanes that include it.

Proposition 6: The evaluation mapping ev : E → (Flf E)∗ defined by

ev(x)a := a(x) for all a ∈ Flf E , x ∈ E (36.4)

is flat and injective. Its gradient ∇ev ∈ Lin(V, (Flf E)∗) coincides with the
transpose of the linear mapping GE ∈ Lin(Flf E ,V∗) defined in Prop.2.

Proof: Using (33.2) and (36.4) we see that

(∇a)v = a(x + v) − a(x) = (ev(x + v) − ev(x))a

holds for all a ∈ Flf E , x ∈ E and v ∈ V. Hence, if we define L : V → (Flf E)∗

by

L(v)a := (∇a)v for all a ∈ Flf E ,v ∈ V, (36.5)
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we obtain

L(v) = ev(x + v) − ev(x) for all x ∈ E , v ∈ V.

It is clear from (36.5) that L(ξv) = ξL(v) for all v ∈ V, ξ ∈ R. Thus, ev
satisfies the two conditions of Prop.1 of Sect.33 and L is the gradient of ev,
i.e. ∇ev = L.

The equation (36.5) states that

((∇ev)v)a = (GEa)v for all a ∈ Flf E , v ∈ V (36.6)

In view of the characterization (22.3) of the transpose, this means that
∇ev = G⊤E . By the Theorem on Annihilators and Transposes, (21.13), and
by Prop.2, it follows that Null ∇ev = (RngGE)

⊥ = V∗⊥ = {0}. Therefore
∇ev is injective and so is ev (see Prop.4 of Sect.33).

If we write
x̃ := ev(x), ṽ := (∇ev)v (36.7)

when x ∈ E ,v ∈ V, we can, by Prop.6, regard x 7→ x̃ as a flat isomorphism
from E onto the flat Ẽ := ev>(E) in (Flf E)∗ and v 7→ ṽ as a linear isomor-
phism from V onto the subspace Ṽ := (∇ev)>(V) of (Flf E)∗. This subspace
Ṽ is the direction space of the flat Ẽ . For all x, y ∈ E , v ∈ V, we have

x − y = v ⇐⇒ x̃ − ỹ = ṽ

and
x + v = y ⇐⇒ x̃ + ṽ = ỹ.

Hence, if points in E and translations in V are replaced by their images
in Ẽ and Ṽ, a point-difference becomes an ordinary difference in (Flf E)∗

and the symbolic sum of a point and a translation becomes an ordinary
sum in (Flf E)∗. If points in E are replaced by their images in Ẽ , then flat
combinations become linear combinations. In other words, the image in Ẽ
of a symbolic sum of the form (35.5) is the ordinary sum

∑

i∈I λip̃i.
It is not hard to show that every element of (Flf E)∗ is either of the form

ξx̃ with x ∈ E , ξ ∈ R×, or of the form ṽ with v ∈ V.

Notes 36

(1) In accord with Note 1 to Sect.32, the usual term for our “flat function” is “affine
function”. However, in very elementary texts (especially those for high-school use),
the term “linear fnction” is often found. Of course, such usage clashes with our
(and the standard) use of “linear”.



37. CONVEX SETS 123

37 Convex Sets

Let E be a flat space with translation space V. Given any points x, y ∈ E we
define the segment joining x and y to be the set of all flat combinations of
(x, y) with positive coefficients and denote it by

[x, y] := {λx + µy | λ, µ ∈ P, λ + µ = 1}, (37.1)

where the sumbolic-sum notation (35.6) is used. Comparing this definition
with (35.4), we see that, if x 6= y, the segment joining x and y is a subset of
the line passing through x and y, as one would expect.

Definition 1: A subset C of E is said to be convex if the segment joining
any two points in C is included in C, i.e. if x, y ∈ C implies [x, y] ⊂ C.

It is evident that the empty set ∅ and all flats in E , and in particular
E itself, are convex. Also, all segments are convex. If R is regarded as a
one-dimensional flat space, then its convex sets are exactly the intervals (see
Sect.08). If s, t ∈ R and s ≤ t, the notation (37.1) is consistent with the
notation [s, t] := {r ∈ R | s ≤ r ≤ t} (see (08.4)).

