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In this chapter, the phrase “let... be a linear space” will be used as a
shorthand for “let... be a finite-dimensional linear space over RI ”. However,
many definitions remain meaningful and many results remain valid when some
or all of the given spaces fail to be finite-dimensional.

21.Exterior Differentials.

In this section, we assume that a flat space E with translation space V and
an open subset D of E are given. All the results presented here depend on
the Curl-Gadient Theorem of Sect.611 in Vol.I., but they involve some complex
book-keeping.

First, we assume that a linear space V ′ and a mapping

H : D −→ Lin (V,V ′) (21.1)

are given. If H is differentiable, we can define

Curl H : D −→ Skew 2(V2,V ′) (21.2)

according to (611) in Vol.I, so that

Curl H(u,v) = (∇Hu)v − (∇Hv)u for all u,v ∈ V . (21.3)

We understand this and the following equations be taken value-wise, so that, for
example CurlH(u,v)(x) = Curl H(x)(u,v) for all x ∈ D.

We will use the following notations:
For every v ∈ V and every list f ∈ Vk we define f .v ∈ V(k+1) by

(f .v)i :=
{

fi if i ∈ k]

v if i = k + 1
. (21.4)

In words, the list f .v is obtained from the list f by attaching v at the end. (This
is a special case of concatenation as defined by (02.13).)

Given k ∈ NI × and a mapping

W : D −→ Skew k+1(Vk+1,V ′) , (21.5)

we define
W∗ : D −→ Lin (V,Skew k(Vk,V ′)) (21.6)
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by
W∗(v)(f) := W (f .v) for all v ∈ V, f ∈ Vk , (21.7)

which, again, is to be understood value-wise.

Proposition 1. Assume that the mapping H as described by (21.1) is twice
differentiable. Then ∇(Curl H)∗ ∈ Lin (V,Lin (V,Lin (V,V ′))) satisfies

(((∇(Curl H)∗v1)v2)v3) + (((∇(Curl H)∗v2)v3)v1)

+(((∇(Curl H)∗v3)v1)v2) = 0 for all v ∈ V3 . (21.8)

Note that the last two terms of the sum in (21.8) are obtained from the first
by a cyclic permutation of (1,2,3).

Proof: Let a triple v ∈ V3 be given. Differentiation of (21.3) gives

(((∇(Curl H)∗v1)v2)v3) = (((∇(2)Hv1)v2)v3)− (((∇(2)Hv1)v3)v2) . (21.9)

We rewrite this equation with (1,2,3) replaced by (2,3,1) and then by (3,1,2)
and add the three equations thus obtained. We find that the result is a sum
of 6 terms. Combining the first with the forth term of this sum, we get
(((∇(2)Hv1)v2)v3)−(((∇(2)Hv2)v1)v3), which is zero by the Theorem on Sym-
metry of Second Gradients in Sect.611 of Vol.I ( a restatement of the first part
of the Curl-Gradient Theorem). Similarly, combining the second with the fifth
term and combining the third with the sixth give zero also, which proves that
the left side of (21.8) is zero.

Proposition 2. Assume that the mapping H as described by (21.1) is twice
differentiable. Then Curl (CurlH)∗ ∈ Skew 2(V2,Lin (V,V ′))) satisfies

((Curl (CurlH)∗(v1,v2)v3) + ((Curl (CurlH)∗(v2,v3)v1)

+((Curl (CurlH)∗(v3,v1)v2) = 0 for all v ∈ V3 . (21.10)

Again, the last two terms of the sum in (21.10) are obtained from the first
by a cyclic permutation of (1,2,3)

Proof: Let a triple v ∈ V3 be given. We write down the equation (21.8) and
subtract from it the equation obtained from (21.8) by replacing (1,2,3) by (2,1,3).
Using (21.3), it is easily seen that (21.10) is valid.

Definition 1: Let k ∈ NI ×be given. A mapping ω : D → Skew k(Vk, RI ) is
called a skew k-form.

