
Chapter 2

Duality, Bilinearity

In this chapter, the phrase “let . . . be a linear space” will be used as a
shorthand for “let . . . be a finite-dimensional linear space over R”. (Actually,
many definitions remain meaningful and many results remain valid when the
given spaces are infinite-dimenisonal or when R is replaced by an arbitrary
field. The interested reader will be able to decide for himself when this is
the case.)

21 Dual Spaces, Transposition, Annihilators

Let V be a linear space. We write

V∗ := Lin(V, R)

and call the linear space V∗ the dual space of the space V. The elements
of V∗ are often called linear forms or covectors, depending on context. It
is evident from Prop.7 of Sect. 17 that

dimV∗ = dimV. (21.1)

Let V and W be linear spaces and let L ∈ Lin(V,W) be given. It follows
from Props.1 and 2 of Sect. 14 that the mapping (µ 7→ µL) : W∗ → V∗ is
linear. We call this mapping the transpose of L and denote it by L⊤, so
that

L⊤ ∈ Lin(W∗,V∗) if L ∈ Lin(V,W) (21.2)

and

L⊤µ = µL for all µ ∈ W∗. (21.3)
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It is an immediate consequence of Prop.3 of Sect. 14 that the mapping

(L 7→ L⊤) : Lin(V,W) → Lin(W∗,V∗) (21.4)

is linear. This mapping is called the transposition on Lin(V,W). The
following rules follow directly from (21.3):

Proposition 1: For every linear space V, we have

(1V)⊤ = 1V∗ . (21.5)

Let V,V ′,V ′′ be linear spaces. For all L ∈ Lin(V,V ′) and all
M ∈ Lin(V ′,V ′′), we have

(ML)⊤ = L⊤M⊤. (21.6)

If L ∈ Lin(V,V ′) is invertible, so is L⊤ ∈ Lin(V
′∗,V∗), and

(L⊤)−1 = (L−1)⊤. (21.7)

Definition: Let V be a linear space and let S be a subset of V. We say
that a linear form λ ∈ V∗ annihilates S if λ>(S) ⊂ {0}, or, equivalently,
λ|S = 0, or, equivalently, S ⊂ Null λ. The set of all linear forms that
annihilate S is called the annihilator of S and is denoted by

S⊥ := {λ ∈ V∗ | λ>(S) ⊂ {0}}. (21.8)

The following facts are immediate consequences of the definition.
Proposition 2: ∅⊥ = {0}⊥ = V∗ and V⊥ = {0}. If S1 and S2 are

subsets of V then
S1 ⊂ S2 =⇒ S⊥

2 ⊂ S⊥
1 .

Proposition 3: For every subset S of V, S⊥ is a subspace of V∗ and
(LspS)⊥ = S⊥.

Proposition 4: If (Si | i ∈ I) is a family of subsets of V, then

(
⋃

i∈I

Si)
⊥ =

⋂

i∈I

S⊥
i . (21.9)

Combining Prop.3 and Prop.4, and using Prop.2 of Sect. 12, we obtain
the following:

Proposition 5: If (Ui | i ∈ I) is a family of subspaces of V, then

(
∑

i∈I

Ui)
⊥ =

⋂

i∈I

U⊥
i . (21.10)
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In particular, if U1, U2 are subspaces of V, then

(U1 + U2)
⊥ = U⊥

1 ∩ U⊥
2 . (21.11)

The following result relates the annihilator of a subspace to the annihi-
lator of the image of this subspace under a linear mapping.

Theorem on Annihilators and Transposes: Let V,W be linear
spaces and let L ∈ Lin(V,W) be given. For every subspace U of V, we
then have

(L>(U))⊥ = (L⊤)<(U⊥). (21.12)

In particular, we have
(Rng L)⊥ = Null L⊤. (21.13)

Proof: Let µ ∈ W∗ be given. Then, by (21.8) and (21.3),

µ ∈ (L>(U))⊥ ⇐⇒ {0} = µ>(L>(U)) = (µL)>(U) = (L⊤µ)>(U)

⇐⇒ L⊤µ ∈ U⊥ ⇐⇒ µ ∈ (L⊤)<(U⊥).

Since µ ∈ W∗ was arbitrary, (21.12) follows. Putting U := V in (21.12)
yields (21.13).

The following result states, among other things, that every linear form
on a subspace of V can be extended to a linear form on all of V.

Proposition 6: Let U be a subspace of V. The mapping

(λ 7→ λ|U ) : V∗ → U∗ (21.14)

is linear and surjective, and its nullspace is U⊥.
Proof: It is evident that the mapping (21.14) is linear and that its

nullspace is U⊥. By Prop.3 of Sect. 17, we may choose a supplement U ′ of
U in V. Now let µ ∈ U∗ be given. By Prop.5 of Sect. 19 there is a λ ∈ V∗

such that λ|U = µ (and λ|U ′ = 0, say). Since µ ∈ U∗ was arbitrary, it
follows that the mapping (21.14) is surjective.

Using (21.1) and the Theorem on Dimensions of Range and Nullspace
(Sect. 17), we see that Prop.6 has the following consequence:

Formula for Dimension of Annihilators: For every subspace U of a
given linear space V we have

dimU⊥ = dimV − dimU . (21.15)
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Notes 21

(1) The notations V ′ or Ṽ are sometimes used for the dual V∗ of a linear space V.

(2) Some people use the term “linear functional” instead of “linear form”. I prefer to
reserve “linear functional” for the case when the domain is infinite-dimensional.

(3) The terms “adjoint” or “dual” are often used in place of the “transpose” of a linear
mapping L. Other notations for our L

⊤ are L
∗, L

t, t
L, and L̃.

(4) The notation S0 instead of S⊥ is sometimes used for the annihilator of the set S.

22 The Second Dual Space

In view of (21.1) and Corollary 2 of the Characterization of Dimension (Sect.
17), it follows that there exist linear isomorphisms from a given linear space
V to its dual V∗. However, if no structure on V other than its structure as
a linear space is given, none of these isomorphisms is natural (see the Re-
mark at the end of Sect.23). The specification of any one such isomorphism
requires some capricious choice, such as the choice of a basis. By contrast,
one can associate with each linear space V a natural isomorphism from V to
its second dual, i.e. to the dual V∗∗ of the dual V∗ of V. This isomorphism
is an evaluation mapping as described in Sect.04.

Proposition 1: Let V be a linear space. For each v ∈ V, the evaluation
ev(v) : V∗ → R, defined by

ev(v)(λ) := λv for all λ ∈ V∗, (22.1)

is linear and hence a member of V∗∗. The evaluation mapping
ev : V → V∗∗ defined in this way is a linear isomorphism.

Proof: The linearity of ev(v) : V∗ → R merely reflects the fact that the
linear-space operations in V∗ are defined by value-wise applications of the
operations in R. The linearity of ev : V → V∗∗ follows from the fact that
each λ ∈ V∗ is linear.

Put U := Null (ev) and let v ∈ V be given. By (22.1), we have

v ∈ U ⇐⇒ (λv = 0 for all λ ∈ V∗),

which means, by the definition of annihilator (see Sect.21), that V∗ coincides
with the annihilator U⊥ of U . Since dimV∗ = dimV, we conclude from the
Formula (21.15) for Dimension of Annihilators that dimU = 0 and hence
Null (ev) = U = {0}. Since dimV∗∗ = dimV, we can use the Pigeonhole
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Principle for Linear Mappings (Sect. 17) to conclude that ev is invertible.

