
Day 12

Thursday June 7, 2012

1 A Word on Well-Ordering

We talked about the principle of induction. Given a formula ϕ(n) then to prove ∀n.ϕ(n) then it is sufficent
to prove

• ϕ(0).

• ∀n.ϕ(n)→ ϕ(n+ 1)

We mentioned that N is a well-ordering, that is that ≤ is a linear ordering (total, transitive, reflexive,
anti-symmetric) on N and that it is well-founded (no infinite descending chains). All of these properties are
obvious on N. There is another property that is quite useful:

Definition 1 (The Well-Ordering Property). A set A with a linear ordering � has the well-ordering
property if and only if for every S ⊆ A, where S 6= ∅, there is an a ∈ S which is minimum with respect to
�, that is every b ∈ S is such that a � b.

As it turns out, a set is a well-ordering if and only if it has the well-ordering property.

Proof. Suppose that A with � is well ordered. Then it is a linear order and there are no infinite descending
chains. We want to show that it has the well-ordering property. So take S ⊆ A nonempty. We want to show
that S has a least element.

We go by contradiction. Suppose not. Then take x1 ∈ S, which is possible as S is nonempty. As x1 is
not minimal, we can find x2 ∈ S such that x1 � x2. Similarly, x2 is not minimal, so we can find x3 such that
x1 � x2 � x3 continuing in this way we get a infinite descending chain, which contradicts well-foundedness.

Conversely, suppose that we have the well-ordering property. Suppose for contradiction, the set was no
well-founded. So take an infinite descending chains

a1 � a2 � a3 � · · ·

Take the set of all elements in this chain { ai | i ∈ Z+ }. By the well-ordering property, this has a least
element, which is ak for some k ∈ Z+. So then the infinite descending chain must just be ak past k, which
contradicts the chain is strictly descending.

Why is this important? It illustrates an important characteristic of N: every nonempty subset of N has
a least element. Now, using this property, we can prove induction.

Proof. We want to show that induction is valid. That is

(ϕ(0) ∧ (∀n.ϕ(n)→ ϕ(n+ 1)))→ (∀n.ϕ(n))

Suppose this is false. So we have

(ϕ(0) ∧ (∀n.ϕ(n)→ ϕ(n+ 1))) ∧ (∃n.¬ϕ(n))

Well, as ∃n.¬ϕ(n) we have an m that satisfies ¬ϕ(m). In fact, we may have lots of counterexamples. Let
S be the set of counterexamples, ie. like m ∈ S if and only if ¬ϕ(m). As ∃n.¬ϕ(n) we know S is nonempty.

By the well-ordering property S has a least element, call it m. We now do cases:
If m = 0, we get a contradiction, because we have ϕ(0).
Otherwise, m = k+ 1 for some k. Instantiating the universal statement we are assuming at k and we get

ϕ(k)→ ϕ(k + 1). As m is least, we know ϕ(k) holds, and thus we know ϕ(k + 1), ie. we know ϕ(m).
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As an application, anytime we take natural numbers, we can assume that they are the smallest such.

Theorem 1.
√

2 is irrational.

Proof. Suppose not; then we can find n and m naturals such that
√

2 = n
m . We may assume that n and

m are the least such. Then we have that 2m2 = n2. Thus n is even, so n = 2k for some k ∈ N. And so
2m2 = 4k2, ie. m2 = 2k2.

Then m is even, so m = 2l for some l ∈ N.
So we have m = 2l and n = 2k, so

√
2 = 2l

2k = l
k ; as l < m and k < n, we have a contradiction, as we

chose these numbers as small as possible!

This style of proof is called proof by infinite descent

2 Equivalence Relations

Now, we begin talking about equivalence relations. This will occupy our time for the rest of the week,
essentially.

Definition 2. Equivalence relations are meant to capture the properties of equality on sets. ∼ is an
equivalence relation on a set A if and only if it is

• Reflexive: ∀a ∈ A . a ∼ a.

• Symmetric: ∀a, b ∈ A . (a ∼ b)→ (b ∼ a).

• Transitive: ∀a, b, c ∈ A . ((a ∼ b) ∧ (b ∼ c))→ (a ∼ c).

Example 1. There are many examples of equivalence relations. We will use the following toy relation to
begin.

Define ∼ on the real numbers by

a ∼ b ⇐⇒ a = b+ 2πk for some k ∈ Z

Geometrically, a and b are related if a and b represent the same angle.
We first prove this is an equivalence relation.

Proof. First we show that it is reflexive. Let a ∈ R be arbitrary. We seek to show that a ∼ a. Well, this is
clear, as a = a+ 2π · 0.

Next, we show that it is symmetric. Like a, b ∈ R, and take k such that a = b + 2πk. Then of course,
b = a+ 2π(−k), so b ∼ a.