We define ω∗ : D −→ Lin (V,Skew k−1(Vk−1, RI )) according to (21.6), so
that, observing (02.1), wed have

ω∗(fk)(f)k() = ω(f) for all f ∈ Vk . (21.11)
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We have

ω∗(fj)(f)j() = (−1)(k−j)ω(f) for all j ∈ k] and f ∈ Vk (21.12)

because the list f)j(.fj differs from the list f by k − j switches.
If ω is a differentiable skew k-form and if ω∗ is defined accord-

ing to (21.11), then Curl ω∗, as defined by (21.3), has values in
Skew 2(V2,Skew (k−1)(V(k−1), RI )) and is given by

(Curl ω∗(u,v))(h) = (((∇ω∗)u)v)(h)− (((∇ω∗)v)u)(h)

for all u,v ∈ V, h ∈ Vk−1 . (21, 13)

Proposition 3: With every differentiable skew k−form ω we can then associate
skew (k + 1)-form, denoted Curl ∗ω, which satisfies (see(02.2))

Curl ∗ω(g) := Curl ω∗(gp,gp+1)(g)p,p+1() for all p ∈ (k − 1)] and g ∈ Vk+1 .

(21.14)

Proof: Let a differentiable skew k−form ω and g ∈ Vk+1 be given. Using (21.13)
with the choice f := g)k+1( and hence f)k( := g)k,k+1( gives ω∗(gk)(g)k,k+1() =
ω(g)k+1().Taking the gradient in the direction of gk+1 and using the fact that
g)k,k+1(.gk = g)k+1(, we find that

(((∇ω∗)gk+1)gk)(g)k,k+1() = ((∇ω)g(k+1))(g)k+1() . (21.15)

Now, it is clear that the left side of (21.15) switches sign if any two of the terms
of g)k,k+1(, i.e., any two of the first k − 1 terms of g, are switched. The right
side of (21.15) switches sign if the last two terms of g)k+1(, which are the kth

and the (k − 1)th term of g itself, are switched. Now put

Curl ∗ω(g) := Curl ω∗((gk,gk+1)(g)k,k+1() . (21.16)

It follows also that this value switches sign if any two of the first k−1 terms and
the kth and the (k + 1)th term of g are switched. It is clear from the fact that
the values of a Curl are skew that (21.15) also switches sign if the last two terms
of g are switched. By the characterization of skew mappings given by Prop.4
of Sect.01 it follows that Curl ∗ω has skew values. Of course, its values are also
multilinear and hence it is a skew (k+1)-form.

Now, given p ∈ k], it is easily seen that the list g)p,p+1( .gp.gp+1 differs
from the list g by 2(k − p) switches and hence an even permutation. Therefore
(21.14) follows from (21.15) and the fact that Curl ∗ω has skew values.

Definition 2: We denote by SKCm
k the set of all skew k-forms that are of class

Cm.
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Let ω ∈ SKCm
k and g ∈ V(k+1) be given. We define dω(g) : D → RI by

dω(g) := Λ(∇ω)(g) =
∑

j∈(k+1)]

(−1)k+1−j((∇ω)gj)(g)j() , (21.17)

where the definition (11.3) of Λ in Sect.11 is used. By the Lemma
in Sect.11, the values of Λ(∇ω) belong to Skew (k+1)(V(k+1), RI ).
Hence dω : D → Skew (k+1)(V(k+1), RI ) may and will be considered as a mem-

ber of SKC
(m−1)
(k+1) . The skew k + 1 form dω thus obtained is called the exterior

differential of the skew k form ω.

Proposition 4 : Given ω ∈ SKCm
k , we have

2dω = (k + 1)Curl∗ω , (21.18)

where Curl∗ω is defined according Prop.3.

Proof: Let g ∈ Vk+1 and j ∈ k] be given. Using (21.14) with the choice
f := g)j(, we find

ω(g)j() = (−1)k−jω∗(gj+1)(g)j,j+1() .

Taking the gradient gives

((∇ω)u)(g)j() = (−1)k−j(((∇ω∗)u)gj+1)(g)j,j+1() for all u ∈ V .