We use the natural isomorphism described by Prop.1 to identify V∗∗ with
V:

V∗∗ ∼= V,

and hence we use the same symbol for an element of V and the corresponding
element of V∗∗. Thus, (22.1) reduces to

vλ = λv for all λ ∈ V∗,v ∈ V, (22.2)

where the v on the left side is interpreted as an element of V∗∗.

The identification V∗∗ ∼= V induces identifications such as

Lin(V∗∗,W∗∗) ∼= Lin(V,W)

when V and W are given linear spaces. In particular, if H ∈ Lin(W∗,V∗),
we will interpret H⊤ as an element of Lin(V,W). In view of (22.2) and
(21.3), H⊤ is characterized by

µH⊤v = (Hµ)v for all v ∈ V, µ ∈ W∗. (22.3)

Using (21.3) and (22.3), we immediately obtain the following:

Proposition 2: Let V, W be linear spaces. Then the transposition
(H 7→ H⊤) : Lin(W∗,V∗) → Lin(V,W) is the inverse of the transposition
(L 7→ L⊤) : Lin(V,W) → Lin(W∗,V∗), so that

(L⊤)⊤ = L for all L ∈ Lin(V,W) (22.4)

The identification V∗∗ ∼= V also permits us to interpret the annihilator
H⊥ of a subset H of V∗ as a subset of V.

Proposition 3: For every subspace U of a given linear space V, we have

(U⊥)⊥ = U (22.5)

Proof: Let u ∈ U be given. By definition of U⊥, we have λu = 0 for
all λ ∈ U⊥. If we interpret u as an element of V∗∗ and use (22.2), this
means that uλ = 0 for all λ ∈ U⊥ and hence u>(U⊥) = {0}. Therefore,
we have u ∈ (U⊥)⊥. Since u ∈ U was arbitrary, it follows that U ⊂ (U⊥)⊥.
Applying the Formula (21.15) for Dimension of Annihilators to U and U⊥

and recalling dimV = dimV∗, we find dimU = dim(U⊥)⊥. By Prop.2 of
Sect.17, this is possible only when (22.5) holds.
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Using (22.5) and (22.4) one obtains the following consequences of
Props.3, 2, and 5 of Sect.21.

Proposition 4: For every subset S of V, we have

LspS = (S⊥)⊥. (22.6)

If U1 and U2 are subspaces of V, then

U⊥
1 ⊂ U⊥

2 =⇒ U2 ⊂ U1

and
U⊥

1 + U⊥
2 = (U1 ∩ U2)

⊥. (22.7)

Using (22.5) and (22.4) one also obtains the following consequence of the
Theorem on Annihilators and Transposes (Sect.21).

Proposition 5: Let V and W be linear spaces and let L ∈ Lin(V,W) be
given. For every subspace H of W∗, we then have

L⊤
>(H) = (L<(H⊥))⊥. (22.8)

In particular, we have
Rng L⊤ = (Null L)⊥. (22.9)

Notes 22

(1) Our notation λv for the value of λ ∈ V∗ := Lin(V, R) at v ∈ V, as in (22.1), is
in accord with the general notation for the values of linear mappings (see Sect.13).
Very often, a more complicated notation, such as 〈v, λ〉 or [v, λ], is used. I disagree
with the claim of one author that this complication clarifies matters later on; I
believe that it obscures them.

23 Dual Bases

We now consider the space R
I of all families of real numbers indexed on a

given finite set I. Let ε := (evi | i ∈ I) be the evaluation family associated
with R

I (see Sect.04). As we already remarked in Sect.14, the evaluations
evi : R

I → R, i ∈ I, are linear, i.e. they are members of (RI)∗. Thus, ε

is a family in (RI)∗. The linear combination mapping lncε : R
I → (RI)∗ is

defined by

lncελ :=
∑

i∈I

λievi for all λ ∈ R
I (23.1)
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(see Def.1 in Sect.15). It follows from (23.1) that

(lncελ)µ =
∑

i∈I

λievi(µ) =
∑

i∈I

λiµi (23.2)

for all λ, µ ∈ R
I .

Let δI := (δI
k | k ∈ I) be the standard basis of R

I (see Sect.16). Writing
(23.2) with the choice µ := δI

k, k ∈ I, we obtain

(lncελ)δI
k = λk = evkλ (23.3)

for all λ ∈ R
I and all k ∈ I. Given α ∈ (RI)∗, it easily follows from (23.3)

that λ := (αδI
i | i ∈ I) is the unique solution of the equation

?λ ∈ R
I , lncελ = α.

Since α ∈ (RI)∗ was arbitrary, we can conclude that lncε is invertible and
hence a linear isomorphism.

It is evident from (23.2) that

(lncελ)µ = (lncεµ)λ for all λ, µ ∈ R
I . (23.4)

Comparing this result with (22.3) and using the identification (RI)∗∗ ∼=
R

I , we obtain lnc⊤ε = lncε, where lnc⊤ε ∈ Lin((RI)∗∗, (RI)∗) is identified
with the corresponding element of Lin(RI , (RI)∗). In other words, the
isomorphism (lnc⊤ε )−1lncε : R

I → (RI)∗∗ coincides with the identification
R

I ∼= (RI)∗∗ obtained from Prop.1 of Sect.22. Therefore, there is no conflict
if we use lncε to identify (RI)∗ with R

I .
From now on we shall use lncε to identify (RI)∗ with R

I :

(RI)∗ ∼= R
I ,

except that, given λ ∈ R
I , we shall write λ· := lncελ rather than merely λ

for the corresponding element in (RI)∗. Thus, (23.2) and (23.4) reduce to

µ · λ = λ · µ =
∑

i∈I

λiµi for all λ, µ ∈ R
I . (23.5)

The equations (23.5) and (23.3) yield

δI
k · λ = λ · δI

k = λk = evkλ (23.6)

for all λ ∈ R
I and all k ∈ I. It follows that evk = δI

k· for all k ∈ I, i.e. that
the standard basis δI becomes identified with the evaluation family ε. Since

evk(δ
I
i ) = δk,i for all i, k ∈ I
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we see that

δI
k · δI

i = δk,i :=

{

1 if k = i

0 if k 6= i

}

(23.7)

holds for all i, k ∈ I.
The following result is an easy consequence of (22.3), (23.5), and (16.2).

It shows that the transpose of a matrix as defined in Sect.02 is the same as
the transpose of the linear mapping identified with this matrix, and hence
that there is no notational clash.

Proposition 1: Let I and J be finite index sets and let
M ∈ Lin(RI , RJ) ∼= R

J×I be given. Then

M⊤ ∈ Lin((RJ)∗, (RI)∗) ∼= Lin(RJ , RI) ∼= R
I×J

satisfies
(M⊤µ) · λ = µ · Mλ for all µ ∈ R

J , λ ∈ R
I (23.8)

and
(M⊤)i,j = Mj,i for all i ∈ I, j ∈ J. (23.9)

Let V be a linear space, let b := (bi | i ∈ I) be a basis of V, and let
lncb : R

I → V be the (invertible) linear combination mapping for b (see
Sect.15). Using the identification (RI)∗ ∼= R

I , we can regard (lnc−1
b

)⊤ as a
mapping from R

I to V∗. Using the standard basis δI of R
I , we define

b∗
i := (lnc−1

b
)⊤δI

i for all i ∈ I (23.10)

and call the family b∗ := (b∗
i | i ∈ I) in V∗ the dual of the given basis b.

