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1. The Hales–Jewett number. This number is related to the nd hypercube, and in
this way it is closely related to the multidimensional Tic-Tac-Toe game. The d-dimensional
solid hypercube of side n precisely means the d-fold Cartesian product of the solid interval
[0, n] = {x : 0 ≤ x ≤ n} with itself:

[0, n]× [0, n]× · · · × [0, n] = [0, n]d.

The [0, n]d solid hypercube consists of nd small unit cubes, which we call “cells”. If
each “cell” is identified with its “upper right corner”, we obtain the [n]d grid ([n] =
{1, 2, . . . , n}):

[n]d =
{

a = (a1, a2, . . . , ad) ∈ ZZd : 1 ≤ aj ≤ n for each 1 ≤ j ≤ d
}
.

When we talk about the “d-dimensional hypercube of side n”, formally nd, we either
mean the solid cube [0, n]d or the grid [n]d; usually there is no confusion.

The ordinary 3 × 3 = 32 Tic-Tac-Toe is played on a 3 × 3 board, and the “winning
sets” are the eight 3-in-a-line’s. The nd Tic-Tac-Toe game is played on the [0, n]d solid
hypercube. The two players alternately put their marks, X and O, in the previously
unmarked “cells” (i.e., unit cubes) of [0, n]d. Each player marks one cell per move. The
winner is the player to occupy a whole winning set first. We define the winning sets in
terms of the [n]d grid. Each cell is identified with its “upper right corner”, and the winning
sets are exactly the n-in-a-line’s in [n]d, that is, the n-element sequences(

a(1),a(2), . . . ,a(n)
)

of the [n]d grid such that, for each j, the sequence a(1)
j , a

(2)
j , . . . , a

(n)
j composed of the jth

coordinates is either 1, 2, 3, . . . , n (“increasing”), or n, n− 1, n− 2, . . . , 1 (“decreasing”), or
a constant.

If neither player gets n-in-a-line the play is a draw. The special case n = 3, d = 2 gives
back ordinary Tic-Tac-Toe, and the case n = 4, d = 3 gives the 4 × 4 × 4 = 43 grown-up
version, which is a very interesting and difficult game. Note that in higher dimensions
most of the n-in-a-line’s are some kind of diagonal.

In the rest of the paper we often call the cells “points” (identifying a cell with a special
point like the center or the “upper right corner”).
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The winning sets in the nd Tic-Tac-Toe game are “lines”, so we often call them
“winning lines”. The number of winning lines in the 32 and 43 Tic-Tac-Toe games are 8
and 76, respectively. In the general case there is an elegant short formula for the number
of winning lines.

Simple Facts. (a) The total number of winning lines in the nd Tic-Tac-Toe game is(
(n+ 2)d − nd

)
/2.

(b) If n is odd, there are at most (3d − 1)/2 winning lines through any point, and this
is attained only at the center of the board. In other words, the maximum degree of the nd

line-hypergraph is (3d − 1)/2.
(c) If n is even (“when the board does not have a center”), the maximum degree drops

to 2d−1, and equality occurs if there is a common c ∈ {1, . . . , n} such that every coordinate
cj equals either c or n+ 1− c (j = 1, 2, . . . , d).

This is a folklore result (it was rediscovered so often); for the sake of completeness we
include a proof.

Proof. To prove (a) note that for each j ∈ {1, 2, . . . , d}, the sequence a(1)
j , a

(2)
j , . . . , a

(n)
j

composed of the jth coordinates of the points on a winning line is either strictly increasing
from 1 to n, or strictly decreasing from n to 1, or a constant c = cj ∈ {1, 2, . . . , n}. Since
for each coordinate we have (n+ 2) possibilities {1, 2, . . . , n, increasing, decreasing}, this
gives (n + 2)d, but we have to subtract nd because at least one coordinate must change.
Finally, we have to divide by 2, since every line has two orientations.