Using this formula with u := gj we obtain

((∇ω)gj)(g)j() = (−1)k−j(((∇ω∗)gj)gj+1)(g)j,j+1() . (21.19)

Similarly, using (21.12) with the choice f := g)j+1(, we obtain

((∇ω)gj+1)(g)j+1() = (−1)k−j(((∇ω∗)gj+1)gj)(g)j,j+1() . (21.20)

Now, rearranging the summation in (21.17) by putting the first term last, chang-
ing the summation index from j to j + 1 and putting gk+2 := g1, we obtain

dω(g) =
∑

j∈(k+1)]

(−1)k−j((∇ω)gj+1)(g)j+1() . (21.21)

In view of (21.19), (21,20), and (21.3), we have

(−1)k−j∇(ω(g)j+1())(gj+1) + (−1)k+1−j∇(ω(g)j())(gj) =

= Curlω∗(gj+1,gj)(g)j,j+1() .
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Hence, adding the equations (21.17) and (21.21) and combining the terms cor-
responding to each j ∈ k] , we find

2dω(g) :=
∑

j∈(k+1)]

Curlω∗(gj+1,gj)(g)j,j+1() . (21.22)

The desired result (21.18) follows from (21.14) and (21.22).

Theorem: Let ω ∈ SKCm
k , with k, m ∈ NI ×, be given. If ω = dµ for some

µ ∈ SKC(m+1)
(k−1) , then dω = 0. Conversely, if D is convex and if dω = 0, then

ω = dµ for some µ ∈ SKC(m+1)
(k−1) .

Proof : Assume that ω = dµ for some µ ∈ SKC(m+1)
(k−1) . Applying Prop.4 to both

ω and µ, we find that

dω =
k + 1

2
Curl ∗ω =

(k + 1)k
4

Curl ∗(Curl ∗µ) . (21.23)

Now let h ∈ V(k−2), v ∈ V3 and u ∈ V be given. Then h.v1.u ∈ Vk. Using
Prop.3 with ω replaced by µ, k by k − 1, g by h.v1.v2, and p by k − 2, we find

Curl ∗µ(h.v1.u) = Curlµ∗(v1.u)(h) ,

and hence, using (21.7) on both sides of this equation, ,

((Curl ∗µ)∗u)(h.v1) = (Curl µ∗)∗u)v1)(h) . (21.24)

We note that (Curl ∗µ)∗ : D → Lin (V,Skew k−1(V(k−1), RI )) and hence that
Curl (Curl ∗µ) : D → Skew 2(V2,Skew k−1(V(k−1), RI )). . We also note that
that (Curlµ∗)∗ : D → Lin (V,Lin (V,Skew k−2(V(k−2), RI ))) and hence that
Curl (Curlµ∗)∗ : D → Skew 2(V2,Lin (V,Skew k−2(V(k−2), RI ))). Since u ∈ V
was arbitrary, it follows from (21.24) that

Curl (Curl ∗µ)∗(v2,v3)(h.v1) = Curl (Curl µ∗)∗(v2,v3)v1)(h) . (21.25)

We now use Prop.3 with ω replaced by Curl ∗µ, g by h.v1.v2.v3, and p by k−1,
showing that

Curl ∗(Curl ∗µ)(h.v1.v2.v3) = Curl (Curl ∗µ)∗(v2,v3)(h.v1) ,

and hence, by (21,27), that

Curl ∗(Curl ∗µ)(h.v1.v2.v3) = Curl (Curl µ∗)∗(v2,v3)v1)(h) . (21.26)

Since Curl ∗(Curl ∗µ) has skew values and since the cyclic permutations of
(1, 2, 3) are even, it follows that the right side of (21.26) remains unchanged
if (1, 2, 3) is replaced by (2, 3, 1) or (3, 1, 2). We now use Prop.3 with V ′ replaced
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by Skew (k−2)(V(k−2), RI ) and H by µ∗ : D → Lin (V,Skew (k−2)(V(k−2), RI ). It
shows that if we replace (1, 2, 3) by (2, 3, 1), and (3, 1, 2) on the right side of
(21.26) and add, we obtain zero. Therefore, three times the left hand side of
(21.26)is zero, and hence this right hand side itself is zero. Since h ∈ V(k−2) and
v ∈ V3 were arbitrary, it follows that Curl ∗(Curl ∗µ) = 0 and hence, by (21.23),
that dω = 0.

Assume now that D is convex and that dω = 0. By Prop.4, it follows that
Curl∗ω = 0, and hence, by Prop.3, that Curlω∗ = 0. By the second part of
the Curl-Gadient Theorem of Sect.611 in Vol.I, it follows that we can choose a
mapping ν : D → Lin (V,Skew k−1(Vk−1, RI )) of class Cm+1 such that

ω∗ = ∇ν . (21.27)

Now let f ∈ Vk and j ∈ k] be given. It is easily seen that the list f)j(.fj differs
from f by k − j switches and hence, using (21.7) and (21.27), that

ω(f) = (−1)k−jω(f)j(.fj) = (−1)k−jω∗(fj)(f)j() = (−1)k−j((∇ν)fj)(f)j() .