Since (lnc−1
b

)⊤ is invertible, it follows from Prop.2 of Sect.16 that the dual
b∗ is a basis of V∗.

Using (23.10) and (21.7), we find that

lnc⊤bb∗
i = δI

i = lnc−1
b

bi for all i ∈ I. (23.11)

The dual basis b∗ can be used to evaluate the family of components of
a given v ∈ V relative to the basis b:

Proposition 2: Let b := (bi | i ∈ I) be a basis of V and let b∗ be its
dual. For every v ∈ V, we then have

(lnc−1
b

v)i = b∗
i v for all i ∈ I (23.12)

and hence
v =

∑

i∈I

(b∗
i v)bi. (23.13)
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Proof: It follows from (23.10), (21.3) and (23.6) that

b∗
i v = ((lnc−1

b
)⊤δI

i )v = (lncbe
−1v) · δI

i = (lnc−1
b

v)i

for all i ∈ I.
Using Prop.2 and the formula (16.11) one easily obtains the following:
Proposition 3: Let V and W be linear spaces and let b := (bi | i ∈ I)

and c := (cj | j ∈ J) be bases of V and W, respectively. Then the matrix
M ∈ R

J×I of a given L ∈ Lin(V,W) relative to b and c can be obtained by
the formula

Mj,i = c∗jLbi for all i ∈ I, j ∈ J. (23.14)

The following result gives the most useful characterization of the dual of
a basis.

Proposition 4: Let b := (bi | i ∈ I) be a basis of V and let β :=
(βi | i ∈ I) be a family in V∗. Then

βkbi = δk,i (23.15)

holds for all i, k ∈ I if and only if β coincides with the dual b∗ of b.
Proof: In view of (23.7) and (21.7), the relation (23.15) is valid if and

only if
βkbi = δI

k · δI
i = δI

k · (lnc−1
b

bi) = ((lnc−1
b

)⊤δI
k)bi.

Therefore, since b is a basis, it follows from the uniqueness assertion of
Prop.2 of Sect.16 that (23.15) holds for all i ∈ I if and only if βk =
(lnc−1

b
)⊤δ⊤k . The assertion now follows from the definition (23.10) of the

dual basis.
The following result furnishes a useful criterion for linear independence.
Proposition 5: Let f := (fj | j ∈ J) be a family in V and

ϕ := (ϕj | j ∈ J) a family in V∗ such that

ϕkfj = δk,j for all j, k ∈ J. (23.16)

Then f and ϕ are both linearly independent.
Proof: By the definition (15.1) of lncf it follows from (23.16) that

ϕk(lncfλ) =
∑

j∈J

λj(ϕkfj) = λk

for all λ ∈ R
(J) and all k ∈ J . Hence we can have λ ∈ Null lncf i.e.

lncfλ = 0, only if λk = 0 for all k ∈ J , i.e. only if λ = 0. It follows that
Null lncf = {0}, which implies the linear independence of f by Prop.1 of
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Sect.15. The linear independence of ϕ follows by using the identification
V∗∗ ∼= V and by interchanging the roles of f and ϕ.

If we apply Prop.4 to the case when V is replaced by V∗ and b by b∗

and use (22.2), we obtain:

Proposition 6: The dual b∗∗ of the dual b∗ of a basis b of V is identified
with b itself by the identification V∗∗ ∼= V, i.e. we have

b∗∗ = b. (23.17)

Using this result and Prop.3 we obtain:

Proposition 7: Let V, W, b and c be given as in Prop.3. If M ∈ R
J×I

is the matrix of a given L ∈ Lin(V,W) relative to b and c, then M⊤ ∈ R
I×J

is the matrix of L⊤ ∈ Lin(W∗,V∗) relative to c∗ and b∗, i.e.

M⊤
i,j = biL

⊤c∗j = cjLbi = Mj,i for all i ∈ I, j ∈ J (23.18)

Let β := (βi | i ∈ I) be a family in V∗, so that β ∈ V∗I . Using the iden-
tification V∗I = (Lin(V, R))I ∼= Lin(V, RI) defined by termwise evaluation
(see Sect.14), and the identification (RI)∗ ∼= R

I characterized by (23.5), we
easily see that β⊤ ∈ Lin((RI)∗,V∗) ∼= Lin(RI ,V∗) is given by

β⊤ = lncβ. (23.19)

Remark: Let b be a basis of V. The mapping (lnc−1
b

)⊤lnc−1
b

: V → V∗

is a linear isomorphism. In fact, by (23.10) and (23.11) it is the (unique)
linear isomorphism that maps the basis b termwise onto the dual basis b∗.
This isomorphism is not a natural isomorphism because it depends on the
capricious choice of the basis b. The natural isomorphism that is used for
the identification (RI)∗ ∼= R

I exists because R
I has a natural basis, namely

the standard basis. This basis gives R
I a structure beyond the mere linear-

space structure. To use the metaphor mentioned in the Pitfall at the end of
Sect.15, the bases in R

I do not form a “democracy”, as is the case in linear
spaces without additional structure. Rather, they form a “monarchy” with
the standard basis as king.

24 Bilinear Mappings

Definition 1: Let V1, V2, and W be linear spaces. We say that the mapping
B : V1 × V2 → W is bilinear if B(v1, ·) := (v2 7→ B(v1,v2)) : V2 → W
is linear for all v1 ∈ V1 and B(·,v2) := (v1 7→ B(v1,v2)) : V1 → W is
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linear for all v2 ∈ V2. The set of all bilinear mappings from V1 × V2 to W
is denoted by Lin2(V1 × V2,W).

Briefly, to say that B is bilinear means that B(v1, ·) ∈ Lin(V2,W) for
all v1 ∈ V1 and B(·,v2) ∈ Lin(V1,W) for all v2 ∈ V2.

Proposition 1: Lin2(V1 × V2,W) is a subspace of Map (V1 × V2,W).
Proof: Lin2(V1×V2,W) is not empty because the zero-mapping belongs

to it. To show that Lin2(V1 ×V2,W) is stable under addition, consider two
of its members B and C. Using the definition of B + C (see Sect.14) we
have

(B + C)(v1, ·) = B(v1, ·) + C(v1, ·)

for all v1 ∈ V1. Since Lin(V2,W) is stable under addition, it follows that
(B + C)(v1, ·) ∈ Lin(V2,W) for all v1 ∈ V1. A similar argument shows that
(B + C)(·,v2) ∈ Lin(V1,W) for all v2 ∈ V2 and hence that
B + C ∈ Lin2(V1 × V2,W). It is even easier to show that Lin2(V1 × V2,W)
is stable under scalar multiplication.

Pitfall: The space Lin2(V1 ×V2,W) of bilinear mappings has little con-
nection with the space Lin(V1 × V2,W) of linear mappings from the prod-
uct space V1 × V2 to W . In fact, it is easily seen that as subspaces of
Map (V1 ×V2,W) the two are disjunct, i.e. they have only the zero mapping
in common.

Proposition 2: Let V1, V2, and W be linear spaces. For each
B ∈ Lin2(V1 × V2,W), the mapping

(v1 7→ B(v1, ·)) : V1 → Lin(V2,W)

is linear. Moreover, the mapping

(B 7→ (v1 7→ B(v1, ·))) : Lin2(V1 × V2,W) → Lin(V1, Lin(V2,W))

is a linear isomorphism.
Proof: The first assertion follows from the definition of the linear-space

operations in Lin(V2,W) and the linearity of B(·,v2) for all v2 ∈ V2. The
second assertion is an immediate consequence of the definitions of the spaces
involved and of the definition of the linear-space operations in these spaces.