Finally, suppose that a ∼ b and b ∼ c. Then take k, l ∈ Z such that a = b+ 2πk and b = c+ 2πl. Then
we have a− 2πk = c+ 2πl, an so a = c+ 2π(k + l)

Definition 3. Let ∼ be a an equivalence relation on a set A. Then if a ∈ A the equivalence class of a
with respect to ∼, which we denote [a]∼ is:

[a]∼ = { b ∈ A | a ∼ b }

That is, the equivalence class of a is all of the things in a that are related to a.
We say a is the representative of the class [a]∼.

Example 2. Consider the above equivalence class.

[0]∼ = { . . . ,−4π,−2π, 0, 2π, 4π, . . . }

Note then that [0]∼ = [2π]∼. Can you write down what [π2 ]∼ is?

The set of equivalence classes form a partition of a set.

Definition 4. If A is a set then a family of sets {Fα | α ∈ Λ } is a partition if
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• The sets span A: that is for every a ∈ A, there is some α such that a ∈ Fα. More concisely

A =
⋃
α∈Λ

Fα

• The sets are pairwise disjoint: that is, for each α, β ∈ Λ we have Fα ∩Fβ = ∅.

• The sets are nonempty: that is for each α ∈ Λ, Fα 6= ∅.

Theorem 2. If A is a set and ∼ is an equivalence relation on A then the set of equivalence classes
{ [a]∼ | a ∈ A } is a partition.

Proof. First we show that the sets span A. Take a ∈ A. Want to show that a is in some equivalence class.
Well, by reflexivity, a ∼ a, so a ∈ [a]∼.

Clearly each equivalence class is nonempty as it at least has the representative in there.
Finally, we show they are disjoint. Suppose that E1 and E2 are two distinct equivalence classes. As they

are distinct and nonempty (by last sentence) we can take a ∈ E1 and b ∈ E2 such that a 6∼ b. Want to show
they are disjoint. Otherwise, there is a c ∈ E1 ∩ E2. Then a ∼ c and b ∼ c. By symmetry, we have a ∼ c
and c ∼ b. By transitive, we get a ∼ b, which is a contradiction.

3



3 Group Work

Today, we will work in groups to talk about different relations. For each of the following relations, you
should answer two questions:

• Prove that it is an equivalence relation.

• Describe it’s equivalence classes

Some are easier than others, and they are presented in what I feel is increasing difficulty.

3.1 Complex Magnitude

Recall the complex numbers are numbers of the form a+ bi where i =
√
−1. The magnitude of a complex

number a+ bi is
|a+ bi| =

√
a2 + b2

Define the relation ◦ on C by : If z1, z2 ∈ C then z1 ◦ z2 if and only if |z1| = |z2|

3.2 Odd Factors

Consider the positive integers (that is: natural numbers, without 0). We can write every positive integer n
uniquely as some odd number times a power of 2. This odd number is the largest odd number that divides
n. For example, for 18, the largest odd number that divides it is 9.

So define the relation ≡ on Z+ by n ≡ m if and only if n and m have the same largest odd number factor
(for example: 9 ≡ 18, but 9 6≡ 27).

3.3 Powers of Two

Similar as above, we have that every positive integer n can be unique written as some odd numbers times a
power of 2. So we define a relation _ on the positive integers Z+ by n _ m if and only if the n and m have
the same largest power of two (eg. 2 _ 6, but 2 6_ 12)

3.4 Periodic Sine

Recall that sin(x) is a function on the real numbers that takes in a real numbers, reads it as an angle, and
then returns the y-coordinate of the point on the unit circle corresponding to that angle. This is a periodic
function that has period 2π. But besides its periodicity, it is still not 1-1, as sin(0) = sin(π).

So, we make a relation ≈ on real numbers and say x ≈ y if and only if sin(x) = sin(y).

3.5 Differing by a Rational

The real numbers R contain both rationals and irrationals. But, the rationals have nice closure properties
(the sum and difference of two rationals is rational) where as the irrationals do not.

So, define a relation on R by relating two numbers if they differ by a rational; that is define ∼= on R by
x ∼= y if and only if x− y ∈ Q.

3.6 Infinite Binary Sequence

An infinite sequence is a sequence of numbers indexed by Z+. For example: (2, 4, 6, 8, 10, . . .) is a sequence.
From the pattern, it looks like the 6th element of the sequence is 12.

An infinite binary sequence is a sequence of just 0’s and 1′. For example (1, 0, 1, 0, 1, 0, 1, . . .) is a
sequence, where it looks like the ith element of the sequence of 1 if i is odd and 0 if i is even.

We write sequence as (an)n∈Z+ , and then we say ai when referring to the ith element of the sequence.
So, if we name the first sequence above (bi)i∈Z+ , then we would say b1 = 2 and b6 = 12.

We define ∼ on the set of infinite binary sequences as follows:

(an)n∈Z+ ∼ (bn)n∈Z+ ⇐⇒ ∃N ∈ Z+.∀m > N . am = bm
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That is, two binary sequences are equivalent if they are “eventually equal,” ie. there is a point for which
after then they are equal. For example,

(1, 0, 1, 1, 0, 0, 0, 0, 0, . . .) ∼ (1, 1, 0, 0, 0, 0, 0, 0, . . .)

Where both of the above sequences continue to be 0’s forever.
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