
Chapter 1

Linear Spaces

This chapter is a brief survey of basic linear algebra. It is assumed that the
reader is already familiar with this subject, if not with the exact terminol-
ogy and notation used here. Many elementary proofs are omitted, but the
experienced reader will have no difficulty supplying these proofs for himself
or herself.

In this chapter the letter F denotes either the field R of real numbers or
the field C of complex numbers. (Actually, F could be an arbitrary field. To
preserve the validity of certain remarks, F should be infinite.)

11 Basic Definitions

Definition 1: A linear space (over F) is a set V endowed with structure
by the presciption of

(i) an operation add: V × V → V, called the addition in V,

(ii) an operation sm: F × V → V, called the scalar multiplication in V,

(iii) an element 0 ∈ V called the zero of V,

(iv) a mapping opp: V → V called the opposition in V, provided that the
following axioms are satisfied:

(A1) add (u, add(v,w)) = add(add (u,v), w) for all u, v,w ∈ V,

(A2) add(u,v) = add(v,u) for all u,v ∈ V,

(A3) add(u, 0) = u for all u ∈ V,

(A4) add(u, opp(u)) = 0 for all u ∈ V,
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(S1) sm(ξ, sm(η, u)) = sm(ξη, u) for all ξ, η ∈ F, u ∈ V,

(S2) sm(ξ + η, u) = add(sm(ξ, u),sm(η, u)) for all ξ, η ∈ F, u ∈ V,

(S3) sm(ξ, add(u,v)) = add(sm(ξ, u), sm(ξ, v)) for all ξ ∈ F,
u,v ∈ V,

(S4) sm (1u) = u for all u ∈ V.

The prescription of add, 0, and opp, subject to the axioms (A1)-(A4),
endows V with the structure of a commutative group (See Sect. 06). Thus,
one can say that a linear space is a commutative group endowed with addi-
tional structure by the prescription of a scalar multiplication sm: F×V → V
subject to the conditions (S1)-(S4).

The zero 0 of V and the opposition opp of V are uniquely determined by
the operation add (see the remark on groupable pre-monoids in Sect. 06).
In other words, if add, sm, 0, and opp endow V with the structure of a linear
space and if add, sm, 0′, and opp′ also endow V with such a structure, then
0′ = 0 and opp′ = opp and hence the structures coincide. This fact enables
one to say that the prescription of two operations, add: V ×V → V and sm:
F×V → V, endow V with the structure of a linear space if there exist 0 ∈ V
and opp: V → V such that the conditions (A1)-(S4) are satisfied.

The following facts are easy consequences of the (A1)-(S4):

(I) For every u,v ∈ V there is exactly one w ∈ V such that add(u,w) =
v; in fact, w is given by w := add(v, opp (u)).

(II) sm(ξ − η, u) = add(sm (ξ, u), opp(sm(η, u))) for all ξ, η ∈ F, u ∈ V.

(III) sm(ξ, add(u, opp(v))) = add(sm(ξ, u), opp(sm(ξ, v))) for all ξ ∈ F,
u,v ∈ V.

(IV) sm(−ξ, u) = opp(sm(ξ,u)) for all ξ ∈ F, u ∈ V.

(V) If ξ ∈ F and u ∈ V, then sm(ξ, u) = 0 if and only if ξ = 0 or u = 0.

The field F acquires the structure of a linear space if we prescribe add,
sm, 0 and opp for F by putting add(ξ, η) := ξ+η, sm(ξ, η) := ξη, 0 := 0, opp
(ξ) := −ξ, so that addition, zero, and opposition in the linear space F have
their ordinary meaning while scalar multiplication reduces to ordinary mul-
tiplication. The axioms (A1)-(S4) reduce to rules of elementary arithmetic
in F.

It is customary to use the following simplified notations in an arbitrary
linear space V:
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u + v := add(u,v) when u,v ∈ V,
ξ u := sm (ξ, u) when ξ ∈ F, u ∈ V,
−u := opp(u) when u ∈ V,

u − v := u + (−v) = add (u, opp (v)) when u,v ∈ V.

We will use these notations most of the time. If several linear spaces
are considered at the same time, the context should make it clear which
of the several addition, scalar multiplication, or opposition operations are
meant when the symbols +,−, or juxtaposition are used. Also, when the
symbols 0 or 0 are used, they denote the zero of whatever linear space the
context requires. With the notations above, the axioms (A1)-(S4) and the
consequences (I)-(V) translate into the following familiar rules, valid for all
u,v,w ∈ V and all ξ, η ∈ F:

u + (v + w) = (u + v) + w, (11.1)

u + v = v + u, (11.2)

u + 0 = u, (11.3)

u− u = 0, (11.4)

ξ(ηu) = (ξη)u, (11.5)

(ξ + η)u = ξu + ηu, (11.6)

ξ(u + v) = ξu + ξv, (11.7)

1u = u, (11.8)

u + w = v ⇔ w = v − u, (11.9)

(ξ − η)u = ξu − ηu, (11.10)

ξ(u− v) = ξu − ξv, (11.11)

ξu = 0 ⇔ (ξ = 0 or u = 0). (11.12)

Since the linear space V is a commutative monoid described with addi-
tive notation, we can consider the addition of arbitrary families with finite
support of elements of V as explained in Sect. 07.

Notes 11

(1) The term “vector space” is very often used for what we call a “linear space”. The
trouble with “vector space” is that it leads one to assume that the elements are
“vectors” in some sense, while in fact thay very often are objects that could not
be called “vectors” by any stretch of the imagination. I prefer to use “vector” only
when it has its original geometric meaning (see Def. 1 or Sect. 32).

(2) Sometimes, one finds the term “origin” for what we call the “zero” of a linear space.
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12 Subspaces

Definition 1: A non-empty subset U of a linear space V is called a sub-

space of V if it is stable under the addition add and scalar multiplication
sm in V, i.e., if

add>(U × U) ⊂ U and sm>(F × U) ⊂ U .

It is easily proved that a subspace U of V must contain the zero 0 of V
and must be invariant under opposition, so that

0 ∈ U , opp>(U) ⊂ U .

Moreoever, U acquires the natural structure of a linear space if the addition,
scalar multiplication, and opposition in U are taken to be the adjustments

add
∣

∣
U
U×U , sm

∣

∣

U

F×U
, and opp|U , respectively, and if the zero of U is taken to

be the zero 0 of V.

Let a linear space V be given. Trivial subspaces of V are V itself and the
zero-space {0}. The following facts are easily proved:

Proposition 1: The collection of all subspaces of V is intersection stable;
i.e., the intersection of any collection of subspaces of 0 V is again a subspace
of V.

We denote the span-mapping (see Sect. 03) associated with the collection
of all subspaces of V by Lsp and call its value Lsp S at a given S ∈ Sub V
the linear span of S. In view of Prop. 1, Lsp S is the smallest subspace
of V that includes S (see Sect. 03). If Lsp S = V we say that S spans V
or that V is spanned by S. A subset of V is a subspace if and only if it
coincides with its own linear span. The linear span of the empty subset of V
is the zero-space {0} of V, i.e., Lsp∅ = {0}. The linear span of a singleton
{v}, v ∈ V, is the set of all scalar multiples of v, which we denote by Fv:

Lsp{v} = Fv := {ξv | ξ ∈ F}. (12.1)

We note that the notations for member-wise sums of sets introduced in
Sects. 06 and 07 can be used, in particular, if the sets are subsets of a linear
space.