We use the natural isomorphism described in Prop.2 to identify:

Lin2(V1 × V2,W) ∼= Lin(V1, Lin(V2,W)). (24.1)

This identification is expressed by

(Bv1)v2 = B(v1,v2) for all v1 ∈ V1,v2 ∈ V2, (24.2)
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where on the left side B is interpreted as an element of Lin(V1, Lin(V2,W))
and on the right side B is interpreted as an element of Lin2(V1×V2,W). The
identification given by (24.1) and (24.2) is consistent with the identification
described by (04.28) and (04.29).

Using Prop.7 of Sect.17 and Prop.2 above, we obtain the following for-
mula for the dimension of spaces of bilinear mappings:

dimLin2(V1 × V2,W) = (dimV1)(dimV2)(dimW). (24.3)

Examples:

1. The scalar multiplication sm : R×V → V of a linear space V is bilinear,
i.e. an element of

Lin2(R × V,V) ∼= Lin(R, Lin(V,V)) = Lin(R, LinV).

The corresponding linear mapping sm ∈ Lin(R, LinV) is given by

sm = (ξ 7→ ξ1V) : R → LinV.

It is not only linear, but it also preserves products, i.e.
sm(ξη) = (smξ)(smη) holds for all ξ, η ∈ R. In fact, sm is an in-
jective algebra-homomorphism from R to the algebra of lineons on V
(see Sect.18).

2. Let V and W be linear spaces. Then

((L,v) 7→ Lv) : Lin(V,W) × V → W

is bilinear. The corresponding linear mapping is simply 1Lin(V,W). In
the special case W := R, we obtain the bilinear mapping

((λ,v) 7→ λv) : V∗ × V → R.

The corresponding linear mapping is 1V∗ .

3. Let S be a set and let V and V ′ be linear spaces. It then follows from
Props.1 and 3 of Sect.14 that

((L, f) 7→ Lf) : Lin(V,V ′) × Map (S,V) → Map (S,V ′)

is bilinear.
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4. Let V, V ′, V ′′ be linear spaces. Then

((M,L) 7→ ML) : Lin(V ′,V ′′) × Lin(V,V ′) → Lin(V,V ′′)

defines a bilinear mapping. This follows from Prop.1 of Sect.13 and
the result stated in the preceding example.

The following two results are immediate consequences of the definitions
and Prop.1 of Sect.13.

Proposition 3: The composite of a bilinear mapping with a linear
mapping is again bilinear. More precisely, if V1, V2, W, and W ′ are
linear spaces and if B ∈ Lin2(V1 × V2,W) and L ∈ Lin(W ,W ′), then
LB ∈ Lin2(V1 × V2,W

′).
Proposition 4: The composite of the cross-product of a pair of linear

mappings with a bilinear mapping is again bilinear. More precisely, if V1, V2,
V ′

1, V ′
2, and W are linear spaces and if L1 ∈ Lin(V1,V

′
1), L2 ∈ Lin(V2,V

′
2)

and B ∈ Lin2(V
′
1 × V ′

2,W), then B ◦ (L1 × L2) ∈ Lin2(V1 × V2,W).
With every B ∈ Lin2(V1 × V2,W) we can associate a bilinear mapping

B∼ ∈ Lin2(V2 × V1,W) defined by

B∼(v2,v1) := B(v1,v2) for all v1 ∈ V1, v2 ∈ V2 (24.4)

We call B∼ the switch of B. It is evident that

(B∼)∼ = B (24.5)

holds for all bilinear mappings B and that the switching, defined by

(B 7→ B∼) : Lin2(V1 × V2,W) → Lin2(V2 × V1,W)

is a linear isomorphism.
Definition 2: Let V and W be linear spaces. We say that a bilinear

mapping B ∈ Lin2(V
2,W) is symmetric if B∼ = B, i.e. if

B(u,v) = B(v,u) for all u,v ∈ V; (24.6)

we say that it is skew if B∼ = −B, i.e. if

B(u,v) = −B(v,u) for all u,v ∈ V. (24.7)

We use the notations

Sym2(V
2,W) := {S ∈ Lin2(V

2,W) | S∼ = S},

Skew2(V
2,W) := {A ∈ Lin2(V

2,W) | A∼ = −A}.
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Proposition 5: A bilinear mapping A ∈ Lin2(V
2,W) is skew if and

only if

A(u,u) = 0 for all u ∈ V. (24.8)

Proof: If A is skew, then, by (24.7), we have A(u,u) = −A(u,u) and
hence A(u,u) = 0 for all u ∈ V. If (24.8) holds, then

0 = A(u + v,u + v) = A(u,u) + A(u,v) + A(v,u) + A(v,v)
= A(u,v) + A(v,u)

and hence A(u,v) = −A(v,u) for all u,v ∈ V. .

Proposition 6: To every B ∈ Lin2(V
2,W) corresponds a unique pair

(S,A) with S ∈ Sym2(V
2,W), A ∈ Skew2(V

2,W) such that B = S + A. In
fact, S and A are given by

S =
1

2
(B + B∼), A =

1

2
(B− B∼). (24.9)

Proof: Assume that S ∈ Sym2(V
2,W) and A ∈ Skew2(V

2,W) are
given such that B = S + A. Since B 7→ B∼ is linear, it follows that
B∼ = S∼+A∼ = S−A. Therefore, we have B+B∼ = (S+A)+(S−A) = 2S
and B − B∼ = (S + A) − (S − A) = 2A, which shows that S and A must
be given by (24.9) and hence are uniquely determined by B. On the other
hand, if we define S and A by (24.9), we can verify immediately that S is
symmetric, that A is skew, and that B = S + A.

In view of Prop.4 of Sect.12, Prop.6 has the following immediate conse-
quence:

Proposition 7: Sym2(V
2,W) and Skew2(V

2,W) are supplementary
subspaces of Lin2(V

2,W).

Let V and W be linear spaces. We consider the identifications

Lin2(V ×W∗, R) ∼= Lin(V,W∗∗) ∼= Lin(V,W)

and

Lin2(W
∗ × V, R) ∼= Lin(W∗,V∗).

Hence if L ∈ Lin(V,W), we can not only form its transpose
L⊤ ∈ Lin(W∗,V∗) but, by interpreting L as an element of Lin2(V ×W∗, R),
we can also form its switch L∼ ∈ Lin2(W

∗ × V, R). It is easily verified that
L⊤ and L∼ correspond under the identification, i.e.

L∼ = L⊤ for all L ∈ Lin(V,W). (24.10)
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Pitfall: For a bilinear mapping B whose codomain is not R, the linear
mapping corresponding to the switch B∼ is not the same as the transpose
B⊤ of the linear mapping corresponding to B.

Let V1, V2, W1, and W2 be linear spaces. Let L1 ∈ Lin(V1,W1),
L2 ∈ Lin(V2,W2) and B ∈ Lin2(W1 ×W2, R) ∼= Lin(W1,W

∗
2 ) be given. By

Prop.4, we then have

B ◦ (L1 × L2) ∈ Lin2(V1 × V2, R) ∼= Lin(V1,V
∗
2 ).

Using these identifications, it is easily seen that

B ◦ (L1 × L2) = L⊤
2 BL1. (24.11)

Notes 24

(1) The terms “antisymmetric” and “skewsymmetric” are often used for what we call,
simply, “skew”. A bilinear mapping that satisfies the condition (24.8) is often
said to be “alternating”. In the case considered here, this term is synonymous
with “skew”, but one obtains a different concept if one replaces R by a field of
characteristic 2.