Next we prove (b): let n be odd. Given a point c = (c1, c2, . . . , cd) ∈ nd, for each
j ∈ {1, 2, . . . , d} there are three options: the jth coordinates of the points on an oriented
line containing c

(1) either increase from 1 to n,
(2) or decrease from n to 1,
(3) or remain constant cj .

Since every line has two orientations, and it is impossible that all coordinates remain
constant, the maximum degree is ≤ (3d− 1)/2, and we have equality for the center (only).

This suggests that the center of the board is probably the best opening move in the
game (n is odd).

Finally, assume that n is even. Let c = (c1, c2, . . . , cd) ∈ nd be a point, and
consider the family of those n-lines which contain c. Fixing a proper subset index-set
I ⊂ {1, 2, . . . , d}, there is at most one n-in-a-line in this family for which the jth coordi-
nates of the points on the line remain constant cj for each j ∈ I, and increase or decrease
for each j 6∈ I. So the maximum degree is ≤

∑d−1
i=0

(
d
i

)
= 2d − 1, and equality occurs if for

some fixed c ∈ {1, . . . , n} every coordinate cj equals c or n+ 1− c (j = 1, 2, . . . , d). ut

The well-known Hales–Jewett theorem, a cornerstone of Ramsey Theory, is about a
combinatorial property of the family of n-in-a-line’s in the nd hypercube. The combina-
torial property is the existence of monochromatic n-in-a-line’s in an arbitrary k-coloring
(k ≥ 2) of the points of nd. Actually, the Hales–Jewett proof gives more: it guarantees
the existence of a monochromatic combinatorial line. A combinatorial line is basically a
“1-parameter set”; to explain what it means, write [n] = {1, 2, . . . , n}. An x-string is a
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finite word a1a2a3 · · · ad of the symbols ai ∈ [n] ∪ {x} where at least one symbol ai is x.
An x-string is denoted by w(x). For every integer i ∈ [n] and x-string w(x), let w(x; i)
denote the string obtained from w(x) by replacing each x by i. A combinatorial line is a
set of n strings {w(x; i) : i ∈ [n]} where w(x) is an x-string.

Every combinatorial line is a geometric line (n-in-a-line), but the converse is not true.
Before showing a counter-example note that a geometric line can be described as an xx’-
string a1a2a3 · · · ad of the symbols ai ∈ [n] ∪ {x} ∪ {x′} where at least one symbol ai is x
or x′. An xx′-string is denoted by w(xx′). For every integer i ∈ [n] and xx′-string w(xx′),
let w(xx′; i) denote the string obtained from w(xx′) by replacing each x by i and each x′

by (n + 1 − i). A directed geometric line is a sequence w(xx′; 1), w(xx′; 2), w(xx′; 3),. . .,
w(xx′;n) of n strings where w(xx′) is an xx′-string. Note that every geometric line has
two orientations.

As we said before, it is not true that every geometric line is a combinatorial line.
What is more, it is clear from the definition that there are substantially more geometric
lines than combinatorial lines: in the nd Tic-Tac-Toe game there are ((n + 2)d − nd)/2
geometric lines and (n + 1)d − nd combinatorial lines. Note that the maximum degree of
the family of combinatorial lines is 2d − 1, and the maximum is attained in the points of
the “main diagonal” (j, j, . . . , j) where j runs from 1 to n.

For example, in ordinary Tic-Tac-Toe:

(1, 3) (2, 3) (3, 3)

(1, 2) (2, 2) (3, 2)

(1, 1) (2, 1) (3, 1)

the “main diagonal” {(1, 1), (2, 2), (3, 3)} is a combinatorial line defined by the x-string
xx, {(1, 1), (2, 1), (3, 1)} is another combinatorial line defined by the x-string x1, but the
“other diagonal”

{(1, 3), (2, 2), (3, 1)}

is a geometric line defined by the xx′-string xx′. The “other diagonal” is the only geometric
line of the 32 game which is not a combinatorial line.