Proposition 2: If U1 and U2 are subspaces of V , so is their sum and

Lsp(U1 ∪ U2) = U1 + U2. (12.2)
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More generally, if (Ui | i ∈ I) is a finite family of subspaces of V, so is its
sum and

Lsp

(

⋃

i∈I

Ui

)

=
∑

i∈I

Ui. (12.3)

Proposition 3: If (Si | i ∈ I) is a finite family of arbitrary subsets of V,
then

Lsp

(

⋃

i∈I

Si

)

=
∑

i∈I

Lsp Si. (12.4)

Definition 2: We say that two subspaces Ui and U2 of V are disjunct,
and that U2 is disjunct from U1, if U1 ∩ U2 = {0}.

We say that two subspaces U1 and U2 of V are supplementary in V and
that U2 is a supplement of U1 in V if U1 ∩ U2 = {0} and U1 + U2 = V.

Proposition 4: Let U1,U2 be subspaces of V. Then the following are
equivalent:

(i) U1 and U2 are supplementary in V.

(ii) To every v ∈ V corresponds exactly one pair (u1,u2) ∈ U1 × U2 such
that v = u1+ u2.

(iii) U2 is maximal among the subspaces that are disjunct from U1, i.e., U2

is disjunct from U1 and not properly included in any other subspace
disjunct from U1.

Pitfall: One should not confuse “disjunct” with “disjoint”, or “supplement”
with “complement”. Two subspaces, even if disjunct, are never disjoint.
The complement of a subspace is never a subspace, and there is no relation
between this complement and any supplement. Moreover, supplements are
not unique unless the given subspace is the whole space V or the zero-space
{0}.

To say that two subspaces U1 and U2 are disjunct is equivalent to saying
they are supplementary in U1 + U2.
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Notes 12

(1) The phrase “subspace generated by” is often used for what we call “linear span
of”. The modifier “linear” is very often omitted and the linear span of a subset
S of V is often simply denoted by Sp S. I think it is important to distinguish
carefully between linear spans and other kinds of spans. (See the discussion of
span-mappings in Sect. 03 and the definition of flat spans in Prop. 7 of Sect. 32).

(2) In many textbooks the term “disjoint” is used when we say “disjunct” and the term
“complementary” when we say “supplementary”. Such usage clashes with the set-
theoretical meanings of “disjoint” and “complementary” and greatly increases the
danger of becoming a victime of the Pitfall above. It is for this reason that I in-
troduced the terms “disjunct” and “supplementary” after consulting a thesaurus.
Later, I realized that “supplementary” had already been used by others. In par-
ticular, Bourbaki has used “supplémentaire” since 1947, which I read in 1950 but
had forgotten.

(3) Some people write U1 ⊕ U2 instead of merely U1 + U2 when the two subspaces U1

and U2 are disjunct, and then call U1 ⊕ U2 the “direct sum” rather than merely
the “sum” of U1 and U2. This is really absurd; it indicates confusion between a
property (namely disjunctness) of a pair (U1,U2) of two subspaces and a property
of their sum. The sum U1 + U2, as a subspace of V, has no special properties,
because U1 and U2 cannot be recovered from U1 + U2 (except when they are all
zero-spaces).

13 Linear Mappings

Definition 1: A mapping L : V → V ′ from a linear space V to a linear space
V ′ is said to be linear if it preserves addition and scalar multiplication, i.e.,
if

add′(L(u),L(v)) = L(add(u,v) for all u,v ∈ V

and

sm′(ξ,L(u)) = L(sm(ξ,u)) for all ξ ∈ F,u ∈ V.

where add, sm denote operations in V and add′, sm′ operations in V ′.
For linear mappings, it is customary to omit parentheses and write Lu

for the value of L at u. In simplified notation, the rules that define linearity
read

Lu + Lv = L(u + v), (13.1)

L(ξu) = ξ(Lu), (13.2)
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valid for all u,v ∈ V and all ξ ∈ F. It is easily seen that linear mappings
L : V → V ′ also preserve zero and opposition, i.e., that

L0 = 0′ (13.3)

when 0 and 0′ denote the zeros of V and V ′ respectively, and that

L(−u) = −(Lu) (13.4)

for all u ∈ V.

the constant mapping 0′V→V′ , whose value is the zero 0′ of V ′, is the only
constant mapping that is linear. This mapping is called a zero-mapping

and is denoted simply by 0. The identity mapping 1V : V → V of any linear
space V is trivially linear.

The following facts are easily proved:

Proposition 1: The composite of two linear mappings is again linear. More
precisely: If V,V ′ and V ′′ are linear spaces and if L : V → V ′ and M

: V ′ → V ′′ are linear mappings, so is M ◦ L : V → V ′′.

Proposition 2: The inverse of an invertible linear mappings is again linear.
More precisely: If L : V → V ′ is linear and invertible, then L← : V ′ → V is
linear.

If L : V → V ′ is linear, it is customary to write Lf := L ◦ f when f is
any mapping with codomain V. In particular, we write ML instead of M ◦
L when both L and M are linear.

If L : V → V ′ is linear and invertible, it is customary to write L−1 := L←

for its inverse. By Prop. 2, both L and L−1 then preserve the linear-space
structure. Invertible linear mappings are, therefore, linear-space isomor-
phisms, and we also call them linear isomorphisms. We say that two
linear spaces V and V ′ are linearly isomorphic if there exists a linear
isomorphism from V to V ′.

Proposition 3: If L : V → V ′ is linear and if U and U ′ are subspaces of V
and V ′, respectively, then the image L>(U) of U is a subspace of V ′ and the
pre-image L<(U ′) of U ′ is a subspace of V.

In particular, Rng L = L>(V) is a subspace of V ′ and L<({0}) is a
subspace of V.

Definition: The pre-image of the zero-subspace of the codomain of a linear
mapping L is called the nullspace of L and is denoted by
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Null L := L<({0}) = {u ∈ Dom L | Lu = 0}. (13.5)

Proposition 4: A linear mapping L : V → V ′ is injective if and only if
Null L= {0}.

If L : V → V ′ is linear, if U is a subspace of V, and if U ′ is a linear
space of which L>(U) is a subspace, then the adjustment L|U

′

U : U → U ′ is
evidently again linear. In particular, if U is a subspace of V, the inclusion
mapping 1U⊂V is linear.

Proposition 5: If L : V → V ′ is linear and U is a supplement of Null L in
V, then L|Rng L

U is invertible. If v′ ∈ Rng L, then v ∈ V is a solution of the
linear equation

? v ∈ V, Lv = v′ (13.6)

if and only if v ∈
(

L |RngL
U

)−1
v′ + Null L.

Notes 13

(1) The terms “linear transformation” or “linear operator” are sometimes used for what
we call a “linear mapping”.

(2) Some people use the term “kernel” for what we call “nullspace” and they use the
notation Ker L for Null L. Although the nullspace of L is a special kind of kernel
(in the sense explained in Sect. 06), I believe it is useful to have a special term
and a special notation to stress that one deals with linear mappings rather than
homomorphisms in general. Notations such as N (N) and N(L) are often used for
Null L.

