
Distance Sequences in Locally Infinite

Vertex-Transitive Digraphs

Wesley Pegden∗

July 7, 2004

Abstract

We prove that the out-distance sequence {f+(k)} of a vertex-transitive
digraph of finite or infinite degree satisfies f+(k + 1) ≤ f+(k)2 for k ≥ 1,
where f+(k) denotes the number of vertices at directed distance k from
a given vertex. As a corollary, we prove that for a connected vertex-
transitive undirected graph of infinite degree d, we have f(k) = d for all
k, 1 ≤ k < diam(G). This answers a question by L. Babai.

1 Introduction

L. Babai has pointed out that results on local expansion of vertex-transitive
graphs [BS] limit the possible pathologies (i.e., hills and valleys) in the distance
sequences of locally finite undirected vertex-transitive graphs, and has asked if
“valleys” can occur in the locally infinite case [B]. In this note we prove that
no valleys can occur in the locally infinite case for undirected graphs and give
a full characterization of possible distance sequences.

For directed graphs (digraphs), we show that the infinite terms of the out-
distance sequences of vertex-transitive digraphs are nonincreasing, and addi-
tionally that any nonincreasing sequence of infinite cardinals is the out-distance
sequence of some vertex-transitive digraph. Additionally, we offer constructions
to show that any out-distance sequence of a vertex-transitive digraph of finite
degree can be ‘mimicked’ by the tail of the out-distance sequence of a vertex-
transitive digraph of infinite out-degree (in particular, valleys can occur in the
directed case).

Definition 1.1. The positive n–sphere, S+(k, x), about a vertex x in a digraph
is the set of vertices at directed distance k from x.

Definition 1.2. The diameter diam(G) is the supremum of the pairwise dis-
tances of vertices of G. This is either an integer or ∞.
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Definition 1.3. A digraph G is vertex-transitive if every pair of vertices in G
is equivalent under the automorphism group of G.

Let f+(k) denote the cardinality of S+(k, x) for some vertex x in the digraph
G. Because G is vertex-transitive, f+(k) does not depend on the choice of
the vertex x. We call the sequence f+(0), f+(1), f+(2), . . . the ‘out-distance
sequence’ of G. For k > diam(G) we set f+(k) = 0. For undirected graphs, we
denote the n-sphere and distance sequence by S(k, x) and {f(k)}, respectively.

Our main results are the following.

Theorem 1.4. Let G be an infinite, vertex-transitive, undirected graph of infi-
nite degree d. Then, for 0 < k < diam(G) we have f(k) = d.

Noting that for infinite cardinals we have d · d = d and therefore f(k) ≤ d
for all k, Theorem 1.4 implies the following options for the distance sequence of
a locally infinite vertex-transitive undirected graph.

Corollary 1.5. Let G be an infinite, vertex-transitive, undirected graph of infi-
nite degree d. If G has infinite diameter then its distance sequence is 1, d, d, . . . .
If G has finite diameter then its distance sequence is 1, d, . . . , d, e, where e ≤ d.

In Section 3 we shall prove that all possibilities permitted by Corollary 1.5
can actually occur, so Corollary 1.5 gives a full characterization of the distance
sequences of locally infinite vertex-transitive undirected graphs.

For directed graphs, we prove the following.

Theorem 1.6. Let G be an infinite, vertex-transitive digraph of infinite out-
degree d. Then, for all k > 0 for which f+(k + 1) is infinite, we have f+(k) ≥
f+(k + 1).

Theorems 1.4 and 1.6 follow from the following lemma.

Lemma 1.7. For a vertex-transitive digraph of finite or infinite out-degree, the
out-distance sequence {f+(k)} satisfies f+(k + 1) ≤ f+(k)2, for k ≥ 1.

Note. A sequence a0, a1, a2, . . . is log-concave if (∀i)(a2
i ≥ ai−1 · ai+1). For

positive integers, log-concavity implies unimodality (the sequence increases up
to a point, then decreases). For a sequence of infinite cardinals, log-concavity
implies that the sequence is constant except for its first and last terms. Therefore
Corollary 1.5 can be restated as follows:

If G is a vertex-transitive undirected graph of infinite degree then its distance
sequence is log-concave.

In Section 4 we will give constructions of directed graphs of infinite out-
degree whose distance sequences are not log-concave, or even unimodal. For
comments on the analogous question in the locally finite case for undirected
graphs, see Section 5.