The following result is an immediate consequence of Def.1.
Proposition 1: The intersection of any collection of convex sets is again

a convex set.
In view of the remarks on span-mappings made in Sect.03 we have the

following result.
Proposition 2: Given any subset S of E, there is a unique smallest

convex set that includes S. More precisely, there is a unique convex set that
includes S and is included in every convex set that includes S. It is called
the convex hull of S and is denoted by CxhS. We have S = CxhS if and
only if S is convex.

It is clear that the convex hull of two points is just the segment joining
the two points; more precisely Cxh{x, y} = [x, y] for all x, y ∈ E .

The following result follows from the fact (Prop.4 of Sect.35) that flat
mappings preserve flat combinations.

Proposition 3: Images and pre-images of convex sets under flat map-
pings are again convex. In particular, if x, y ∈ E and if α is a flat mapping
with domain E, then

α>([x, y]) = [α(x), α(y)]. (37.2)

Using (35.7) for pairs p := (x, y) and f := (u,v) we immediately obtain
the following result.

Proposition 4: Let C be a convex subset of E, and B a convex subset
of V. Then C +B is a convex subset of E. In particular, C +v is convex for
all v ∈ V and x + B is convex for all x ∈ E.
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Given any non-empty set I, we use the notation

(P(I))1 := (R(I))1 ∩ P(I)

for the set of all families of positive numbers that have finite support and
add up to 1. It is easily seen that (P(I))1 is a convex subset of the flat space
(R(I))1.

Definition 3: Let p := (pi | i ∈ I) be a non-empty family of points in
E. The restriction of the flat-combination mapping for p to (P(I))1 is called
the convex-combination mapping for p and is denoted by

cxcp := flcp |(P(I))1
. (37.3)

Convex Hull Theorem: For every non-empty family p of points in E,
we have

Rng cxcp = Cxh(Rng p). (37.4)

In particular, a subset C of E is convex if and only if Rng cxcC = C.
Proof: We have, for all j ∈ I, δj ∈ (P(I))1 and hence pj = flcp(δj) =

cxcp(δj). Since j ∈ I was arbitrary, it follows that Rng p ⊂ Rng cxcp.
Since (P(I))1 is convex and flcp flat, it follows from Prop.3 that Rng cxcp =
(flcp)>((P(I))1) is a convex subset of E and so Cxh(Rng p) ⊂ Rng cxcp.

To prove the reverse inclusion Rng cxcp ⊂ Cxh(Rng p), we must show
that cxcp(λ) ∈ Cxh(Rng p) for all λ ∈ (P(I))1. We do so by induction over
♯Suptλ. If ♯Suptλ = 1, then

λ = δj for some j ∈ I and cxcp(λ) = pj ∈ Rng p ⊂ Cxh(Rng p).

Assume, then, that λ ∈ (P(I))1 with ♯Suptλ > 1 is given, and that
cxcp(µ) ∈ Cxh(Rng p) holds for all µ ∈ (P(I))1 with ♯Suptµ < ♯Suptλ. We
may and do choose j ∈ Supt λ and we put σ :=

∑

(λi | i ∈ I \ {j}) ∈ ]0, 1[.
We define µ ∈ (P(I))1 by

µi :=

{

1
σ
λi if i ∈ I \ {j}
0 if i = j

}

Clearly, ♯Suptµ = ♯Suptλ−1 and λ = σµ+λjδj . Since σ+λj = sumIλ = 1,
this states that λ ∈ [µ, δj] in (P(I))1. Since flcp is flat, it follows by (37.2)
that

cxcp(λ) = flcp(λ) ∈ [flcp(µ), flcp(δj)] = [cxcp(µ), pj]

By the induction hypothesis, cxcp(µ) ∈ Cxh(Rng p). Since pj ∈ Rng p ⊂
Cxh(Rng p) and since Cxh(Rng p) is convex, it follows by Def.1 that
cxcp(λ) ∈ Cxh(Rng p).
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Since flat mappings preserve flat combinations (Prop.4 of Sect.35) and
hence convex combinations, we immediately obtain the following conse-
quence of the Convex Hull Theorem.

Proposition 5: If S is a subset of E and α a flat mapping with domain
E, then

α>(CxhS) = Cxh(α>(S)). (37.5)

The following is a refinement of the Convex Hull Theorem.
Strong Convex Hull Theorem: Let p be a non-empty family of points

in E and let x ∈ Cxh(Rng p) be given. Then there is a λ ∈ (P(I))1 such that
x = cxcp(λ) and such that p|Supt λ is flatly independent.