14 Spaces of Mappings, Product Spaces

Let V be a linear space and let S be any set. The set Map(S,V)
of all mappings from S to V can be endowed, in a natural man-
ner, with the structure of a linear space by defining the operations in
Map(S,V) by value-wise application of the operations in V. Thus, if
f,g ∈ Map(S,V) and ξ ∈ F, then f + g, −f and ξ f are defined by requiring

(f + g)(s) := f(s) + g(s), (14.1)

(−f)(s) := −(f(s)), (14.2)

(ξf)(s) := ξ(f(s)), (14.3)

to be valid for all s ∈ S. The zero-element of Map(S,V) is the constant
mapping 0S→V with value 0 ∈ V. We denote it simply by 0. It is immediate
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that the axioms (A1)-(S4) of Sect. 01 for a linear space are, in fact, satisfied
for the structure of Map(S,V) just described. Thus, we can talk about the
(linear) space of mappings Map(S,V).

Proposition 1: Let S and S′ be sets, let h : S′ → S be a mapping, and let
V be a linear space. Then

(f 7→ f ◦ h) : Map(S,V) → Map(S′,V)

is a linear mapping, i.e.,

(f + g) ◦ h = (f ◦ h) + (g ◦ h), (14.4)

(ξf) ◦ h = ξ(f ◦ h) (14.5)

hold for all f,g ∈ Map(S,V) and all ξ ∈ F.
Let V,V ′ be linear spaces. We denote the set of all linear mappings from

V into V ′ by

Lin(V,V ′) :=
{

L ∈ Map(V,V ′) | L is linear
}

.

Proposition 2: Lin(V,V ′) is a subspace of Map(V,V ′).

Proof: Lin(V,V ′) is not empty because the zero-mapping belongs to it. We
must show that Lin(V,V ′) is stable under addition and scalar multiplication.
Let L,M ∈ Lin(V,V ′) be given. Using first the definition (14.1) for L + M,
then the axioms (A1) and (A2) in V ′, then the linearity rule (13.1) for L

and M, and finally the definition of L + M again, we obtain

(L + M)(u) + (L + M)(v) = (Lu + Mu) + (Lv + Mv)
= (Lu + Lv) + (Mu + Mv)
= L(u + v) + M(u + v)
= (L + M)(u + v)

for all u,v ∈ V. This shows that L + M satisfies the linearity rule (13.1). In
a similar way, one proves that L + M satisfies the linearity rule (13.2) and
hence that L + M ∈ Lin(V,V ′). Since L,M ∈ Lin(calV ,V ′) were arbitrary,
it follows that Lin(V,V ′) is stable under addition.

The proof that Lin(V,V ′) is stable under scalar multiplication is left to
the reader.

We call Lin(V,V ′) the space of linear mappings from V to V ′. We
denote the set of all invertible linear mappings from V to V ′, i.e., the set of
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all linear isomorphisms from V to V ′, by Lis(V,V ′). This set Lis(V,V ′) is
a subset of Lin(V,V ′) but not a subspace (except when both V and V ′ are
zero-spaces).

Proposition 3: Let S be a set, let V and V ′ be linear spaces, and let
L ∈ Lin(V,V ′) be given. Then

(f 7→ Lf) : Map(S,V) → Map(s,V ′)

is a linear mapping, i.e.,

L(f + g) = Lf + Lg, (14.6)

L(ξf) = ξ(Lf) (14.7)

hold for all f,g ∈ Map(S,V) and all ξ ∈ F.

Let (V1,V2) be a pair of linear spaces. The set product V1×V2 (see Sect.
02) has the natural structure of a linear space whose operations are defined
by term-wise application of the operations in V1 and V2, i.e., by

(u1,u2) + (v1,v2) := (u1 + v1,u2 + v2), (14.8)

ξ(u1,u2) := (ξu1, ξu2), (14.9)

−(u1,u2) := (−u1,−u2) (14.10)

for all u1,v1 ∈ V1, u2,v2 ∈ V2, and ξ ∈ F. The zero of V1 × V2 is the pair
(01,02), where 01 is the zero of V1 and 02 the zero of V2. Thus, we may
refer to V1 × V2 as the (linear) product-space of V1 and V2.

The evaluations ev1 : V1 × V2 → V1 and ev2 : V1 × V2 → V2 associated
with the product space V1 × V2 (see Sect. 04) are obviously linear. So are
the insertion mappings

ins1 := (u1 7→ (u1,0)) : V1 → V1 × V2,

ins2 := (u2 7→ (0,u2)) : V2 → V1 × V2.
(14.11)

If U1 is a subspace of V1 and U2 a subspace of V2, then U1×U2 is a subspace
of V1 × V2.

Pitfall: In general, the product-space V1 ×V2 has many subspaces that are
not of the form U1 × U2.

Let W be a third linear space. Recall the identification
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Map(W ,V1) × Map(W ,V2) ∼= Map(W ,V1 × V2)

(see Sect. 04). It turns out that this identification is such that the subspaces
Lin(W ,V1), Lin(W ,V2)), and Lin(W ,V1×V2) are matched in the sense that
the pairs (L1,L2) ∈ Lin(W ,V1)× Lin(W ,V2) of linear mappings correspond
to the lienar mappings in Lin(W ,V1 × V2) defined by term-wise evaluation,
i.e., by

(L1,L2)w := (L1w,L2w) for all w ∈ W . (14.12)

Thus, (14.12) describes the identification

Lin(W ,V1) × Lin(W ,V2) ∼= Lin(W ,V1 × V2).

There is also a natural linear isomorphism

((L1,L2) 7→ L1 ⊕ L2) : Lin(V1,W) × Lin(V2,W) → Lin(V1 × V2,W).

It is defined by

(L1 ⊕ L2)(v1,v2) := L1v1 + L2v2 (14.13)

for all v1 ∈ V1,v2 ∈ V2, which is equivalent to

L1 ⊕ L2 := L1ev1 + L2ev2, (14.14)

where ev1 and ev2 are the evaluation mappings associated with V1 ×V2 (see
Sect. 04).

What we said about a pair of linear spaces easily generalizes to an arbi-

trary family (Vi | i ∈ I) of linear spaces. The set product ×(Vi | i ∈ I)
has the natural structure of a linear space whose operations are defined by
term-wise application of the operations in the Vi, i ∈ I. Hence, we may refer

to×(Vi | i ∈ I) as the product-space of the family (Vi | i ∈ I). Given
j ∈ I, the evaluation

evj :×
i∈I

Vi → Vj ,

(see (04.9)) is linear. So is the insertion mapping

insj : Vj →×
i∈I

Vi
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defined by

(insjv)i :=

{

0 ∈ Vi if i 6= j

v ∈ Vj if i = j

}

for all v ∈ Vj . (14.15)

It is evident that

evk insj =

{

0 ∈ Lin(Vj ,Vk) if j 6= k

1Vj
∈ Lin(Vj ,Vj) if j = k

}

(14.16)

for all j, k ∈ I.
Let W be an additional linear space. For families (Li | i ∈ I) or linear

mappings Li ∈ Lin(W ,Vi) we use termwise evaluation

(Li | i ∈ I)w := (Liw | i ∈ I) for all w ∈ W , (14.17)

which describes the identification

×
i∈I

Lin(W ,Vi) ∼= Lin(W ,×
i∈I

Vi).