(21.28)
Taking the sum of over all j ∈ k] and using Def,2, applied to ν instead of ω, we
obtain

k ω(f) =
∑
j∈k]

(−1)k−j((∇ν)fj)(f)j() = dν(f) . (21.29)

Therefore, since f ∈ Vk was arbitrary, we have ω = dµ with µ := 1
kν.

22. Higher Gradients

In this section, we assume that open subsets D and D′ b of flat spaces E
and E ′ with tranlation spaces V and V ′ are given.

We extend the Def.1 of Sect 63 of Vol.I as follows

Definition 1. For m ∈ NI ×, we say that a given mapping

φ : D −→ D′ (22.1)

is m times differentiable and we define its mth gradient ∇(m)φ recursively as
follows: If φ is differentiable, we put

∇(1)φ := ∇φ : D −→ Lin (V,V ′) . (22.2)

If, for a given m ∈ NI ×, φ is m times differentiable and

∇(m)φ : D −→ Lin m(Vm,V ′) (22.3)

has been defined and is differentiable, we form its gradient

∇(∇(m)φ) : D −→ Lin (V,Lin m(Vm,V ′)). (22.4)
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Using the natural isomorphism (03.9) mediated by (03.10) and (03.11, )we define

∇(m+1)φ : D −→ Lin m+1(Vm+1,V ′)

by
(∇(m+1)φ)(x) := (∇(∇(m)φ)(x))<→> ∈ Lin m+1(Vm+1,V ′))

for all x ∈ D, so that

((∇(m+1)φ)(x))<1> := (∇(∇(m)φ)(x)) for all x ∈ D (22.5)

Of course, if φ fails to be differentiable, the recursion does not even get
started. In general the recursion may break of after a certain m ∈ NI × because
∇(m)φ fails to be differentiable. We say that φ is of class Cm if it is m times
differentiable and ∇(m)φ is continuous. We say that φ is of class C∞ if it is m
times differentiable for all m ∈ NI ×.

We often use the notation ∇(m)
q φ := (∇(m)φ)(q) to avoid clutter.

Theorem of Symmetry of Higher Gradients. If the mapping φ : D −→ D′
is of class Cm for a given m ∈ NI ×, then its mth gradient, as given by (22.5),
has symmetric values, i.e.

Rng∇(m)φ ⊂ Symm(Vm,V ′) . (22.6)

Proof: We proceed by induction. For m = 1, the assertion is trivially valid
because of Prop.4 of Sect.02. Assume, then, that the assertion is valid for a
given m. Let x ∈ D be given. Then, by (22.5) and (22.4), (∇(m+1)

x φ)<1> has
symmetric values. Using Def.1 and identifications of the form (02.8), it is easily
seen that

∇(m+1)
x φ<2> = ∇(2)

x (∇(m−1)φ) ∈ Lin 2(V2,Lin m−1(Vm−1,V ′)) ,

which, by the Theorem on Symmetry of Second Gradients in Sect.611 of Vol.I,
is symmetric. Therefore, by Prop.11 of Sect.02, (∇(m+1)φ)(x) is symmetric.

In view of this theorem, we will adjust the codomain of ∇(m)φ to
Sym m(Vm,V ′) without change of notation, so that (22.3) will be replaced by

∇(m)φ : D −→ Sym m(Vm,V ′) (22.7)

Proposition 1. Let a family (Vi | i ∈ I) of linear spaces and a linear space V ′
be given and let the given mapping M : ×(Vi | i ∈ I) −→ V ′ be multilinear.
Then M is of class C1 and its gradient is given by

(∇xM)y =
∑
j∈I

(M(x.j))yj for all x,y ∈×
i∈I

Vi . (22.8)

Proof: Recall that the gradient of a given linear mapping is simply a constant
whose value is the given linear mapping itself. (See Sect 63 of Vol.I.) Hence the
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partial gradients ∇(i)M are simply the constant mappings whose values are in
Lin (Vi.V ′). Therefore, by the Partial Gradient Theorem in Sect.65 of Vol.I, M
is of class C1, and, by (65.9) of Vol.I, its gradient is given by (22.8).