Proof: By the Convex Hull Theorem, cxc<
p ({x}) is not empty. We

choose a λ ∈ cxc<
p ({x}) whose support has minimum cardinal. Put J :=

Suptλ.
Assume that p′ := p|J is flatly dependent, i.e. that flcp′ is not injective.

Then, by Prop.4 of Sect.33, the gradient of flcp′ is not injective. Hence we
can choose ν ∈ ((R(I))0)

× such that Supt ν ⊂ J and

0 = (∇flcp′)ν|J = (∇flcp)ν (37.6)

We now choose k ∈ J such that

νk

λk

= max{
νi

λi

| i ∈ J}.

Since sumJν|J = 0 and ν|J 6= 0 and λi > 0 for all i ∈ J , we must have
νk > 0 and we conclude that

λi ≥
νi

νk

λk for all i ∈ J.

Hence we have λ′ := λ − λk

νk
ν ∈ (P(I))1, so that cxcpλ

′ is meaningful. Using
(37.6) We obtain

cxcpλ
′ = flcp(λ − λk

νk
ν) = flcpλ − λk

νk
(∇flcp)ν

= flcpλ = cxcpλ = x,

which means that λ′ ∈ cxc<
p ({x}). On the other hand, we have

Suptλ′ $ Suptλ because λ′k = 0. It follows that ♯Suptλ′ < ♯Suptλ which
contradicts the assumption that Suptλ has minimum cardinal. Hence p|J
cannot be flatly dependent.

The following consequence of the Strong Convex Hull Theorem is ob-
tained by using Prop.3, (a) of Sect.35.
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Corollary: Let S be a subset of a finite-dimensional flat space E. Then,
for every x ∈ CxhS, there is a finite subset I of S such that x ∈ CxhI and
♯I ≤ (dim E) + 1.

Notes 37

(1) Many other notations, for example ConvS and Ŝ, can be found for our CxhS.

(2) The Corollary to the Strong Convex Hull Theorem is often called
“Carathéodory’s Theorem”.

38 Half-Spaces

Let E be a flat space with translation space V. Consider a non-constant flat
function a : E → R, i.e. a flat function such that Rng a is not a singleton.
Since the only flats in R are the singletons and R itself, it follows by Prop.3
of Sect.33 that Rng a = R and hence that a<({0}), a<(P), and a<(P×) are
all non-empty. As we have seen in Sect.36, a<({0}) is the hyperplane de-
termined by a if E is finite-dimensional. By Prop.3 of Sect.37, a<(P) and
a<(P×) are (non-empty) convex subsets of E , called the half-space and
the open-half-space determined by a. The hyperplane a<({0}) is called
the boundary of these half spaces. Of course, the half-space a<(P) is the
union of its boundary a<({0}) and the open-half-space a<(P×), and these
two are disjoint. If ξ ∈ P×, then a and ξa determine the same hyperplane
and half-spaces.

If z ∈ E and a ∈ (Flfz E)×, then a is not constant and z belongs to the
boundary of the half-space a<(P).

Half-Space Inclusion Theorem: Let E be a finite-dimensional flat
space, C a non-empty convex subset of E and q ∈ E \ C. Then there is a
half-space that includes C and has q on its boundary. In other words, there
is an a ∈ (Flfq E)× such that a|C ≥ 0.

The proof wll be based on the following preliminary result:

Lemma: Let C be a convex subset of E and let b ∈ Flf E be given. If both
C ∩ b<(P×) and C ∩ b<(−P×) are non-empty, so is C ∩ b<({0}). If c ∈ Flf E
satisfies c|C∩b<({0}) ≥ 0, then

c(x)

b(x)
≥

c(y)

b(y)
for all x ∈ C ∩ b<(P×), y ∈ C ∩ b<(−P×). (38.1)



38. HALF-SPACES 127

Proof: Let x ∈ C∩b<(P×), y ∈ C∩b<(−P×) be given, so that b(x) > 0,
b(y) < 0, and hence b(x) − b(y) > 0. We define

λ :=
−b(y)

b(x) − b(y)
, µ :=

b(x)

b(x) − b(y)
. (38.2)

It is clear that λ, µ ∈ P×, λ + µ = 1. Hence z := λx + µy belongs to [x, y].
Since b preserves convex combinations, we have, by (38.2),

b(z) = λb(x) + µb(y) = 0

and hence z ∈ b<({0}). Since C is convex, we also have z ∈ C and hence
z ∈ C ∩ b<({0}). The situation is illustrated in Fig.1.