If the index set I is finite, we also have a natural isomorphism

((Li | i ∈ I) 7→
⊕

i∈I

Li) :×
i∈I

Lin(Vi,W) → Lin(×
i∈I

Vi,W)

defined by

⊕

i∈I

Li :=
∑

i∈I

Lievi. (14.18)

If the spaces in a family indexed on I all coincide with a given linear
space V, then the product space reduces to the power-space VI , which
consist of all families in V indexed on I (see Sect. 02). The set V(I) of all
families contained in VI that have finite support (see Sect. 07) is easily seen
to be a subspace of VI . Of particular interest is the space F(I) of all families
λ := (λi | i ∈ I) in F with finite support. Also, if I and J are finite sets, it
is useful to consider the linear space FJ×I of J × I-matrices with terms in
F (see Sect. 02). Cross products of linear mappings, as defined in Sect. 04,
are again linear mappings.



15. LINEAR COMBINATIONS, LINEAR INDEPENDENCE, BASES 51

Notes 14

(1) The notations L(V,V ′) and L(V,V ′) for our Lin(V,V ′) are very common.

(2) The notation Lis(V,V ′) was apparently first introduced by S. Lang (Introduction
to Differentiable Manifolds, Interscience 1966). In some previous work, I used
Invlin(V,V ′).

(3) The product-space V1×V2 is sometimes called the “direct sum” of the linear spaces
V1 and V2 and it is then denoted by V1⊕V2. I believe such a notation is superfluous
because the set-product V1 × V2 carries the natural structure of a linear space and
a special notation to emphasize this fact is redundant. A similar remark applies to
product-spaces of families of linear spaces.

15 Linear Combinations, Linear Independence,

Bases

Definition 1: Let f := (fi | i ∈ I) be a family of elements in a linear space
V. The mapping

lncVf : F
(I) → V

defined by

lncVf λ :=
∑

i∈I

λifi (15.1)

for all λ := (λi | i ∈ I) ∈ F(I) is then called the linear-combination

mapping for f. The value lncVf λ is called the linear combination of f with
coefficient family λ. (See (07.10) and (07.11) for the notation used here.)

It is evident from the rules that govern sums (see Sect. 07) that linear
combination mappings are linear mappings.

In the special case when V := F and when f is the constant family
whose terms are all 1 ∈ F, then lncF

f reduces to the summation mapping

sumi : F(I) → F given by

sumIλ :=
∑

i∈I

λi for all λ ∈ F
(I). (15.2)

Let U be a subspace of the given linear space V and let f be a family
in U . then Rng lncVf ⊂ U and lncUf is obtained from lncVf by adjustment of
codomain

lncUf = lncVf |U if Rng f ⊂ U . (15.3)
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Definition 2: The family f in a linear space V is said to be linearly in-

dependent in V, spanning in V, or a basis of V depending on whether
the linear combination mapping lncVf is injective, surjective, or invertible,
respectively. We say that f is linearly dependent if it is not linearly inde-
pendent.

If f is a family in a given linear space V and if there is not doubt what
V is, we simply write lncf := lncVf . Also we then omit “in V” and “of V”
when we say that f is linear independent, spanning, or a basis. Actually, if
f is linearly independent in V, it is also linearly independent in any linear
space that includes Rng f.

If b := (bi | i ∈ I) is a basis of V and if v ∈ V is given, then lnc−1
b v ∈ F(I)

is called the family components of v relative to the basis b. Thus

v =
∑

i∈I

λibi (15.4)

holds if and only if (λi | i ∈ I) ∈ F(I) is the family of components of v

relative to b.

An application of Prop. 4 of Sect. 13 gives:

Proposition 1: The family f is linearly independent if and only if Null
(lncf ) = {0}.

Let I ′ be a subset of the given index set I. We then define the insertion

mapping

insI′⊂I : F
(I′) → F

(I)

by

(insI′⊂I(λ))i =

{

λi if i ∈ I ′

0 if i ∈ I\I ′

}

(15.5)

It is clear that insI′⊂I is an injective linear mapping. If f is a family indexed
on I and if f|I′ is its restriction to I ′, we have

lncf |I′ = lncf insI′⊂I . (15.6)

From this formula and the injectivity of insI′⊂I we can read off the following:

Proposition 2: If the family f is linearly independent, so are all its restric-
tions. If any restriction of f is spanning, so is f.
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Let S be a subset of V. In view of the identification of a set with the
family obtained by self-indexing (see Sect. 02) we can consider the linear
combination mapping lncS : F(S) → V, given by

lncSλ :=
∑

u∈S

λuu (15.7)

for all λ := (λu | u ∈ S) ∈ F(S). Thus the definitions above apply not only
to families in V in general, but also to subsets of V in particular.

The following facts are easily verified:

Proposition 3: A family in V is linearly independent if and only if it
is injective and its range is linearly independent. No term of a linearly
independent family can be zero.

Proposition 4: A family in V is spanning if and only if its range is span-
ning.

Proposition 5: A family in V is a basis if and only if it is injective and its
ranges is a basis-set.

The following result shows that the definition of a spanning set as a
special case of a spanning family is not in conflict with the definition of a
set that spans the space as given in Sect. 12.

Proposition 6: The set of all linear combinations of a family in V is the
linear span of the range of f, i.e., Rng lncf = Lsp(Rng f). In particular, if
S is a subset of V, then Rng lncS = LspS.

The following is an immediate consequence of Prop. 6:

Proposition 7: A family f is linearly independent if and only if it is a basis
of LspRng f.

The next two results are not not hard to prove.

Proposition 8: A subset b of V is linearly dependent if and only if Lspb =
Lsp(b\{v}) for some v ∈ b.

Proposition 9: If b is a linearly independent subset of V and v ∈ V\b, then
b ∪ {v} is linearly dependent if and only if v ∈ Lspb.

By applying Props. 8 and 9, one easily proves the following important
result:
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Characterization of Bases: Let b be subset of V. Then the following are
equivalent:

(i) b is a basis of V.

(ii) b is both linearly independent and spanning.

(iii) b is a maximal linearly independent set, i.e., b is linearly independent
and is not a proper subset of any other linearly independent set.

(iv) b is a minimal spanning set, i.e., b is spanning and has no proper
subset that is also spanning.

We note that the zero-space {0} has exactly one set basis, namely the
empty set.

Pitfall: Every linear space other than a zero-space has infinitely many
bases, if it has any at all. Unless the space has structure in addition to its
structure as a linear space, all of these bases are of equal standing. The
bases form a “democracy”. For example, every singleton {ξ} with ξ ∈ F×

is a basis set of the linear space F. The special role of the number 1 and
hence the bases {1} comes from the additional structure in F given by the
multiplication.