For information about combinatorial parameters of vertex-transitive graphs,
we refer to the survey [B1].
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2 The Proofs

Theorem 1.6 follows immediately from Lemma 1.7. To infer Theorem 1.4 from
Lemma 1.7, we need one more observation.

Observation 2.1. For the distance sequence {f(k)} of an undirected vertex-
transitive graph of infinite degree d, if 1 ≤ f(k + 1) < d then f(k) = d or
f(k + 2) = d.

Proof. For undirected graphs, the number of neighbors of a vertex in S(k+1, x)
cannot be greater than f(k) + f(k + 1) + f(k + 2).

We are now ready to prove Theorem 1.4. Let d be an infinite cardinal.
Let k ≥ 1 be the smallest k such that f(k) < d. Then by Lemma 1.7,

f(k + 1) < d and therefore f(k + 2) < d. By Observation 2.1, we conclude that
f(k + 1) = 0 so diam(G) ≤ k.

We now prove Lemma 1.7. With an eye on possible applications in the
locally finite case, we prove a more general statement.

Lemma 2.2. For a vertex-transitive digraph of finite or infinite out-degree, the
out-distance sequence {f+(k)} satisfies f+(k) ≤ f+(`) · f+(m) for all k, `, m
such that 1 ≤ `,m ≤ k, m + ` ≥ k. In particular, f+(k + 1) ≤ f+(k)2 for all
k ≥ 1.

For the proof of Lemma 2.2, we will need the following observation.

Observation 2.3. If a shortest directed path from vertex x to vertex w passes
through a vertex q then the portion between x and q can be replaced by any
shortest directed path from x to q and the resulting directed path from x to w
will still be shortest.

We are now ready to prove Lemma 2.2.
Let x be some vertex in G. Let D = S+(k, x). Then |D| = f+(k). For

any number 1 ≤ ` ≤ k, every directed path from x to a vertex in D must pass
through some vertex in S+(`, x), so

D =
⋃

q∈S+(`,x)

Dq

where Dq consists of those vertices w ∈ D for which there exists a shortest
directed path from w to x which passes through q ∈ S+(`, x). Therefore,

|D| ≤
∑

q∈S+(`,x)

|Dq|.

Claim. (∀q ∈ S+(`, x))(∀m)(k − ` ≤ m ≤ k =⇒ |Dq| ≤ f+(m)).

Consequently f+(k) = |D| ≤ f+(`) · f+(m).
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Proof of the Claim.

Let P be a shortest directed path from x to q and let z be the (unique) vertex
lying on P for which the vertices in Dq are at distance m from z (so m+ ` ≥ k).
By Observation 2.3, Dq ⊆ S+(m, z), so |Dq| ≤ |S+(m, z)| = f+(m).

3 Constructions: Undirected Graphs

To demonstrate that Corollary 1.5 completely describes the restrictions on the
distance sequences of locally infinite vertex-transitive undirected graphs, we offer
constructions for each distance sequence permitted. All graphs in this section
are undirected.

3.1 1, d, d, d, . . .

For a vertex-transitive graph with the distance sequence {f(k)} such that f(k) =
d for all k > 1 we need only consider an infinite tree of degree d.

3.2 1, d, e (1 ≤ e ≤ d)

Define L(d, e) to be the complement of the union of d disjoint copies of the
complete graphs Ke+1 on e+1 vertices. L(d, e) is vertex-transitive, has diameter
2, and distance sequence 1, d, e.

3.3 1, d, . . . , d, e (1 ≤ e ≤ d)

Let n ≥ 1 be an integer, d an infinite cardinal, and 1 ≤ e ≤ d. We now consider
the case where the diameter is n ≥ 3.

We construct a vertex-transitive graph G of degree d, diameter n and dis-
tance sequence f(k) = d (1 ≤ k ≤ n − 1), f(n) = e. If a is a cardinal then we
use [a] to denote a (standard) set of cardinality a.

Consider the graph G = C2n−4 × L(d, e) where L(d, e) is the graph from
Construction 3.2, C2n−4 is the (2n − 4)-cycle, and × refers to the Cartesian
product. The Cartesian product G = H1×H2 of the graphs H1 and H2 is given
by V (G) = V (H1)× V (H2), with (h1, h2) ∼ (h′1, h

′
2) in G if either h1 = h′1 and

h2 ∼ h′2, or h2 = h′2 and h1 ∼ h′1, where ∼ refers to adjacency in the appropriate
graph (cf. [B1, p. 1463]). Note that if H1 and H2 are vertex-transitive then so
is G.