(2) The pair (S,A) associated with the bilinear mapping B according to Prop.6 is
sometimes called the “Cartesian decomposition” of B.

25 Tensor Products

For any linear space V there is a natural isomorphism from Lin(R,V) onto
V, given by h 7→ h(1). The inverse isomorphism associates with v ∈ V the
mapping ξ 7→ ξv in Lin(R,V). We denote this mapping by v⊗ (read “vee
tensor”) so that

v ⊗ ξ := ξv for all ξ ∈ R. (25.1)

In particular, there is a natural isomorphism from R onto R
∗ =

Lin(R, R). It associates with every number η ∈ R the operation of mul-
tiplication with that number, so that (25.1) reduces to η ⊗ ξ = ηξ. We use
this isomorphism to identify R

∗ with R, i.e. we write η = η⊗. However, when
V 6= R, we do not identify Lin(R,V) with V because such an identification
would conflict with the identification V ∼= V∗∗ and lead to confusion.

If λ ∈ V∗ = Lin(V, R), we can consider λ⊤ ∈ Lin(R∗,V∗) ∼= Lin(R,V∗).
Using the identification R

∗ ∼= R, it follows from (21.3) and (25.1) that λ⊤ξ =
ξλ = λ ⊗ ξ for all ξ ∈ R, i.e. that λ⊤ = λ⊗.
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Definition 1: Let V and W be linear spaces. For every w ∈ W
and every λ ∈ V∗ the tensor product of w and λ is defined to be
w ⊗ λ ∈ Lin(V,W), i.e. the composite of λ with w⊗ ∈ Lin(R,W), so that

(w ⊗ λ)v = (λv)w for all v ∈ V. (25.2)

In view of Example 4 of Sect. 24, it is clear that the mapping

((w, λ) 7→ w ⊗ λ) : W ×V∗ −→ Lin(V,W) (25.3)

is bilinear.

In the special case when V := R
I ∼= (RI)∗ and W := R

J for fi-
nite index sets I and J , (16.4) and (25.2) show that the tensor product
µ ⊗ λ ∈ Lin(RI , RJ) ∼= R

J×I of µ ∈ R
J and λ ∈ R

I has the components

(µ ⊗ λ)j,i = µjλi for all (j, i) ∈ J × I. (25.4)

Using the identifications V∗∗ ∼= V and W∗∗ ∼= W , we can form tensor
products

w ⊗ v ∈ Lin(V∗,W), µ ⊗ v ∈ Lin(V∗,W∗),

w ⊗ λ ∈ Lin(V,W), µ ⊗ λ ∈ Lin(V,W∗)

for all v ∈ V, w ∈ W , λ ∈ V∗, µ ∈ W∗. Also, using identifications such
as

Lin(V,W) ∼= Lin(V,W∗∗) ∼= Lin2(V ×W∗, R)

we can interpret any tensor product as a bilinear mapping to R. For example,
if w ∈ W and λ ∈ V∗ we have

(w ⊗ λ)(v, µ) = (λv)(wµ) for all v ∈ V, µ ∈ W∗ (25.5)

The following is an immediate consequence of (25.5), the definition (24.4)
of a switch, and (24.10).

Proposition 1: For all w ∈ W and λ ∈ V∗, we have

(w ⊗ λ)∼ = (w ⊗ λ)⊤ = λ ⊗ w. (25.6)

The following facts follow immediately from the definition of a tensor
product.

Proposition 2: If w 6= 0 then

Null (w ⊗ λ) = Null λ; (25.7)
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if λ 6= 0 then
Rng (w ⊗ λ) = Rw. (25.8)

Proposition 3: Let V, V ′, W, W ′ be linear spaces. If λ ∈ V∗, w ∈ W,
L ∈ Lin(W ,W ′), and M ∈ Lin(V ′,V) then

L(w ⊗ λ) = (Lw) ⊗ λ (25.9)

and
(w ⊗ λ)M = w ⊗ (λM) = w ⊗ (M⊤λ). (25.10)

If v ∈ V and µ ∈ V
′∗, then

(w ⊗ λ)(v ⊗ µ) = (λv)(w ⊗ µ). (25.11)

Tensor products can be used to construct bases of spaces of linear map-
pings:

Proposition 4: Let V and W be linear spaces, let b := (bi | i ∈ I) be
a basis of V. Let b∗ := (b∗

i | i ∈ I) be the basis of V∗ dual to b and let
c := (cj | j ∈ J) be a basis of W. Then (cj ⊗ b∗

i | (j, i) ∈ J × I) is a basis
of Lin(V,W), and the matrix M ∈ R

J×I of the components of L relative to
this basis is the same as the matrix lnc−1

c Llncb ∈ Lin(RI , RJ) ∼= R
J×I , i.e.

the matrix of L relative to the bases b and c (see Sect. 16).
Proof: It is sufficient to prove that

L =
∑

(j,i)∈J×I

Mj,i(cj ⊗ b∗
i ) (25.12)

holds when M is the matrix of L relative to b and c. It follows from (16.11)
and from (25.2) and Prop.4 of Sect. 23 that the left and right sides of
(25.12) give the same value when applied to the terms bk of the basis b.
Using Prop.2 of Sect. 16, we conclude that (25.12) must hold.

Using (18.6) and (18.8), we obtain the following special case of (25.12):
Proposition 5: Let V be a linear space and let b := (bi | i ∈ I) be a

basis of V. For every lineon L ∈ LinV, we then have

L =
∑

(j,i)∈I×I

([L]b)j,i(bj ⊗ b∗
i ). (25.13)

In particular, we have

1V =
∑

i∈I

bi ⊗ b∗
i . (25.14)

Prop.4 has the following corollary:
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Proposition 6: If V and W are linear spaces, then

Lin(V,W) = Lsp{w ⊗ λ | w ∈ W , λ ∈ V∗}. (25.15)

Notes 25

(1) The term “dyadic product” and the notation wλ is often used in the older literature
for our “tensor product” w⊗λ. We cannot use this older notation because it would
lead to a clash with the evaluation notation described by (22.2).

(2) For other uses of the term “tensor product” see Note (1) to Sect. 26.

26 The Trace

Let V and W be linear spaces. Since the mapping (25.3) is bilinear, it follows
from Prop.3 of Sect. 24 that for every linear form Ω on Lin(V,W)

((w, λ) 7→ Ω(w ⊗ λ)) : W ×V∗ −→ R

is a bilinear mapping Using the identifications Lin2(W × V∗, R) ∼=
Lin(W ,V∗∗) ∼= Lin(W ,V) (see Sects.24 and 22) we see that there is a map-
ping

τ : (Lin(V,W))∗ −→ Lin(W ,V) (26.1)

defined by

λ(τ(Ω)w) = Ω(w ⊗ λ) for all Ω ∈ (Lin(V,W))∗, w ∈ W , λ ∈ V∗.

(26.2)
Lemma: The mapping (26.1) defined by (26.2) is a linear isomorphism.
Proof: The linearity of τ follows from the fact that every member of

Lin(V,W), and in particular w ⊗ λ, can be identified with an element of
(Lin(V,W))∗∗, i.e. a linear form on (Lin(V,W))∗.