Notes 15

(1) In most textbooks, the definition of “linear combination” is rather muddled.
Much of the confusion comes from a failure to distinguish a process (the linear-
combination mapping) from its result (the linear-combination). Also, most authors
fail to make a clear distinction between sets, lists, and families, a distinction that
is crucial here. I believe that much precision, clarity, and insight are gained by
the use of linear-combination mappings. Most textbooks only talk around these
mappings without explicitly using them.

(2) The condition of Prop. 1 is very often used as the definition of linear linear inde-
pendence.

(3) Many people say “coordinates” instead of “components” of v relative to the basis
of b. I prefer to use the term “coordinate” only when it has the meaning described
in Chapter 7.

16 Matrices, Elimination of Unknowns

The following result states, roughtly, that linear mappings preserve linear
combinations.
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Proposition 1: If V and W are linear spaces, f := (fi | i ∈ I) a family in
V, L : V → W a linear mapping, and Lf := (Lf i | i ∈ I), then

lnc(Lf) = L lncf . (16.1)

Applying (16.1) to the case when f is a basis, we obtain:

Proposition 2: Let b := (bi | i ∈ I) be a basis of the linear space V and let
g := (gi | i ∈ I) be a family in the linear space W , indexed on the same set
I as b. Then there is exactly one L ∈ Lin(V, W) such that Lb = g. This
L is injective, surjective, or invertible depending on whether g is linearly
independent, spanning, or a basis, respectively.

The first part of Prop. 2 states, roughly, that a linear mapping can be
specified by prescribing its effect on a basis.

Let I be any index set. We define a family δI := (δI
i | i ∈ I) in Ff by

(δI
i )k = δi,k :=

{

1 if k = i

0 if k 6= i

}

for all i, k ∈ I. (16.2)

It is easily seen that lncδI = 1
F(I) , which is, of course, invertible. Hence

δI is a basis of F(I). We call it the standard basis of F(I). If f:= (fi | i ∈ I)
is a family in a given linear space V, then

fj = lncf δ
I
j for all j ∈ I. (16.3)

If we apply Prop. 2 to the case when I is finite, when b := δI is the
standard basis of V := FI , and when W := FJ for some finite index set J ,
we obtain:

Proposition 3: Let I and J be finite index sets. Then the mapping from
Lin(FI , JI) to FJ×I which assigns to M ∈ Lin(FI , FJ) the matrix
((MδI

i )i | (j, i) ∈ J × I) is a linear isomorphism.
We use the natural isomorphism described in Prop. 3 to identify

M ∈ Lin(FI , FJ) with the corresponding matrix in FJ×I , so that

Mj,i = (MδI
i )j for all (j, i) ∈ J × I. (16.4)

Thus, we obtain the identification

Lin(FI , FJ) ∼= F
J×I . (16.5)

Proposition 4: Let I, J be finite index sets. If M ∈ Lin(FI , FJ) ∼= FJ×I

and λ ∈ FI , then
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(Mλ)j =
∑

j∈J

Nk,jMj,i for all i ∈ I. (16.6)

Proposition 5: Let I, J, K be finite index sets. If M ∈ Lin(FI , FJ) ∼= FJ×I

and
N ∈ Lin(FJ , FK) ∼= FK×J , then NM ∈ Lin(FI , FK) ∼= FK×I is given
by

(NM)k,i =
∑

j∈J

Nk,jMj,i for all k, i) ∈ K × I. (16.7)

In the case when I := n ], J := m ], K := p ] and when the bookkeeping
scheme (02.4) is used, then (16.6) and (16.7) can be represented in the forms











M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

...
Mm1 Mm2 · · · Mmn





















λ1

λ2
...

λn











=



















∑

i∈I]

M1iλi

∑

i∈n]

M2iλi

...
sum
I∈n]

Mmiλi



















(16.8)

and







N11 · · · N1m

...
...

Np1 · · · Npm













M11 · · · M1n

...
...

Mm1 · · · Mmm







=







∑

j∈m] NijMj1 · · ·
∑

j∈m] N1jMjn

...
...

∑

j∈m] NpjMj1 · · ·
∑

j∈m] MpjMjn







(16.9)

In particular, (16.9) states that the composition matrices when regarded
as linear mappings corresponds to the familiar “row-by-column” multiplica-
tion of matrices.

Let V and W be linear spaces and let b := (bi | i ∈ I) and
c := (cj | j ∈ J) be finite bases of V and W , respectively. Then the mapping

(L 7→ (lncc)
−1Llncb) : Lin(V,W) → Lin(FI , FJ) (16.10)

is a linear isomorphism. Given L ∈ Lin(V,W) we say that M :=
(lncc)

−1L lncb ∈ Lin(FI , FJ) ∼= FJ×I is the matrix of the linear map-

ping L relative to the bases b and c. It is characterized by
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Lbi =
∑

j∈J

Mj,i, cj for all i ∈ I. (16.11)

Let I and J be finite index sets. If M ∈ Lin(FI , FJ) ∼= FJ×I and µ ∈ FJ

are given and if we consider the problem ? λ ∈ FI , Mλ = µ, i.e.,

?(λi | i ∈ I) ∈ F
I ,
∑

i∈I

Mj,iλi = µj for all j ∈ J, (16.12)

we say that we have the problem of solving a system of #J linear equations
with #I unknowns. The following theorem describes a procedure, familiar
from elementary algebra, called eliminations of unknowns, which enables
one to reduce a system of linear equations to one having one equation less
and one unknown less.

Theorem on Elimination of Unknowns: Let I and J be finite sets
and let M ∈ FJ×I be such that Mj0,i0 6= 0 for given j0 ∈ J, i0 ∈ I. Put
I ′ := I\{i0}, J ′ := J\{j0} and define M ′ ∈ FJ ′×I′ by

M ′
j,i := Mj,i −

Mj,i0Mj0,i

Mj0,i0

for all (j, i) ∈ J ′ × I ′. (16.13)

Let µ ∈ FJ and µ′ ∈ FJ ′

be related by

µ′j = µj −
Mj,i0

Mj0,i0

j0 for all j ∈ J ′. (16.14)

Then λ ∈ FI is a solution of the equation

? λ ∈ F
I , Mλ = µ

if and only if the restriction λ |I′∈ FI′ of λ is a solution of the equation

? λ′ ∈ F
I′ , M ′λ′ = µ′

and λi0 is given by

λi0 =
1

Mj0,i0

(

µj0 −
∑

i∈I′

Mj0,iλi

)

. (16.15)

Corollary: If Lin(FI , FJ) contains an injective mapping, then #J ≥ #I.

Proof: We proceed by induction over #I. If #I = 0 then the assertion is
trivial. Assume, then, that #I > 0 and that the assertion is valid if I is
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replaced by a subset I ′ of I having one element less. Assume that Lin(FI , FJ)
contains an injective mapping M , do that Null M = {0}. Since FI 6= {0}
we must have M 6= 0. Hence we can apply the Theorem with the choice
µ := 0 to conclude that Null M ′ = {0}, i.e., that M ′ ∈ Lin(FI′ , FJ ′

) must
be injective. By the induction hypothesis, we have #J ′ ≥ #I ′, which means
(#J) − 1 ≥ (#I) − 1 and hence implies #J ≥ #I.

Notes 16

(1) The notation δi,k as defined by (16.2) is often attributed to Kronecker (“the Kro-
necker deltas”).

