
MONOIDS

Notes by Walter Noll (1992)

1 Invertible Elements, Pure Monoids

We assume that a monoid M , described with multiplicative notation and ter-
minology and with unit u, is given.

Proposition 1: For every a ∈ M , the problem

? x ∈ M ax = xa = u (Pa)

has at most one solution.

Definition 1: We say that a ∈ M is invertible if (Pa) has a solution and we
denote this solution by a−1 and call it the inverse of a. The set of all invertible
elements of M will be denoted by Inv M .

Proposition 2: Inv M is a groupable submonoid of M . We have a−1 ∈ Inv M

for all a ∈ Inv M and the mapping (a 7→ a−1): Inv M → Inv M , taken to be
the inversion, endows Inv M with the structure of a group, which we call the
group of invertibles of M .

Of course, M is groupable if and only if Inv M = M .

Definition 2: We say that M is a pure monoid if Inv M = {u}.

The multiplicative monoids N and N
× are pure. the additive monoid N is

also pure. Let a set S be given. Then Sub S is a pure monoid both relative to
union and to intersection. We have Inv (Map (S, S)) = Perm S if Map (S, S) is
regarded as a monoid relative to composition. We have Inv Z = {1,−1} when
Z is regarded as a multiplicative monoid.

Theorem: Put U := Inv M and assume that

aU = Ua for all a ∈ M. (1)

Then

P := {aU | a ∈ M} (2)

is a partition of M . Moreover, we have U ∈ P and

PQ ∈ P for all P, Q ∈ P. (3)
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P acquires the structure of a pure monoid if we define its multiplication by
(P, Q) 7→ PQ and its unity by U . We call P the pure monoid associated
with M . The partition mapping

πM : M → P (4)

characterized by x ∈ πM (x) for all x ∈ M is a surjective monoid homomorphism.
If M is cancellative, so is P.

Of course, if M is commutative, the condition (1) is satisfied and one can
always construct the associated pure monoid P.

2 Divisibility, Prime Elements

We now assume that a commutative monoid M is given.

Defnition: Given a, b ∈ M . we say that a is a divisor and that b is a multiple
of a, and we write a div b, if b ∈ aM , i.e., if

ax = b for some x ∈ M. (5)

For a given subset S of M we define the set of all common divisors of S

by

Cd S := {a ∈ M | a div b for all b ∈ S} (6)

and the set of all common multiples of S by

Cm S := {b ∈ M | a div b for all a ∈ S}. (7)

We have u ∈ Cd S for every S ∈ Sub M . If a, b ∈ M is given, then
ab ∈ Cm{a, b}.

Proposition 1: The relation div in M defined above is reflexive and transitive.
If M is cancellative and pure then div is also antisymmetric and hence an order.

Definition 2: Assume that M is cancellative and pure, so that div is an order
in M .

A given p ∈ M is called a prime element if

a div p ⇒ a = u or a = p for all a ∈ M, (8)

which is equivalent to saying that p is a minimal element of M\{u}. The set of
all prime elements M will be denoted by PrM .
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Let S be a subset of M . If S has an infimum [supremum] relative to the div-
order, we call this infimum [supremum] the greatest common divisor [least
common multiple] of S and denote it by gcd S [lcm S].

Proposition 2: Assume that M is cancellative and pure and let S ∈ Sub M be
given. If both S and aS have a greatest common divisor [least common multiple]
then

gcd(aS) = a(gcd S) [lcm(aS) = a(lcm S)]. (9)

Now assume that M is cancellative but not necessarily pure. We then con-
sider the associated pure monoid P, which is also cancellative (see the Theorem
of Sect. 1). We say that p ∈ M is a prime element of M if πM (p) is a prime
element of P.

Given S ∈ Sub M we define

Gcd S := {d ∈ Cd S | d′ div d for all d′ ∈ Cd S} (10)

Lcm S := {m ∈ Cm S | m div m′ for all m′ ∈ Cm S} (11)

Proposition 3: Let S ∈ Sub M be given. Then Gcd S 6= ∅ [Lcm S 6= ∅] if and
only if (πM )>(S) has a greatest common divisor [least common multiple] in P
as defined in Def. 2. If this is the case, then

Gcd S = gcd(πM )>(S). [Lcm = lcm(πM )>(S).] (12)

Proposition 4: An element p ∈ M is prime if and only if

a div p ⇒ a ∈ Inv(M) or a ∈ p Inv(M). (13)

3 Prime-Decompositions, Factorial Monoids.

Let a set I be given. Then the set N
(I) of all families in N indexed on I and

with finite support has the natural structure of an additive monoid, the addition
being defined by termwise addition. It is clear that this monoid is cancellative
and pure. The set N

(I) has also a natural order structure ≤, defined by using
the order ≤ in N termwise.

Proposition 1: The natural order ≤ in N
(I) coincides with the div-order in

N
(I) determined by the additive monoid structure of N

(I) according to Prop. 1
of Section 2.
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We recall that an order relation on a set S is said to be inductive if every
non-empty subset of S has at least one minimal element.

Proposition 2: The order ≤ in N
(I) is an inductive lattice-order. More pre-

cisely, every non-empty subset S of N
(I) has a minimal element and, given

δ, ρ ∈ N
(I), we have

sup{δ, ρ} = (max{δi, ρi} | i ∈ I) ∈ N
(I) (14)

and

inf{δ, ρ} = {min{δi, ρi} | i ∈ I) ∈ N
(I). (15)

We now assume that a commutative, cancellative, and pure monoid M is
given and we consider the mapping

Φ : N
(PrM) → M (16)

defined by

Φ(δ) :=
∏

p∈PrM

pδπ for all δ ∈ N
(PrM). (17)

Proposition 3: The mapping Φ is a monoid-homomorphism from the additive
monoid N

(PrM) into M and is also strictly isotone when N
(PrM) is ordered by

≤ and M by div.

Definition 2: We say that M is a factorial monoid if the mapping Φ defined
by (17) is invertible. If this is the case we write Pd := Φ← and, given a ∈ M ,
we call Pd(a) ∈ N

(PrM) the prime-decomposition of a.

Proposition 4: If M is factorial then the mapping Φ defined by (17) is a
monoid-isomorphism and an order-isomorphism; also, the order div in M is an
inductive lattice-order.

Proposition 5: Assume that div is a lattice-order and let p ∈ PrM M be given.
Then

p div ab ⇒ (p div a or p div b) for all a, b ∈ M (18)

Proposition 6: The mapping Φ definted by (17) is injective if and only if the
order div in M is lattice-order.

Proposition 7: The mapping Φ defined by (17) is surjective if and only if the
order div in M is inductive.
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Theorem: The monoid M is factorial if (and only if) the order div in M is an
inductive lattice-order.

Now let a commutative and cancellative, but not necessarily pure, monoid
M be given. We say that M if factorial if the associated pure monoid P is
factorial. Assume that this is the case and let a ∈ M be given. We can then
determine δ ∈ N

PrP such that, for every family (qP | P ∈ Supt δ) such that
qP ∈ P for all P ∈ Supt δ, there is c ∈ Inv M such that

a = c
∏

P∈ Supt δ

qP (19)

Example: The multiplicative monoid N
x is cancellative and pure, and so is the

multiplicative monoid MpolF of all monic polynomials over a field F. It is easy
to see that the div order is an inductive lattice order in both cases. Hence, both
monoids are factorial. In the past literature, the prime decomposition theorems
in these cases are treated separately.
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