If C ∩ b<(P×) and C ∩ b<(−P×) are both non-empty, we may choose a
point in each and obtain a point in C ∩ b<{0} by the above method, showing
that C ∩ b<{0} is not empty.

Now let c ∈ Flf E be such that c|C∩b<{0} ≥ 0. Then, if x and y are given
as above and z constructed accordingly, we have

0 ≤ c(z) = λc(x) + µc(y).

Substituting (38.2) into this inequality and multiplying the result by
b(x) − b(y) ∈ P× yields −b(y)c(x) + b(x)c(y) ≥ 0 which is equivalent to
(38.1).

Proof of Theorem: We proceed by induction. The assertion is vacu-
ously valid if dim E = 0. Assume then, that dim E > 0, that a non-empty
convex C ∈ Sub E and a q ∈ E \ C are given and that the assertion is valid
when E is replaced by a hyperplane F in E .
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Since, by Prop.3 of Sect.36, dim(Flfq E) = dim E > 0, we may and do
choose b ∈ (Flfq E)× and put F := b<{0}. If C ∩ b<(P×) or C ∩ b<(−P×) is
empty then a := −b or a := b, respectively, fulfills the requirement of the
theorem. Therefore, we may assume that both C ∩ b<(P×) and C ∩ b<(−P×)
are not empty. By the Lemma, C∩F is then also non-empty. Since C∩F is a
convex subset of F and q ∈ F \ (F ∩C) we may use the induction hypothesis
and choose d ∈ (Flfq F)× such that d|C∩F ≥ 0. In view of Prop.4 of Sect.36,
we may and do choose a flat extension c of d to E , so that c ∈ (Flfq E)× and
c|C∩F ≥ 0. We define subsets S and T of R by

S := {
c(x)

b(x)
| x ∈ C ∩ b<(P×)},

T := {
c(y)

b(y)
| y ∈ C ∩ b<(−P×)}.

Both S and T are non-empty. Applying the second statement of the Lemma,
we see that every number in T is less than every number in S. It follows
that −∞ < supT ≤ inf S < ∞. We choose ξ ∈ [supT, inf S] and put
a := c − ξb. If x ∈ C ∩ F = C ∩ b<{0} we have a(x) = c(x) ≥ 0 since

c|C∩F ≥ 0. If x ∈ C ∩ b<(P×) we have c(x)
b(x) ≥ inf S ≥ ξ, b(x) > 0, and

hence a(x) = c(x) − ξb(x) ≥ 0. Finally, if x ∈ C ∩ b<(−P), we have c(x)
b(x) ≤

supT ≤ ξ, b(x) < 0, and hence a(x) = c(x) − ξb(x) ≥ 0. Therefore, since
E = b<{0} ∪ b<(P×) ∪ b<(−P×), we have a(x) ≥ 0 for all x ∈ C. Since
F = b<{0} we have a|F = c|F = d 6= 0 and hence a 6= 0. Hence a fulfills the
requirement of the theorem.

Remark 1: The requirement, in the Theorem, that C be non-empty can
obviously be omitted when dim E > 0. This requirement is needed only to
make the assertion vacuously valid when dim E = 0 and thus to simplify the
induction proof.

Remark 2: In general, there are many half-spaces that meet the re-
quirements of the Theorem. However, if C := a<(P×) ∪ {z}, where z ∈ E
and a ∈ (Flfz E)×, and if q ∈ a<({0})\{z}, then a<(P) is the only half-space
that meets the requirements (see Fig.2).
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Remark 3: The Half-Space Inclusion Theorem depends strongly on the
assumption that the translation space of E is a linear space over the real field
R. Its conclusion is no longer valid if R is replaced by Q (see Problem 10,
below).

Notes 38

(1) What we call the “Half-Space Inclusion Theorem” is at the root of a number of
results, often called “Separation Theorems”, in convex analysis. Some of these
results are stated in Sect.54.