(2) The standard basis δI is sometimes called the “natural basis” of F
(I).

(3) Various algorithms, based on the Theorem on Elimination of Unknowns, for solving
systems of linear equations are often called “Gaussian elimination procedures”.

(4) A matrix can be interpreted as a non-invertible linear mapping by the identification
(16.5) is often called a “singular matrix”. In the same way, many people would use
the term “non-singular” when we speak of an “invertible” matrix.

17 Dimension

Definition: We say that a linear space F is finite-dimensional if it is
spanned by some finite subset. The least among the cardinal numbers of
finite spanning subsets of V is called the dimension of V and is denoted by
dim V.

The following fundamental result gives a much stronger characterization
of the dimension than is given by the definition.

Characterization of Dimension: Let V be a finite-dimensional linear
space and f := (fi | i ∈ I) a family of elements in V.

(a) If f is linearly independent then I is finite and #I ≤ dimV, with
equality if and only if f is a basis.

(b) If f is spanning, then #I ≥ dimV, with equality if and only if f is a
basis.

The proof of this theorem can easily be obtained from the Characteriza-
tion of Bases (Sect. 15) and the following:

Lemma: If (bj | j ∈ J) is a finite basis of V and if (fi | i ∈ I) is any linearly
independent family in V, then I must be finite and #I ≤ #J .
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Proof: Let I ′ be any finite subset of I. By Prop. 2 of Sect. 15, the
restriction f|I′ is still linearly independent, which means that
lncf |I′ : FI′ → V is injective.

Since b is a basis, lncb is invertible and hence lnc−1
b lncf |I′ : FI′ → FJ is

also injective. By the Corollary of the Theorem on Elimination of Unknowns,
it follows that #I ′ ≦ #J . Since I ′ was an arbitrary finite subset of I, it
follows that I itself must be finite and #I ≦ #J.

The Theorem has the following immediate consequences:

Corollary 1: If V is a finite-dimensional linear space, then V has bases and
every basis of V has dim V terms.

Corollary 2: Two finite-dimensional spaces V and V ′ are linearly isomor-
phic if and only if they have the same dimension, i.e., Lis(V,V ′) 6= ∅ if and
only if dim V = dimV ′.

Now let V be a finite-dimensional linear space. The following facts are
not hard to prove with the help of the Characterization of Dimension.

Proposition 1: If s is a linearly independent subset of V, then s must be
finite and

dim(Lsps) = #s. (17.1)

Proposition 2: Every subspace U of V is finite-dimensional and satisfies
dimU ≤ dimV, with equality only if U = V.

Proposition 3: Every subspace of V has a supplement in V. In fact, if U1

is a subspace of V , then U2 is a supplement of U1 in V if and only if U2 is
a space of greatest dimension among those that are disjunct from U1.

Proposition 4: Two subspaces U1 and U2 of V are disjunct if and only if

dimU1 + dimU2 = dim(U1 + U2). (17.2)

Proposition 5: Two subspaces U1 and U2 of V are supplementary in V if
and only if two of the following three conditions are satisfied:

(i) U1 ∩ U2 = {0},

(ii) U1 + U2 = V,

(iii) dimU1 + dimU2 = dimV.
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Proposition 6: For any two subspaces U1,U2 of V, we have

dimU1 + dimU2 = dim(U1 + U2) + dim(U1 ∩ U2). (17.3)

The following Theorem is perhaps the single most useful fact about linear
mappings between finite-dimensional spaces:

Theorem on Dimensions of Range and Nullspace: If L is a linear
mapping whose domain is finite-dimensional, then Rng L is finite dimen-
sional and

dim(Null L) + dim(Rng L) = dim(Dom L). (17.4)

Proof: Put V := Dom L. By Prop. 3 we may choose a supplement U of Null
L in V. By Prop. 5 (iii), we have dim(Null L) + dimU = dimV. By Prop.
5 of Sect. 13, L|RngL

U is invertible and hence a linear isomorphism. Since
linear isomorphisms obviously preserve dimension, we infer that dimU =
dim(Rng L) and hence that (17.4) holds.

The following result is an immediate consequence of the Theorem just
stated and of Prop. 4 of Sect. 13. Its name comes from its analogy to the
Pigeonhole Principle stated in Sect. 05.

Pigeonhole Principle for Linear Mappings: Let L be a linear map-
ping with finite-dimensional domain and codomain. If L is injective, then
dim(Dom L) ≤ dim(Cod L). If L is surjective, then dim(Cod L) ≤
dim(Dom L). If dim(Dom L) = dim(Cod L), then the following are equiva-
lent:

(i) L is invertible,

(ii) L is surjective,

(iii) L is injective,

(iv) Null L = {0}.

Let I be a finite index set. Since the standard basis δI of FI (see Sect. 16)
has #I terms, it follows from Cor. 1 to the Characterization of Dimension
that

dim(FI) = #I. (17.5)

If I is replaced by a set product J × I of finite sets J and I, (17.5) yields
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dim(Lin(FI , FJ)) = dim(FJ×I) = (#I)(#J). (17.6)

Propositon 7: If V and W are finite-dimensional linear spaces, so is
Lin(V,W), and

dim(Lin(V,W)) = (dimV)(dimW). (17.7)

Proof: In view of Cor. 1, we may choose a basis (bi | i ∈ I) of V and a
basis (cj | m ∈ J) of W , so that dim V = #I and dim W = #J . The
desired result follows from (17.6) and the fact that Lin(FI , FJ) is linearly
isomorphic to Lin(V,W) by virtue of (16.10).

Notes 17

(1) The dimensions of the nullspace and of the range of a linear mapping L are often
called the “nullity” and “rank” of L, respectively. I believe that this terminology
burdens the memory unnecessarily.

18 Lineons

Let V be a linear space. A linear mapping from V to itself will be called a
lineon on V and the space of all lineons on V will be denoted by

Lin V := Lin(V,V).

The composite of two lineons on V is again a lineon on V (see Prop.1 of
Sect. 13). Composition in Lin V plays a role analogous to multiplication in
F. For this reason, the composite of two lineons is also called their product,
and composition in Lin V is also referred to as multiplication. The lineon
0 is the analogue of the number 0 in F and the identity-lineon 1V is the
analogue of the number 1 in F. It follows from Props. 1 and 3 of Sect. 14 that
the multiplication and the addition in Lin V are related by distributive laws
and hence that Lin V has the structure of a ring (see Sect. 06). Moreover,
the composition-multiplication and scalar multiplication in Lin V are related
by the associative laws

(ξL)M = ξ(LM) = L(ξM), (18.1)

valid for all L,M ∈ Lin V, ξ ∈ F.
Since Lin V has, in addition to its structure as a linear space, also a

structure given by the composition-multiplication, we refer to Lin V as the
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algebra of lineons on V. Most of the rules of elementary algebra are
also valid in Lin V. The most notable exception is the commutative law of
multiplication: In general, if L,M ∈ Lin V, then LM is not the same as
ML. If it happens that LM = ML, we say that L and M commute.