If Ω ∈ Null τ then τ(Ω) = 0 and hence, by (26.2), Ω(w ⊗ λ) = 0 for
all w ∈ W and all λ ∈ V∗. By Prop.6 of Sect. 25 this is possible only
when Ω = 0. We conclude that Null τ = {0}. Since dim(Lin(V,W))∗ =
(dimV)(dimW) = dim(Lin(W ,V)) (see (21.1) and (17.7) ) it follows from
the Pigeonhole Principle for Linear Mappings (Sect. 17) that τ is invertible.

The following result shows that the algebra of lineons admits a natural
linear form.
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Characterization of the Trace: Let V be a linear space. There is
exactly one linear form trV on LinV that satisfies

trV(v ⊗ λ) = λv for all v ∈ V, λ ∈ V∗. (26.3)

This linear form trV is called the trace for V.
Proof: Assume that trV ∈ (LinV)∗ satisfies (26.3). Using (26.2) with

W := V and the choice Ω := trV we see that we must have τ(trV) = 1V . By
the Lemma, it follows that trV is uniquely determined as trV = τ−1(1V). On
the other hand, if we define trV := τ−1(1V) then (26.3) follows from (26.2).

If the context makes clear what V is, we often write tr for trV .
Using (26.3), (25.9), and (25.10), it is easily seen that the definition

(26.2) of the mapping τ is equivalent to the statement that

ΩL = trV(τ(Ω)L) = trW(Lτ(Ω)) (26.4)

holds for all Ω ∈ (Lin(V,W))∗ and all L ∈ Lin(V,W) that are tensor prod-
ucts, i.e. of the form L = w ⊗ λ for some w ∈ W , λ ∈ V∗. Since these
tensor products span Lin(V,W) (Prop.6 of Sect. 25), it follows that the
mapping τ can be characterized by the statement that (26.4) holds for all
L ∈ Lin(V,W), whether L is a tensor product or not. Using this fact and
the Lemma we obtain the following two results.

Representation Theorem for Linear Forms on a Space of Lin-
ear Mappings: Let V and W be linear spaces. Every linear form Ω on
Lin(V,W) is represented by a unique M ∈ Lin(W ,V) in the sense that

ΩL = trV(ML) for all L ∈ Lin(V,W). (26.5)

Proposition 1: For every L ∈ Lin(V,W) and every M ∈ Lin(W ,V) we
have

trV(ML) = trW(LM). (26.6)

Now let a linear space V be given.
Proposition 2: For every L ∈ LinV we have

trV∗L⊤ = trVL. (26.7)

Proof: By the Theorem on Characterization of Trace it suffices to show
that the mapping L 7→ trV∗L⊤ from LinV into R is linear and has the value
λv when L = v ⊗ λ. The first is immediate and the second follows from
(25.6) and (26.3), applied to the case when V is replaced by V∗.
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Proposition 3: Let b := (bi | i ∈ I) be a basis of V. For every lineon
L ∈ LinV, we have

trVL =
∑

i∈I

([L]b)i,i, (26.8)

where [L]b := lnc−1
b

Llncb is the matrix of L relative to b.
Proof: It follows from (26.3) and Prop.4 of Sect. 23 that

trV(bj ⊗ b∗
i ) = b∗

i bj = δi,j for all i, j ∈ I.

Therefore, (26.8) is a consequence of (25.13) and the linearity of trV .
If we apply (26.8) to the case when L := 1V and hence ([L])b)i,i = 1 for

all i ∈ I (see (18.8)), we obtain

trV1V = dimV. (26.9)

Proposition 4: Let U be a subspace of V and let P : V → U be a
projection (see Sect. 19). Then

trU (K) = trV(1U⊂VKP) (26.10)

for all K ∈ LinU .
Proof: It follows from Prop.1 that

trV((1U⊂VK)P) = trU(P(1U⊂VK)) = trU (P|UK)

for all K ∈ LinU . By the definition of a projection (Sect. 19) we have
P|U = 1U and hence (26.10) holds.

Proposition 5: The trace of an idempotent lineon E on V is given by

trVE = dimRng E (26.11)

Proof: Put U := RngE and P := E|U . We then have E = 1U⊂VP and,
by Prop.1 of Sect. 19, P : V → U is a projection. Applying (26.10) to
the case when K := 1U we obtain trU(1U) = trV(E). The desired formula
(26.11) now follows from (26.9).

Proposition 6: Let V1, V2, and W be linear spaces. There is exactly
one mapping

Λ : Lin2(V1 × V2,W) −→ Lin(Lin(V∗
2 ,V1),W)

such that

B(v1,v2) = Λ(B)(v1 ⊗ v2) for all v1 ∈ V1, v2 ∈ V2 (26.12)
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and all B ∈ Lin2(V1 × V2,W). Moreover, Λ is a linear isomorphism.
Proof: For every B ∈ Lin2(V × V2,W) and µ ∈ W∗ we have

µB ∈ Lin2(V1 × V2, R) ∼= Lin(V1,V
∗
2 ) (see Prop.3 of Sect. 24). Using the

identification V∗∗
2

∼= V2, we see that (26.12) holds if and only if

v2((µB)v1) = (µB)(v1,v2) = (µΛ(B))(v1 ⊗ v2) (26.13)

for all v1 ∈ V1,v2 ∈ V2 and all µ ∈ W∗. Comparing (26.13) with (26.2), we
conclude that (26.12) is equivalent to

τ(µΛ(B)) = µB for all µ ∈ W∗,

where τ is defined according to (26.1) and (26.2), in which V and W must
be replaced by V1 and V∗

2 , respectively. Since τ is invertible by the Lemma,
we conclude that (26.12) is equivalent to

µΛ(B) = τ−1(µB) for all µ ∈ W∗. (26.14)

Since W is isomorphic to W∗∗, the uniqueness and existence of Λ follow from
the equivalence of (26.14) with (26.12). The linearity of Λ follows from the
linearity of τ−1. Also it is clear from (26.14) that Λ has an inverse Λ, which
is characterized by

µΛ−1(Φ) = τ(µΦ) for all µ ∈ W∗ (26.15)

and all Φ ∈ Lin(Lin(V∗
2 ,V1),W).

Remark: Prop.6 shows that every bilinear mapping B on V1 × V2 is
the composite of the tensor product mapping from V1 ×V2 into Lin(V∗

2 ,V1)
with a linear mapping Λ(B). In a setting more abstract than the one used
here, the term tensor product mapping is often employed for any bilinear
mapping ⊗ on V1 × V2 with the following universal factorization property:
Every bilinear mapping on V1 × V2 is the composite of ⊗ with a unique
linear mapping. The codomain of ⊗ is then called a tensor product space
and is denoted by V1 ⊗ V2. For the specific tensor product used here, we
have V1 ⊗ V2 := Lin(V∗

2 ,V1).

Notes 26

(1) There are many ways of constructing a tensor-product space in the sense of the
Remark above from given linear spaces V1 and V2. The notation V1 ⊗ V2 for such
a space is therefore ambiguous and we will not use it. One can associate with
the construction of tensor-product spaces a concept of “tensor product” of linear
mappings which generalizes the concept of tensor product introduced in Sect. 25.
Tensor-product spaces are of little practical value in the present context, even
though they give important insights in abstract algebra.
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27 Bilinear Forms and Quadratic Forms

We assume that a linear space V is given. The bilinear mappings from V2

to R, i.e. the members of Lin2(V
2, R) are called bilinear forms on V. The

identification Lin2(V
2, R) ∼= Lin(V,V∗)—a special case of (24.1)—enables us

to interpret bilinear forms as mappings from V to its dual V∗. We use the
notation Sym(V,V∗) and Skew(V,V∗) for the subspaces of Lin(V,V∗) that
correspond to the subspaces Sym2(V

2, R) and Skew2(V
2, R) of Lin2(V

2, R)
(see Def.2 in Sect. 24). In view of (24.10), we have

Sym(V,V∗) = {S ∈ Lin(V,V∗) | S⊤ = S}, (27.1)

Skew(V,V∗) = {A ∈ Lin(V,V∗) | A⊤ = −A}. (27.2)

By Prop.7 of Sect. 24, Sym(V,V∗) and Skew(V,V∗) are supplementary
subspaces of Lin(V,V∗).