Note that L(d, e) is the complement of Kd×Ke+1, so V (L(d, e)) = [d]×[e+1]
and V (G) = [2n−4]×[d]×[e+1]. There is an edge between (i, j, k) and (i′, j′, k′)
in G if either i = i′ and j 6= j′, or i ≡ i′ + 1 mod (2n− 4), j = j′, and k = k′.

G has degree d, so its distance sequence begins with 1, d, . . . , d. Considering
some vertex v = (i, j, k), we see that the sphere S(t, v) is the set of vertices
w = (i′, j′, k′) for which one of the following holds:

1. t ≤ n− 2, i′ = i± t mod (2n− 4), j′ = j, and k′ = k;
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2. 1 ≤ t ≤ n− 1, i′ = i± (t− 1) mod (2n− 4) and j′ 6= j;

3. 2 ≤ t ≤ n, i′ = i± (t− 2) mod (2n− 4), j′ = j, and k′ 6= k.

So S(n, v) is the set of vertices described by condition (3), and |S(n, v)| =
f(n) = e.

4 Constructions: Directed Graphs

Theorem 4.1. Let {d(k)} be any nonincreasing sequence of infinite cardinals.
Then 1, d(1), d(2), . . . is the out-distance sequence of some vertex-transitive di-
graph. Furthermore, let n > 0 and let {g+(k)} be the out-distance sequence of
some vertex-transitive digraph of finite out-degree. Then

1, d(1), . . . , d(n), g+(n + 1), g+(n + 2), . . .

is the out-distance sequence of some vertex-transitive digraph.

In particular then, Theorem 4.1 implies that the out-distance sequences
of vertex-transitive digraphs with infinite out-degree are not always unimodal.
Theorem 4.1 follows from the following constructions.

4.1 1, d, . . . , d and 1, d, d, . . .

Let d be an infinite cardinal, and let n > 0. We construct Gn,d, which has
the vertex set Z × [d]. There is an edge from (z1, α1) to (z2, α2) in Gn,d when
z2 − z1 = 1 or z2 − z1 > n. So Gn,d is acyclic and has out-distance sequence
{g+(k)} satisfying g+(k) = d for all 0 < k ≤ n, and g+(n + 1) = 0.

We also define G∞,d on the same vertex set. There is an edge from (z1, α1)
to (z2, α2) in G∞,d if and only if z2 − z1 = 1. Thus G∞,d has out-distance
sequence 1, d, d, . . . .

4.2 1, d(1), d(2), . . .

Definition 4.2. Let G1 and G2 be digraphs with vertex sets V1 and V2, respec-
tively. Then the lexicographic product G1 • G2 (cf. [B1, p. 1463]) has vertex
set V1 × V2; there is an edge from the vertex (v1, v2) to the vertex (v′1, v

′
2)

in G1 • G2 when either (v1, v
′
1) is an edge in G1, or v1 = v′1 and (v2, v

′
2) is

an edge in G2. On more than two graphs, we define the product recursively:
G1 • · · · •Gn = (G1 • · · · •Gn−1) •Gn. (This product is associative.)

Note that if G and H are vertex-transitive, G •H is vertex-transitive.

Observation 4.3. If G and H are acyclic, G •H is acyclic.

Observation 4.4. Let {d(k)} be a nonincreasing sequence of infinite cardinals.
Let G1 be a vertex-transitive digraph with out-distance sequence 1, d(1), . . . , d(m),
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and let G2 be a vertex-transitive digraph with |V (G2)| ≤ d(m) and with out-
distance sequence 1, g+(1), g+(2), . . . . If G1 is acyclic, then G1 • G2 has out-
distance sequence

1, d(1), . . . , d(m), g+(m + 1), g+(m + 2), . . . .

Let {d(k)} be a nonincreasing sequence of infinite cardinals; so the sequence
must be eventually constant. Thus there exists an m such that d(i) = d(m) for
all i ≥ m. Then by Observations 4.3 and 4.4,

(G1,d(1) • · · · •Gm,d(m)) •G∞,d(m+1)

(with Gn,d as constructed in 4.1) is vertex-transitive and has out-distance se-
quence 1, d(1), d(2), . . . . This proves the first part of Theorem 4.1.

4.3 1, d(1), . . . , d(n), g+(n + 1), g+(n + 2), . . .