A subspace of Lin V that contains 1V and is stable under multiplicationis
called a subalgebra of Lin V. For example

F1V := {ξ1V | ξ ∈ F}

is a subalgebra of Lin V. A subalgebra that contains a given L ∈ LinV is
the set

Comm L := {M ∈ Lin V | ML = LM} (18.2)

of all lineons that commute with L. It is called the commutant-algebra

of L.
The set of all automorphisms of V, i.e., all linear isomorphisms from V

to itself, is denoted by

Lis V := Lis(V, V.

LisV is a subgroup of the group Perm V of all permutations of V. We call
LisV the lineon-group of V.

Pitfall: If V is not a zero-space, then LisV does not contain the zero-lineon
and hence cannot be a subspace of LinV. If dimV > 1, then LisV 6=
(LinV)×, i.e., there are non-zero lineons that are not invertible.

Definition 1: Let L be a lineon on the given linear space V. We say that
a subspace U of V is an L-subspace of V, or simply an L-space, if it is
L-invariant, i.e., if L>(U) ⊂ U (see Sect. 03).

The zero-space {0} and V itself are L-spaces for every L ∈ LinV. Also,
Null L and Rng L are easily seen to be L-spaces for every L ∈ LinV. Every
subspace of V is an (λ1V)-space for every λ ∈ F. If U is an L-space, it is
also an Lm-space for every m ∈ N, where Lm, the m-th lineonic power of L,
is defined by Lm := L◦m, the m-th iterate of L.

If U is an L-subspace, then the adjustments L|U := L |UU is linear and
hence a lineon on U . We have (L|U )

m = (Lm)|U for all m ∈ N.
Let V, V ′ be linear spaces and let A : V → V ′ be a linear isomorphism.

The mapping

(L 7→ ALA−1) : LinV → LinV ′
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is then an algebra-isomorphism. Also, we have

Rng(ALA−1) = A>(Rng L) (18.3)

and

Null (ALA−1) = A>(Null L) (18.4)

for all L ∈ Lin V.
We assume now that V is finite-dimensional. By Prop. 7 of Sect. 17 we

then have

dimLinV = (dim V)2. (18.5)

The Linear Pigeonhole Principle of Sect. 17 has the following immediate
consequences:

Proposition 1: For a lineon L on V, the following are equivalent.

(i) L is invertible,

(ii) L is surjective,

(iii) L is injective,

(iv) Null L = { 0}.

Proposition 2: Let L ∈ LinV be given. Assume that L is left-invertible
or right-invertible, i.e., that ML = 1V or LM = 1V for some M ∈ Lin V.
Then L is invertible, and M = L−1.

Let b := (bi | i ∈ I) be a basis of V. If L ∈ Lin V, we call

[L]b := lnc−1
b L lncb (18.6)

the matrix of L relative to the basis b. (This is the matrix of L, as
defined in Sect. 16, when the bases b and c coincide.) This matrix is an
element of Lin FI ∼= FI×I and (L 7→ [L]b) : Lin V → Lin FI is an algebra-
isomorphism, i.e., a linear isomorphism that also preserves multiplication
and the identity. By (16.11), the matrix [L]b is characterized by

Lbi =
∑

j∈I

([L]b)j,ibj , for all i ∈ I. (18.7)

The matrix of the identity-lineon is the unit matrix given by
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[1V ]b = 1FI = (δi,j | (i, j) ∈ I × I), (18.8)

where δi,j is 0 or 1 depending on whether i 6= j or i = j, respectively.

If I is a finite set, then the identification Lin FI ∼= FI×I shows that a
lineon on FI may be regarded as an I × I-matrix in F. The algebra Lin FI

is therefore also called a matrix-algebra.

Notes 18

(1) The commonly accepted term for a linear mapping of a linear space to itself is
“linear transformation”, but “linear operator”, “operator”, or “tensor” are also used
in some contexts. I have felt for many years that there is a crying need for a short
term with no other meanings. About three years ago my colleague Victor Mizel
proposed to me the use of the contraction “lineon” for “linear transformation”, and
his wife Phyllis pointed out that this lends itself to the formation of the adjective
“lineonic”, which turned out to be extremely useful.

I conjecture that the lack of a short term such as “lineon” is one of the reasons
why so many mathematicians talk so often about matrices when they really mean,
or should mean, lineons.

(2) Let n ∈ N be given. The group Lis F
n of lineons of F

n, is often called the “group of
invertible n by n matrices of F” or the “general linear group Gl(n, F)”. Sometimes,
the notations Gl(V) is used for the lineon-group Lis V.

(3) What we call the “commutant-algebra” of L is often called the “centralizer” of L.

19 Projections, Idempotents

Definition 1: Let V be a linear space. A linear mapping P : V → U to a
given subspace U of V is called a projection if P|U= 1U . A lineon
E ∈ Lin V is said to be idempotent (and is called an idempotent) if E2 =
E.

Proposition 1: A lineon E ∈ Lin V is idempotent if and only if E|Rng is a
projection, i.e., if and only if E|RngE⊂V= 1RngE⊂V .

Proof: Put U := Rng E.

Assume that E is idempotent and let u ∈ U be given. We may choose
v ∈ V such that u = Ev. Then

Eu = E(Ev) = E2v = Ev = u.

Since u ∈ U was arbitrary, it follows that E|U= 1U⊂V .
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Now assume that E|U= 1U⊂V and let v ∈ V be given. Then
Ev ∈ Rng E = U and hence

E2v = E(Ev) = 1U⊂V(Ev) = Ev.

Since v ∈ V was arbitrary, it follows that E2 = E.

Proposition 2: A linear mapping P : V → U from a linear space V to a
subspace U of V is a projection if and only if it is surjective and P|V∈ Lin V
is idempotent.

Proof: Apply Prop. 1 to the case when E := P|V .

Proposition 3: Let E ∈ Lin V be given. Then the following are equivalent:

(i) E is idempotent.

(ii) 1V −E is idempotent.

(iii) Rng(1V − E) = Null E.

(iv) Rng E = Null (1V −E).

Proof: We observe that

Null L ⊂ Rng(1V − L) (19.1)

is valid for all L ∈ Lin V.

(i) ⇔ (iii): We have E = E2 if and only if (E−E2)v = E(1V −E)v = 0 for
all v ∈ V, which is the case if and only if Rng(1V −E) ⊂ Null E. In view of
(19.1), this is equivalent to (iii).

(ii) ⇔ (iv): This follows by applying (i) ⇔ (iii) with E replaced by 1V− E.

(i) ⇔ (ii): This follows from the identity (1V −E)2 = (1V −E) + (E2 −E),
valid for all E ∈ Lin V.

The following proposition shows how projections and idempotents are
associated with pairs of supplementary subspaces.

Proposition 4: Let U1,U2 be subspaces of the linear space V. Then the
following are equivalent:

(i) U1 and U2 are supplementary.
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(ii) There are projections P1 and P2 onto U1 and U2, respectively, such
that

v = P1v + P2v for all v ∈ V. (19.2)

(iii) There is a projection P1 : V → U1 such that U2 = Null P1.

(iv) There are idempotents E1,E2 ∈ Lin V such that U1 = Rng E1,U2 =
Rng E2 and

E1 + E2 = 1V . (19.3)

(v) There is an idempotent E1 ∈ Lin V such that U1 = Rng E1 and U2 =
Null E1.