Let b := (bi | i ∈ I) be a basis of V and let B ∈ Lin2(V
2, R) ∼= Lin(V,V∗)

be a bilinear form. The matrix M ∈ R
I×I defined by

Mj,i := B(bi,bj) for all i, j ∈ I (27.3)

is called the matrix of B relative to b. It is easily seen that M coincides
with the matrix of B when regarded as an element of Lin(V,V∗), relative
to the bases b and b∗ in the sense of the definition in Sect. 16. Using
the fact that b∗∗ = b, (see (23.17)) it follows from Prop.4 of Sect. 25
that M is also the matrix of the components of B relative to the basis
(b∗

i ⊗ b∗
j | (i, j) ∈ I × I) of Lin2(V

2, R) ∼= Lin(V,V∗), i.e. that

B =
∑

(i,j)∈I×I

Mi,j(b
∗
i ⊗ b∗

j ) (27.4)

holds if and only if M is given by (27.3). It is clear from (27.3) that B is
symmetric, i.e. B⊤ = B∼ = B, if and only if

Mi,j = Mj,i for all i, j ∈ I, (27.5)

and that B is skew, i.e. B⊤ = B∼ = −B, if and only if

Mi,j = −Mj,i for all i, j ∈ I (27.6)

Proposition 1: If n := dimV then

dimSym2(V
2, R) = dimSym(V,V∗) =

n(n + 1)

2
(27.7)

and
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dimSkew2(V
2, R) = dim Skew(V,V∗) =

n(n − 1)

2
. (27.8)

Proof: We choose a list basis b := (bi | i ∈ n]) of V. Let
A ∈ Skew2(V

2, R) be given. We claim that

A =
∑

(Ki,j(b
∗
i ⊗ b∗

j − b∗
j ⊗ b∗

i | (i, j) ∈ n] × n], i < j) (27.9)

holds if and only if

Ki,j = A(bi,bj) for all (i, j) ∈ n] × n] with i < j. (27.10)

Indeed, since (b∗
i ⊗ b∗

j | (i, j) ∈ n] × n]) is a basis of Lin2(V
2, R),

we find, by comparing (27.9) with (27.4) and (27.10) with (27.3), that
(27.9) can hold only if (27.10) holds. On the other hand, if we define
(Ki,j |(i, j) ∈ n] × n], i < j) by (27.10), it follows from (27.6) that the matrix
M of A is given by

Mi,j =







Ki,j if i < j

−Kj,i if j < i

0 if i = j







for all i, j ∈ I.

Therefore, (27.4) reduces to (27.9).
It follows from (25.6) that the terms of the family

b∗ ∧ b∗ := (b∗
i ⊗ b∗

j − b∗
j ⊗ b∗

i | (i, j) ∈ n] × n], i < j) (27.11)

all belong to Skew2(V
2, R). Therefore, the equivalence of (27.9) and (27.10)

proves that the family (27.11) is a basis of Skew2(V
2, R). This basis has

♯{(i, j) ∈ n] × n] | i < j} = n(n−1)
2 terms, and hence (27.8) holds.

Since Sym2(V
2, R) is a supplement of Skew2(V

2, R) in Lin2(V
2, R) and

since dimLin2(V
2, R) = n2 by (24.3), we can use Prop.5 of Sect. 17 and

(27.8) to obtain

dimSym2(V
2, R) = dimLin2(V

2, R) − dim Skew2(V
2, R)

= n2 −
n(n − 1)

2
=

n(n + 1)

2
.

We note that if S ∈ Sym2(V
2, R), then S ◦ (1V ,1V) = (u 7→ S(u,u))

is a real-valued function on V (see Sect. 04). Thus, one can consider the
mapping

(S 7→ S ◦ (1V ,1V)) : Sym2(V
2, R) → Map (V, R). (27.12)
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Proposition 2: The mapping (27.12) is linear and injective.

Proof: The linearity follows from Prop.1 of Sect. 14. To show that
(27.12) is injective, it suffices to show that its nullspace contains only the
zero of Sym2(V

2, R). If S belongs to this nullspace, then S ◦ (1V , 1V) = 0,
i.e. S(u,u) = 0 for all u ∈ V. By Props.5 and 7 of Sect. 24 we conclude
that S must also be skew and hence that S = 0.

Definition 1: The range space of the mapping (27.12) will be denoted
by Qu(V). Its members are called quadratic forms on V. We write

S := S ◦ (1V ,1V) when S ∈ Sym2(V
2, R), (27.13)

and the inverse of the linear isomorphism

(S 7→ S ) : Sym2(V
2, R) −→ Qu(V)

will be denoted by

(Q 7→ Q ) : Qu(V) → Sym2(V
2, R) ∼= Sym(V,V∗),

so that Q = Q ◦(1V ,1V), i.e.,

Q(u) = Q (u,u) = (Q u)u for all u ∈ V. (27.14)

We say that Q ∈ Qu(V) is non-degenerate if Q ∈ Sym(V,V∗) is injec-
tive, positive [negative] if RngQ ⊂ P [RngQ ⊂ −P], strictly positive
[strictly negative] if Q>(V×) ⊂ P

× [Q>(V×) ⊂ −P
×]. We say that Q is

single-signed if it is either positive or negative, double-signed otherwise.
The same adjectives will be used for the corresponding bilinear form Q.

Example: Let V be a linear space. The mapping

(L 7→ trV(L2)) : LinV −→ R (27.15)

is a quadratic form on the algebra of lineons LinV, i.e. a member of
Qu(LinV). The corresponding element of Sym2((LinV)2, R) is given by
(L,M) 7→ trV(LM). It follows from the Representation Theorem for Linear
Forms on LinV (Sect. 26) that the quadratic form (27.15) is non-degenerate.

Using the symmetry and bilinearity of Q , one obtains the formulas

Q(ξu) = ξ2Q(u) for all ξ ∈ R, u ∈ V, (27.16)

Q(u + v) = Q(u) + 2Q (u,v) + Q(v) for all u,v ∈ V. (27.17)
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As a consequence of (27.17), we find

Q (u,v) =
1

2
(Q(u + v) − Q(u) − Q(v))

=
1

2
(Q(u) + Q(v) −Q(u − v)) (27.18)

=
1

4
(Q(u + v) − Q(u− v)),

which give various ways of expressing Q explicitly in terms of Q.
The following result follows from Prop.4 of Sect. 24, from (24.11), and

from Prop.1 of Sect. 14.
Proposition 3: Let V and W be linear spaces and let L ∈ Lin(V,W).

For every Q ∈ Qu(W) we have Q ◦ L ∈ Qu(V) and

Q ◦ L = Q ◦(L× L) = L⊤ QL. (27.19)

The mapping
(Q 7→ Q ◦ L) : Qu(W) → Qu(V) (27.20)

is linear; it is invertible if and only if L is invertible.
If U is a subspace of V and Q ∈ Qu(V), then Q|U ∈ Qu(U) and

Q|U = Q |U×U . If Q is positive, strictly positive, negative, or strictly nega-
tive, so is Q|U . However, Q|U need not be non-degenerate even if Q is.