The Hales–Jewett threshold HJ(n, k) is the smallest integer d such that in each k-
coloring of the points of nd there is a monochromatic geometric line. The modified Hales–
Jewett threshold HJc(n, k) is the smallest integer d such that in each k-coloring of nd

there is a monochromatic combinatorial line (“c” stands for “combinatorial”). Trivially

HJ(n, k) ≤ HJc(n, k).

In the case of “two colors” (k = 2) we write: HJ(n) = HJ(n, 2) and HJc(n) = HJc(n, 2);
trivially HJ(n) ≤ HJc(n).

In 1963 Hales and Jewett made the crucial observation that Van der Waerden’s fa-
mous “double-induction proof” (to prove his well-known theorem about monochromatic
arithmetic progressions, see later) can be adapted to the nd hypercube. This way Hales
and Jewett proved that HJc(n, k) < ∞ for all positive integers n and k. This, of course,
implies HJ(n, k) <∞ for all positive integers n and k.
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The Hales–Jewett theorem has a wonderful application to the hypercube Tic-Tac-Toe:
it implies that the d-dimensional nd Tic-Tac-Toe is a first player win if the dimension d
is large enough in terms of the winning size n. We will return to this later. The Hales–
Jewett theorem is a deep qualitative result; unfortunately, the quantitative aspects are
truly dreadful!

How large is HJ(n) = HJ(n, 2)? Well, this is a famous open problem. We have
to admit that, in spite of all efforts, our present knowledge on the Hales–Jewett number
HJ(n) is still rather disappointing. The best known upper bound on HJ(n) was proved
by Shelah [1988]. It is a primitive recursive function (namely the supertower function),
which is much-much better than the original Van der Waerden–Hales–Jewett bound. The
original “double-induction” argument gave the (totally ridiculous) Ackermann function.
The much better Shelah’s bound is still far too large for “layman combinatorics”.

For a precise discussion of Shelah’s upper bound we have to introduce the so-called
Grzegorczyk hierarchy of primitive recursive functions. In fact, we define the representative
function for each class. (For a more detailed treatment of primitive recursive functions we
refer the reader to any monograph in Mathematical Logic.)

Let g1(n) = 2n, and for i > 1, let gi(n) = gi−1

(
gi−1

(
. . . gi−1(1) . . .

))
, where gi−1 is

taken n times. An equivalent definition is gi(n+1) = gi−1

(
gi(n)

)
. For example, g2(n) = 2n

is the exponential function,

g3(n) = 222·
··
2

is the “tower function” of height n. The next function g4(n + 1) = g3
(
g4(n)

)
is that we

call the “Shelah’s supertower function” because this is exactly what shows up in Shelah’s
proof. Note that gk(x) is the representative function of the (k + 1)st Grzegorczyk class.

In 1988 Shelah proved the following remarkable upper bound.

Shelah’s primitive recursive upper bound: For every n ≥ 1 and k ≥ 1,

HJc(n, k) ≤ 1
(n+ 1)k

g4(n+ k + 2).

That is, given any k-coloring of the hypercube nd, where the dimension d ≥ 1
(n+1)kg4(n +

k + 2), there is always a monochromatic combinatorial line.

What can we say about the small values of HJ(n) = HJ(n, 2) and HJc(n) =
HJc(n, 2)? An easy case-study shows that HJ(3) = HJc(3) = 3, but the numerical
value of HJ(4) remains a mystery. We know that it is ≥ 5 (see Golomb–Hales [2002]),
and also know that it is finite, but no one can prove a “reasonable” upper bound like
HJ(4) ≤ 1000 or even a much weaker bound like HJ(4) ≤ 101000. Shelah’s proof gives the
explicit upper bound

HJ(4) ≤ HJc(4) ≤ g3(24) = 222·
··
2

where the “height” of the tower is 24. This upper bound is absurdly large; it is rather
disappointing that Ramsey Theory is unable to provide a “reasonable” upper bound even
for the first “non-trivial” value HJ(4) of the Hales–Jewett function HJ(n).
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In general, it remains an open problem to decide whether or not HJ(n) is less than
the tower function g3(n); perhaps HJ(n) is simply plain exponential.