Now we assume that linear spaces V and V ′ are given

Definition 2. Given m ∈ NI × and M ∈ Linm(Vm,V ′), we define pmM : V −→
V ′ , using the abbreviation (02.10), by

pmM := M ◦ (1V |m) , (22.9)

We call the resulting mapping a power mapping of degree m. The constant
mappings from V to V ′ will also be called power mappings of degree 0. The
set of all power mapping of degree m ∈ NI obtained in this manner will be
denoted by Pmm(V,V ′).

Roughly speaking, the value (pmM)(v) at v ∈ V is obtained by making all
the arguments of M equal to v. Of course, we have, Pm1(V,V ′) = Lin (V,V ′).
Power mappings of degree 2 will be called quadratic mappings, power map-
pings of degree 3 will be called cubic mappings, etc. We have

Pm2(V, RI ) = Qu(V) , (22.10)

i.e., the set of all real-valued mappings of degree 2 is the same as the set of all
quadratic forms as defined in Sect.27 of Vol.I.

It is easily seen that the power mapping pmM remains unchanged if M is
symmetrized according to (03.14) and hence that

Pmm(V,V ′) = {pmS | S ∈ Sym m(Vm,V ′)} . (22.11)

Let S ∈ Symm(Vm,V ′) and j ∈ (m−1)] be given. Using the notation (02.8)
and (02.9), it is clear that

S<j> ∈ Symj(Vj , Symm−j(Vm−j ,V ′)) . (22.12)

Applying Def.2 to the above, we find that

pm (S<j>) : V −→ Symm−j(Vm−j ,V ′)) . (22.13)

In the case when j is replaced by 0, we stipulate that

S<0> = pm (S<0>) := SV→Symm(Vm,V′) (22.14)

the constant mapping on V with value S.
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Proposition 2. Power mappings are of class C1 and we have, for every given
m ∈ NI × and S ∈ Symm(Vm,V ′)

∇pm (S) = m pm (S<m−1>) (22.15)

where S<m−1> : V −→ Sym(V,V ′) = Lin (V,V ′) is a special case of (22.10) or
(22.12). The gradient ∇pm (S) : V −→ Lin (V,V ′) is a power mapping of degree
m− 1.

Proof: If m = 1, then (22.13) is simply the statement that the gradient of a
linear mapping is the constant whose value is the mapping itself. ( See p.229 of
Vol.I.) Assume that m > 1 and let v,u ∈ V be given. Applying Prop.1 and the
chain rule to (22.8), we obtain

(∇vpm (S))u =
∑
j∈m]

(S(v|m).j))u . (22.16)

By the assumed symmetry of S, we have

(S((v | m).j))u = S<m−1>(v | (m− 1)).u = pm (S<m−1>(v))u

Since v and u were arbitrary, (22.16) yields the desired result (22.14).

Proposition 3. Power mappings are all of class C∞ and, for every m ∈ NI ×,
we have

∇(k)pm (S) =
{

m !
(m−k)!pm (S<m−k>), if k ∈ m]

0 if k > m.

}
(22.17)

for all m ∈ NI × and S ∈ Sym m(Vm,V ′).

Proof: Using induction, the formula (22.17) for k ∈ m[ follows immediately
from Prop.2 and Def.1. For k = m, the right side of (22.15) is a constant and
hence all subsequent gradients are 0.

Corollary 1. For all S ∈ Sym m(Vm,V ′), we have

∇(m)pm (S) = m !SV→Sym m(Vm,V′) (22.18)

the constant mapping on V with value m!S.

Corollary 2. For very m ∈ NI × the mapping

pm : Symm(Vm,V ′) −→ Pmm(V,V ′) (22.19)

is invertible. In fact, the value of the inverse of pm at G ∈ Pmm(V,V ′) is the
only value of the constant 1

m !∇
(m)G.