The projections P1 and P2 and the idempotents E1 and E2 are uniquely
determined by the subspaces U1,U2.

Proof: (i) ⇔ (ii): If U1 and U2 are supplementary, it follows from Prop. 4,
(ii) of Sect. 12 that every v ∈ V uniquely determines u1 ∈ U1 and u2 ∈ U2

such that v = u1+ u2. This means that there are mappings P1 : V → U1

and P2 : V → U2 such that (19.2) holds. It is easily seen that P1 and P2

are projections.

(ii) ⇒ (iii): It is clear from (19.2) that v ∈ Null P1, i.e., P1 v = 0, holds if
and only if v = P2v, which is the case if and only if v ∈ U2.

(iii) ⇒ (v): This is an immediate consequence of Prop. 2, with E1 := P1 |V .
(v) ⇒ (iv): Put E2 := 1V− E1. Then E2 is idempotent and Rng E2 =
Null E1 = U2 by Prop. 2.

(iv) ⇒ (i): We observe that Null L ∩ Null (1V − L) = {0} and V =
Rng L + Rng(1V − L) hold for all L ∈ LinV. Using this observation when
L := E1 and hence E2 = 1V − L we conclude that V = U1 + U2 and, from
Prop. 3, that {0} = U1 ∩ U2. By Def. 2 of Sect. 12 this means that (i)
holds.

The proof of uniqueness of P1, P2, E1, E2 is left to the reader.

The next result, which is easily proved, shows how linear mappings with
domain V are determined by their restrictions to each of two supplementary
subspaces of V.

Proposition 5: Let U1 and U2 be supplementary subspaces of V. For every
linear space V ′ and every L1 ∈ Lin(U1,V

′), L2 ∈ Lin(U2,V
′), there is exactly

one L ∈ Lin(V,V ′) such that
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L1 = L |U1 and L2 = L |U2 .

It is given by

L := L1P1 + L2P2,

where P1 and P2 are the projections of Prop. 4, (ii).

Notes 19

(1) Some textbooks use the term “projection” in this context as a synonym for “idem-
potent”. Although the two differ only in the choice of codomain, I believe that the
distinction is useful.

110 Problems for Chapter 1

1. Let V and V ′ be linear spaces. Show that a given mapping L : V → V ′

is linear if and only if its graph Gr(L) (defined by (03.1)) is a subspace
of V × V ′.

2. Let V be a linear space. For each L ∈ LinV, define the left-

multiplication mapping

LeL : LinV → LinV

by

LeL(M) := LM for all M ∈ Lin V (P1.1)

(a) Show that LeL is linear for all L ∈ Lin V.

(b) Show that LeLLeK = LeLK for all L,K ∈ Lin V.

(c) Show that LeL is invertible if and only if L is invertible and that
(Le−1

L ) = LeL−1 if this is the case.

3. Consider

L :=

[

2 1
1 0

]

∈ R
2]×2] ∼= LinR

2.

(a) Show that L is invertible and find its inverse.
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(b) Determine the matrix of LeL, as defined by (P1.1), relative to
the list-basis

B :=

([

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

])

of Lin R
2.

(c) Determine the inverse of the matrix you found in (b).

4. Let C∞(R) be the set of all functions f ∈ Map(R, R) such that f is
k-times differentiable for all k ∈ N (see Sect. 08). It is clear that C∞R

is a subspace of the linear space Map (R, R) (see Sect. 13). Define
D ∈ Lin C∞(R) by

Df := ∂f for all f ∈ C∞(R) (P1.2)

(see (08.31)) and, for each n ∈ N, the subspace Pn of C∞(R) by

Pn := NullDn. (P1.3)

(a) Show that the sequence

p := (ιk | k ∈ N) (P1.4)

is linearly independent (see (08.26) for notation). Is it a basis of
C∞(R)?

(b) Show that, for each n ∈ N,

p |n[= (ιk | k ∈ n[) (P1.5)

is a basis of Pn and hence that dimPn = n.

5. Let C∞(R) and D ∈ Lin C∞(R) by defined as in Problem 4. Define
M ∈ Lin C∞(R) by Mf := ιf for all f ∈ C∞(R) (see (08.26)). Prove
that

DM − MD = 1C∞(R). (P1.6)

6. Let C∞(R) be defined as in Problem 4 and define S ∈ Lin C∞(R) by

Sf := f ◦ (ι + 1) for all f ∈ C∞(R) (P1.7)

(a) Show that, for each n ∈ N, the subspace Pn of C∞(R) defined by
(P1.3) is an S-space (see Sect. 18).

(b) Find the matrix of S |Pn
∈ LinPn relative to the basis p |n[ of Pn

given by (P1.5).

7. Let V be a finite-dimensional linear space and let L ∈ LinV be given.
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(i) Rng L ∩ Null L = {0},

(ii) Null (L2) ⊂ Null L,

(iii) Rng L + Null L = V.

8. Consider the subspaces U1 := R(1, 1) and U2 := R(1,−1) of R2.

(a) Show that U1 and U2 are supplementary in R2.

(b) Find the idempotent matrices E1, E2 ∈ R2]×2] ∼= LinR2 which are
determined by U1,U2 according to Prop. 4 of Sect. 19.

(c) Determine a basis b = (b1, b2) of R2 such that the matrices of E1

and E2 relative to b are

[

1 0
0 0

]

and

[

0 0
0 1

]

, respectively.

9. Let a linear space V, a lineon L on V, and m ∈ N be given.

(a) Show that Rng(Lm) is an L-subspace of V.

(b) Show that Rng(Lm+1) ⊂ Rng(Lm), with equality if and only if
the adjustment L|Rng(Lm) is surjective.

10. Let V be a finite-dimensional linear space and let L be a nilpotent

lineon on V with nilpotency m, which means that Lm = 0 but
Lk 6= 0 for all k ∈ m[ (see also Sect. 93). Prove:

(a) If m > 0, then Null L 6= {0}.

(b) The only L-subspace U for which the adjustment L|U is invertible
is the zero-space.

(c) The nilpotency cannot exceed dim V. (Hint: Use Problem 9.)

11. Let a linear space V and a lineon J ∈ Lin V be given.

(a) Show that the commutant-algebray of J (see (18.2)) is all of Lin
V, i.e., that CommJ = Lin V, if and only if J ∈ F1V .

(b) Prove: If dim V > 0, if J2 = −1V , and if the equation
?ξ ∈ F, ξ2 + 1 = 0 has no solution, then CommJ 6= Lin V.

12. Let a linear space V and a lineon J on V satisfying J2 = −1V be given.
Define E ∈ Lin(Lin V) by

EL := 1
2(L + JLJ) for all L ∈ Lin V. (P1.8)
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(a) Show that E is idempotent.

(b) Show that Null E = CommJ, the commutant-algebra of J (see
(18.2)).

(c) Show that

Rng E = {L ∈ LinV | LJ = −JL}, (P1.9)

the space of all lineons that “anticommute” with J.

(d) Prove: If dim V > 0 and if {ξ ∈ F | ξ2 + 1 = 0} = ∅, then the
space (P1.9) is not the zero-space. (Hint: Use (b) of Problem 11
and Prop. 4 of Sect. 19.)