39 Problems for Chapter 3

(1) Let S be a subset of a linear space V. Show that

LspS = Fsp(S ∪ {0}). (P3.1)

(2) Let E , E ′ be flat spaces. Show that a mapping α : E → E ′ is flat if and
only if its graph Gr(α) is a flat in E × E ′, and, if this is the case, show
that the direction space of Gr(α) is Gr(∇α). (Hint: Use Problem 1 of
Chap.1)

(3) Let E be a flat space and let ε be a flat mapping from E to itself that
is idempotent in the sense that

ε ◦ ε = ε. (P3.2)

Show:

(a) We have

ε|Rng ε = 1Rng ε⊂E . (P3.3)

(b) ∇ε is an idempotent lineon on V := E − E .

(c) We have

Rng ε + Null ∇ε = E . (P3.4)

(d) Let x ∈ Rng ε be given. Then ε<({x}) is a flat with direction
space Null ∇ε and we have
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ε<({x}) ∩ Rng ε = {x}, (P3.5)

ε<({x}) + Rng (∇ε) = E . (P3.6)

Moreover, if E is finite-dimensional, we have

dim ε<({x}) + dimRng ε = dimE . (P3.7)

(4) Let E be a flat space and let γ be a charge distribution on E with total
charge zero. Show: Given any p ∈ E and σ ∈ P× there is exactly one
q ∈ E such that γ ∼ σδp − σδq.

Note: If p 6= q, the distribution σδp − σδq is called a dipole.

(5) (a) Let (x1, x2, x3, x4) be a quadruple of points in a flat space. Show
that the following are equivalent:

(i) The midpoint of (x1, x3) coincides with the midpoint of
(x2, x4),

(ii) x2 − x1 = x3 − x4,

(iii) x3 − x2 = x4 − x1.

Remark: If the quadruple is injective and if any and hence all
of these conditions are satisfied, then the points are the vertices
of a parallelogram. In fact, one may take this to be the definition
of “parallelogram”.

(b) Show that the midpoints of the sides of a quadrilateral (not nec-
essarily plane) in a flat space form a parallelogram.

(6) Consider a flatly independent triple (x1, x2, x3) in a flat space E . As-
sume that y1 divides (x2, x3) in the ratio λ1 : µ1 and that y2 divides
(x1, x3) in the ratio λ2 : µ2. Determine the ratios in which the point

c of intersection of
←→
x1y1 and

←→
x2y2 divides (x1, y1) and (x2, y2) (see

Figure).
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(7) Let E , E ′ be flat spaces and let α : E → E ′ be a mapping which
preserves flat combinations of pairs of points, i.e. which satisfies α ◦
flcp = flcα◦p for all pairs p := (p1, p2) ∈ E2. Prove that α must be a
flat mapping.

(8) Let E be a flat space and consider the pre-monoid P××E described in
Example 6 of Sect.34.

(a) Prove that the pre-monoid P× × E is cancellative (see Sect.06).

(b) Show that P× × E does not contain an element that satisfies the
neutrality law (06.2) and hence is not monoidable.

(9) Let E be a flat space and put V := E − E . Let λ ∈ V∗ and a,b ∈ V×

be given such that λa = 1, λb = 0. Put

E := 1V − (a ⊗ λ), N := b⊗ λ. (P3.8)

(a) Show that E + ξN is idempotent for each ξ ∈ R and determine
Null (E + ξN) and Rng (E + ξN).

Now let q ∈ E be given and define, for each v ∈ V, ϕv : E → E
by

ϕv(x) := x + (E + (λ(x − q))N)v for all x ∈ E . (P3.9)

(b) Show that, for each v ∈ V, ϕv is flat and determine ∇ϕv; also,
show that ϕv is invertible, so that ϕv ∈ Fis E .

(c) Show that the mapping

ϕ := (v 7→ ϕv) : V → Perm E (P3.10)
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is an injective homomorphism from the additive group of V to
Perm E . (Hence, in view of (b), ϕ>(V) is a subgroup of Fis E that
is isomorphic to—but different from—the additive group V.)

(d) Is the action of V on E defined by (P3.10) free? Is it transitive?

(10) Note that all the definitions of Chap.3 remain meaningful if the field
R of real numbers is replaced by the field Q of rational numbers. Give
an example of a finite-dimensional flat space E over Q, a non-empty
convex subset C of E and a point q ∈ E \ C such that a>(C) 6⊂ P for
all a ∈ (Flfq E)×, where Flf E denotes the set of all flat functions on E
with values in Q. (Thus, the Half-Space Inclusion Theorem does not
extend to the case when R is replaced by Q.)