Definition 3. Let φ : D −→ D′ be a mapping that is is m times differentiable
and let ∇(m)φ : D −→ Sym m(Vm,V ′) be its mth gradient as determined using
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the Theorem of Symmetry of Higher Gradients. Replacing the values of this
gradient by the corresponding power power mapping, we obtain the mth power
gradient

∇–mφ : D −→ Pmm(V,V ′) (22.20

defined by by
∇–mφ(x) := pm∇(m)φ(x) for all x ∈ D . (22.21

In view of Corollary 2 above, the mth gradient can be recovered from the
mth power gradient. Therefore, it is often better to deal with power gradients
rather than ordinary gradients. Of course, for the first gradient there is no
difference, i.e., ∇–1φ = ∇φ.

the following result is an immediate consequence of Prop 3 and Def.3

Proposition 4. Given m ∈ NI ×, k ∈ m], and S ∈ Symm(Vm,V ′) the power

gradient ∇–(k)pm (S) : V −→ Pmk(V,V ′) is the power mapping of degree m − k
given by

∇–(k)pm (S) =
m !

(m− k)!
pm (pm (S<m−k>). (22.17)

In particular, the power gradient ∇–(m)pm (S) is the constant with value pm (S).

23. Gradients of Power mappings

First, we assume that linear spaces spaces V and V ′, m ∈ NI ×, and a power
mapping P ∈ Pmm(V,V ′), as defined by Def.2 of Sect,22, are given. In view of
Cor.2 of Sect.22, there is exactly one S ∈ Sym m(Vm,V ′) such that P = pmS.
However, it is often not useful to determine this S and it is much easier to find
a non-symmetric M ∈ Linm(Vm,V ′) such that, by Def.2 of Sect.22,

P = pmM := M ◦ (1V |m) , (23.1)

We now assume that such an M has been found. The following formula for the
Gradient of P is easier to use than the formula (22.15) of Prop.2 of Sect. 22.

Proposition 1. The the gradient of the power mapping P defined by (23.1) is
given by by

(∇vP)u =
∑
j∈m]

M(((v|m).j)u) for all u,v ∈ V , (23.2)

where the notations (02.10) and (02.4) are used. In words, the jth term of the
sum on right side of (23.2) is M evaluated on the list whose jth term is u while
all the other terms are v.

Proof: Put S := Str M as defined by (03.14) and let v,u ∈ W be given. By
(22.15) we then have

(∇vP)u = (∇vpm (S))u = m (pm (S<m−1>)(v))u . (23.3)
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Using Def.2 of Sect.22 , the definition of S<m−1>) in accord with (03.10), and
the abbreviation(02.10), we find

(pm (S<m−1>)(v))u = (S<m−1>)(v|m− 1))u = S(v)|m),m)u)
Therefore, using (23.3) and (03.14), we obtain

(∇vP)u =
m

m!

∑
σ∈Perm m]

M(Tσ)(v|m).m)u) . (23.4)

Now let σ ∈ Perm m] be given and put j := σ←(m). By (01.7), we have

(Tσ)(v|m).m)u))i = (v|m).m)u))σ(i) =
{

v if σ(i) 6= m
u if σ(i) = m

}
=

{
v if i 6= j
u if i = j

}
for all i ∈ m] ,

and hence that
Tσ(v|m).m)u)) = ((v|m).j)u .

We conclude that, in the sum on right side of (23.4), all the terms for which
σ(m) = j are the same, namely M(v|m).j)u). It is easily seen that there are
(m− 1)! such terms. It follow that (23.2) is valid.

The result of Prop.1 can be extended to power gradients of higher order as
follows:

Proposition 2. The the kth power gradient of the power mapping P given by
(23.1) is characterized by

(∇–(k)
v P)u =

∑
J∈Fink(m])

M(((v|m).J)(u|J)) for all u,v ∈ V , (23.5)

where the notations (02.10), (02.8) and (02.9) are used. In words, the J-term of
the sum on the right side of (23.2) is M evaluated on the list whose terms with
index in the subset J of m] are all u while the other terms are all v.

The proof is similar to the proof of Prop.2, and we leave the details to the
reader.

We now assume that a linear space W is given and we consider a variety of
power mapping from

LinW
to RI or to LinW.

The first is the lineonic power powm : LinW −→ LinW ,m ∈ NI ×, defined
in Sect.66 of Vol.I. This lineonic power is the power mapping defined according
to (23.1) when M there becomes the product formation (Li|i ∈ m) 7→

∏m
i=1 Li

defined recursively by
∏1

i=1 Li := L1 and
k+1∏
i=1

Li := (
k∏

i=0

Li)Lk+1 for all k ∈ NI × , (23.6)

where the product of lineons on the right is described in Sect.18 of Vol.I. For this
case, Prop.1 above gives the same result as Prop.4 of Sect.66 of Vol.I, namely
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Proposition 3. The gradient of powm is given by

(∇Lpowm)M =
∑

k∈m]

Lk−1MLm−k for all L,M ∈ LinW . (23.7)

Prop.2 can be used to obtain the higher power gradients of lineonic power
mappings. For example, we have

Proposition 4. The second power gradient of powm is given by

(∇–(2)
L powm)M =

∑
{p,q∈m]|p<q}

Lp−1MLq−p−1MLm−q for all L,M ∈ LinW .