Proposition 4: A positive [negative] quadratic form is strictly positive
[strictly negative] if and only if it is non-degenerate.

Proof: Let Q ∈ Qu(V) and u ∈ Null Q , so that Q u = 0. Then

0 = (Q u)u = Q (u,u) = Q(u). (27.21)

Now, if Q is strictly positive then (27.21) can hold only if u = 0, which
implies that Null Q = {0} and hence that Q is injective, i.e. that Q is
positive and non-degenerate. Assume that Q is positive and non-degenerate
and that Q(v) = 0 for a given v ∈ V. Using (27.18)2 we find that

ξ Q (u,v) = Q (u, ξv) =
1

2
(Q(u) + Q(ξv) − Q(u− ξv)),

and hence, since Q(u− ξv) ≥ 0 and Q(ξv) = ξ2Q(v) = 0,

ξ Q (u,v) ≤
1

2
Q(u)

for all v ∈ V and all ξ ∈ R
×. It is easily seen that this is possible only when

0 = Q (u,v) = (Q u)v for all v ∈ V, i.e. if Qu = 0. Since Q is injective,
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it follows that u = 0. We have shown that Q(u) = 0 implies u = 0, and
hence, since Q was assumed to be positive, that Q is strictly positive.

Notes 27

(1) Many people use the clumsy terms “positive semidefinite” or “non-negative” when
we speak of a “positive” quadratic or bilinear form. They then use “positive defi-
nite” or “positive” when we use “strictly positive”.

(2) The terms “single-signed” and “double-signed” for quadratic and bilinear forms
are used here for the first time. They are clearer than the terms “definite” and
“indefinite” found in the literature, sometimes with somewhat different meanings.

28 Problems for Chapter 2

1. Let V be a linear space and let L ∈ LinV and λ, µ ∈ R with λ 6= µ be
given. Prove that

Null (L⊤ − µ1V∗) ⊂ (Null (L − λ1V))⊥. (P2.1)

2. Let n ∈ N be given and let the linear space Pn be defined as in Problem
4 in Chap.1. For each k ∈ n[, let βk : Pn → R be defined by

βk(f) := f (k)(0) for all f ∈ Pn, (P2.2)

where f (k) denotes the k’th derivative of f (see Sect. 08). Note that,
for each k ∈ n[, βk is linear, so that βk ∈ Pn

∗.

(a) Determine a list h := (hk | k ∈ n[) in Pn such that

βkhj = δk,j for all k, j ∈ n[. (P2.3)

(b) Show that the list h determined in (a) is a basis of Pn and that
the dual of h is given by

h∗ = β := (βk | k ∈ n[). (P2.4)

(Hint: Apply Props.4 and 5 of Sect. 23).
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For each t ∈ R, let the evaluation evt : Pn → R be defined by

evt(f) := f(t) for all f ∈ Pn (P2.5)

(see Sect. 04) and note that evt is linear, so that evt ∈ Pn
∗.

(c) Let t ∈ R be given. Determine λ := lncβ
−1evt ∈ R

n[
, where β is

the basis of Pn
∗ defined by (P2.4) and (P2.2), so that

evt = lncβλ =
∑

k∈n[ λkβk. (P2.6)

3. Let n ∈ N be given and let the linear space Pn be defined as in Problem
4 of Chap.1. Also, let a subset F of R with n elements be given, so
that n = ♯F .

(a) Determine a family g := (gs | s ∈ F ) in Pn such that

evt(gs) = δt,s for all t, s ∈ F, (P2.7)

where evt ∈ Pn
∗ is the evaluation given by (P2.5).

(b) Show that the family g determined in (a) is a basis of Pn and
that the dual of g is given by

g∗ = (evt | t ∈ F ). (P2.8)

(Hint: Apply Props.4 and 5 of Sect. 23).

4. Let V be a linear space. Let the mappings Λ and Υ from LinV × LinV
to LinV be defined by

Λ(L,M) := LM −ML (P2.9)

and

Υ(L,M) := LM + ML (P2.10)

for all L,M ∈ LinV.

(a) Show that Λ is bilinear and skew, so that
Λ ∈ Skew2((LinV)2, LinV). Also, show that
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∑

γ∈C3
Λ(Λ(Lγ(1),Lγ(2)),Lγ(3)) = 0 (P2.11)

for every triple (L1,L2,L3) in LinV, where C3 denotes the set of
cyclic permutations of 3], i.e.

C3 :=

{

13] ,

(

1 2 3
2 3 1

)

,

(

1 2 3
3 1 2

)}

.

(b) Show that Υ is bilinear and symmetric, so that
Υ ∈ Sym2((LinV)2, LinV). Also, show that

Υ(L, Υ(Υ(L,L),M)) = Υ(Υ(L,L), Υ(L,M)) (P2.12)

for all L,M ∈ LinV.

Remark: The mapping Λ endows LinV with the structure of a
“Lie-algebra” and the mapping Υ endows LinV with the structure
of a “Jordan-algebra”. The theory of these is an important topic
in abstract algebra.

5. Let D, M ∈ Lin C∞(R) and Pn, with n ∈ N, be defined as in Problems
4 and 5 of Chapt.1.

(a) Show that Pn is D-subspace, a (MD)-subspace, and a
(DM)-subspace of C∞(R). Calculate trD|Pn

, tr(MD)|Pn
, and

tr(DM)|Pn
.

(b) Prove: If V is a linear space of finite and non-zero dimension,
there do not exist L,K ∈ LinV such that LK−KL = 1V . (Com-
pare this assertion with the one of Problem 5 of Chap.1.)

6. Let V be a linear space.

(a) Prove that Ω ∈ (LinV)∗ satisfies

Ω(LM) = Ω(ML) for all L,M ∈ LinV (P2.13)

if and only if Ω = ξtrV for some ξ ∈ R.

(Hint: Consider the case when L and M in (P2.13) are tensor
products.)

(b) Consider the left-multiplication mapping LeL ∈ Lin(LinV) de-
fined by (P1.1) for each L ∈ LinV. Prove that

trLinV(LeL) = (dimV)trVL for all L ∈ LinV (P2.14)



28. PROBLEMS FOR CHAPTER 2 99

(Hint: Use part (a)).

7. Let U1 and U2 be supplementary subspaces of the given linear space V
and let P1,P2 be the projections associated with U1,U2 according to
Prop.4 of Sect. 19. Prove that, for every L ∈ LinV, we have

trVL = trU1(P1L|U1) + trU2(P2L|U2). (P2.15)

(Hint: Apply Prop.1 of Sect. 26 and Prop.5 of Sect. 19.)

8. Let V be a linear space and put n := dimV.

(a) Given a list basis b := (bi | i ∈ n]) of V construct a basis of
Sym2(V

2, R) ∼= Sym(V,V∗) by a procedure analogous to the one
described in the proof of Prop.1 of Sect. 27.

(b) Show that, for every λ ∈ V∗, the function λ2 : V → R obtained
from λ by value-wise squaring (i.e. by λ2(v) := (λv)2 for all
v ∈ V), is a quadratic form on V, i.e. that λ2 ∈ Qu(V). (See
Def.1 in Sect. 27)

(c) Prove that

Lsp{λ2 |λ ∈ V∗} = Qu(V). (P2.16)