Let {d(k)} as above and let G be a vertex-transitive digraph of finite out-degree
with out-distance sequence {g+(k)}. From Observations 4.3 and 4.4, then,

(G1,d(1) •G2,d(2) • · · · •Gn,d(n)) •G

is a vertex-transitive digraph with out-distance sequence

1, d(1), . . . , d(n), g+(n + 1), g+(n + 2), . . . .

This proves the second part of Theorem 4.1.

5 The Locally Finite Case (Undirected)

Watkins and Shearer [WS] note that the distance sequences of (undirected)
locally finite vertex-transitive graphs may not be log-concave; in fact, even uni-
modality does not necessarily hold. Log-concavity does hold in the locally finite
case, however, under the much more restrictive condition of distance transitivity
(or, more generally, distance regularity) [TL] (cf. [BCN, p. 167]).

Watkins and Shearer provide examples of families of vertex-transitive lo-
cally finite graphs, both finite and infinite, whose distance sequences are not
unimodal. Of particular interest are their examples of infinite locally finite
graphs with infinitely many valleys in their distance sequences. One such exam-
ple (T1 in their paper) is the archimedean tessellation of the plane by regular
hexagons and equilateral triangles, of a common sidelength, such that every
edge separates a hexagon and a triangle. The distance sequence {f(k)} of this
graph is given by f(0) = 1, f(1) = 4, and for k > 1,

f(k) =
{

5k − 2 if k is even
4k + 2 if k is odd
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thus the triple f(k), f(k + 1), f(k + 2) is a valley in the distance sequence of
the graph for all even k ≥ 10.

Examples such as these motivate the study of pathologies of the distance
sequence. See Question 4, Section 6.

6 Open Questions

Definition 6.1. A graph G is vertex-primitive if the automorphism group of
G is primitive, i. e., the vertex set of G has no nontrivial partitions invariant
under all automorphisms of G.

1. Do all options for the distance sequences of locally infinite vertex-transitive
undirected graphs permitted by Theorem 1.4 occur for vertex-primitive graphs?

2. Let X be a finite subset of the vertices of an undirected graph G of infinite
degree d. Define fX(k) as the number of vertices at distance k from the set X.
Let m be smallest such that fX(m) = 0. Is it true that we have fX(k) = d, for
all 0 < k < m− 1?

3. Let X be a finite subset of the vertices of a vertex-transitive digraph G,
and let {f+

X(k)} be the out-distance sequence from X in G. Is it true that for
f+

X(k+1) infinite and k > 0, we have f+
X(k) ≥ f+

X(k+1)? (From Observation 2.1,
an affirmative answer to this question implies an affirmative answer to Question
2.)

Note. A digraph G is growth-regular if for all vertices x and y in G and for
all k ≥ 0, |S+(k, x)| = |S+(k, y)|. This condition of growth-regularity, weaker
than vertex-transitivity, is sufficient for our proofs in this note. However, it is
not difficult to construct a growth-regular graph, choose a finite subset X of the
vertices, and give a k > 0 such that fX(k + 1) is infinite, yet fX(k) < fX(k + 1).

4. A little-studied area appears to be the pathologies (hills and valleys) of the
distance sequences of locally finite vertex-transitive (undirected) graphs. Results
by Babai et al. [BS] bound the depth of possible valleys (f(k) > f(k + 1) <

f(k + 2)) in the locally finite case up to k < diam(G)
2 . Their Theorems 3.2 and

4.2 imply that for 2k + 1 ≤ diam(G), we have

f(k + 1) ≥

k∑
i=0

f(i)

2k + 1
(6.1)

(see also [L]). Our Lemmas 1.7 and 2.2 provide another restriction, without
extra conditions such as 2k + 1 ≤ diam(G). Another result that puts some
limitation on these pathologies is Gromov’s Lemma [G], which states that the
volume sequence of a vertex-transitive graph, given by

g(k) =
k∑

i=0

f(i),
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obeys g(k)g(5k) ≤ (g(4k))2 (cf. [B1, p. 1477]). These results, however, permit
deeper valleys than those found by Watkins and Shearer.
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[BS] László Babai and Mario Szegedy. Local Expansion of Symmetrical Graphs.
Combinatorics, Probability and Computing 1 (1992) 1-11.

[BCN] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance Regular Graphs.
SpringerVerlag.

[G] M. Gromov. Groups of polynomial growth and expanding maps, in Publ.
Math. IHES 53, 53-73.
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