(23.8)

Now put n := dimW. It turns out the the determinant, the principal
invariants, the adjugate, and the principal covariants defined in Chapter 1 are
all power mappings. It is easily seen from (14.1) that the determinant function
det: LinW −→ RI is a power mapping of degree n, and from (15.3) that the kth
principal invariant function invk is power mapping of degree k for all k ∈ m].
Hence, by Prop.3 of Sect.22, all these are of class C∞.

Proposition 5. The gradient of determinant function det : LinW −→ RI is
given by

(∇L det)M = tr (adj(L)M) for all L,M ∈ LinW . (23.9)

In the case when L ∈ LisW, i.e. when L is invertible, (23.9) reduces to

(∇L det)M = (detL)tr (L−1M) for all M ∈ LinW . (23.10)

Proof: Let L ∈ LinW, v ∈ W, and λλλ ∈ W∗ be given. By the Theorem on
Characterization of Adjugates in Sect 16, i,e,. formula (16.1), and by (25.9) and
(26.3) of Vol.I we have

det(L+ s (v⊗λλλ))−det(L) = λλλ adj(L)v = s tr ((adj(L))(v⊗λλλ)) for all s ∈ RI
(23.11)

It follows that the directional (v⊗λλλ)-derivative of det at L, as defined by (65.13)
of Vol.I, is given by

(ddv⊗λλλ det)(L) = tr ((adj(L))(v ⊗ λλλ)) .

Therefore, by Prop. 5 of Sect.65 of Vol.I, we have

(∇L det)(v ⊗ λλλ) = tr ((adj(L))(v ⊗ λλλ)) . (23, 12)

Since v ∈ W, and λλλ ∈ W∗ were arbitrary and since the set of all tensor products
(v ⊗ λλλ) spans LinW, the desired result (23.9) follows. The variation (23.10) is
a consequence of (16.7).
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Proposition 6. Let k ∈ n] be given. The gradient of the kth principal invariant
function invk : LinW −→ RI is given by

(∇Linvk)M = tr ((covk(L))M) for all L,M ∈ LinW (23.13)

The proof is analogous to the proof of Prop.5 above, based on (16.13) rather
than (16.1). In view of (16.15) and (15.7), (23.13) actually reduces to (23.9) when
k = n.

In view of Prop,2 of Sect.22, it follows from Prop.6 above that for each
k ∈ n], the kth principal covariant covk : LinW −→ LinW is a power mapping
of degree k−1. Using Prop.3 and Prop.6 above and also the product rule General
Product Rule (see Sect.66 of Vol.I), one can use the formula (16.16) to obtain
explicit formulas for the gradients o the principal covariants. The result is the
rather complicated formula:

(∇Lcovk)M =
∑

j∈(k−1)]

(
(−1)k−1Lj−1MLk−1−j − (−1)jtr ((covk−j(L))M)Lj−1

+(−1)j invk−j

∑
i∈(j−1)]

Li−1MLj−1−i
)

for all L,M ∈ LinW . (23, 14)

Using (16.7), Prop.5 above , and the product rule, we obtain the following
formula for the gradient of the adjugate:

(∇Ladj)M(L+(adj)(L))M = tr (adj(L)M)1W for all L,M ∈ LinW . (23.15)

In the case when L ∈ LisW, i.e. when L is invertible, it follows from (23.15)
and (16.7) that the following formula for the gradient of the adjugate is valid:

(∇Ladj)M = det(L)
(
tr (L−1M)L−1 − L−1ML−1

)
for all M ∈ LinW .

(23.16)
Combining (23.16) with (23.9) we obtain the following result:

Proposition 7. For every L ∈ LisW, the second power gradient of the deter-
minant function is given by

(∇–(2)
L det)(M) = det(L)

(
(tr (L−1M))2 − tr ((L−1M)2) for all M ∈ LinW .

(23.17)
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