2. A new lower bound. In their original paper Hales and Jewett [1963] proved a
linear lower bound to the Hales–Jewett number: HJ(n) ≥ n. Here we improve this to an
exponential lower bound.

To illustrate the idea on a simpler example, we start the discussion with HJc(n)
(“combinatorial lines”), which is less interesting from our game-theoretic/geometric view-
point, but more natural from a purely combinatorial viewpoint.

First we recall Van der Waerden’s famous combinatorial theorem on arithmetic pro-
gressions.

Van der Waerden’s theorem [1927] For all positive integers n and k, there exists an
integer W such that, if the set of integers {1, 2, . . . ,W} is k-colored, then there always
exists a monochromatic n-term arithmetic progression.

Let W (n, k) be the least such integer; we call it the Van der Waerden threshold. For
k = 2 we simply write W (n) = W (n, 2).

We claim the following one-sided inequality between the Van der Waerden threshold
and the “combinatorial” Hales–Jewett threshold:

W (n, k)− 1
n− 1

≤ HJc(n, k). (1)

To prove (1) write W = HJc(n, k) · (n − 1), and let χ denote an arbitrary k-coloring of
the interval [0,W ] = {0, 1, 2, . . . ,W}; we want to show that there is a monochromatic
n-term arithmetic progression in [0,W ]. Consider the d-dimensional hypercube [n]d with
d = HJc(n), where, as usual, [n] = {1, 2, · · · , n}. Let w = (a1, a2, · · · , ad) ∈ [n]d be an
arbitrary point in the hypercube. We can define the color of a point w as the χ-color of
the coordinate-sum

g(w) = (a1 − 1) + (a2 − 1) + (a3 − 1) + . . .+ (ad − 1). (2)

We refer to this particular k-coloring of hypercube [n]d as the “lift-up of χ”. Since the
dimension of the hypercube is d = HJc(n), there is a monochromatic combinatorial line in
[n]d (monochromatic in the “lift-up of χ”). Thus the coordinate-sums of the n points on
the line form a χ-monochromatic n-term arithmetic progression in [0,W ]. This completes
the proof of (1).

Remark. Inequality (1), using the linear mapping (2), is a short lemma in Shelah’s
paper [1988]. Is there an earlier appearance of this inequality?

In order to apply (1), we need a lower bound on the Van der Waerden number W (n).
If n is a prime, then Berlekamp [1968] proved the bound W (n) > (n− 1)2n−1. Combined
this with (1) gives

HJc(n) ≥ 2n−1. (3′)

In general, for an arbitrary n (which is not necessarily a prime), the well-known Local
Lemma (see Erdős-Lovász [1975]) gives the slightly weaker lower bound W (n) ≥ 2n−3/n;
this implies

HJc(n) ≥ 2n−3

n2
. (3′′)
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Notice that lower bounds (3’)-(3”) are exponential.
How about the geometric threshold HJ(n)? Can we prove a similar exponential lower

bound? The answer is yes, and we are going to employ the quadratic coordinate sum

Q(w) = (a1 − 1)2 + (a2 − 1)2 + (a3 − 1)2 + . . .+ (ad − 1)2 (4)

where w = (a1, a2, · · · , ad) ∈ [n]d. Notice that the old linear function g (see (2)) has a
handicap: it may map a whole n-in-a-line into a single integer (as a “degenerate n-term
arithmetic progression”). The quadratic function Q in (4) basically solves this kind of
problem, but it leads to a minor technical difficulty: the Q-image of a geometric line is
a quadratic progression (instead of an arithmetic progression). We pay a little price for
this change: the set of n-term arithmetic progressions is a 2-parameter family, but the
set of n-term quadratic progressions is a 3-parameter family. Also an n-term quadratic
progression is a multiset with maximum multiplicity 2 (since a quadratic equation has 2
roots), representing at least n/2 distinct integers (another loss of a factor of 2). After this
outline, we can easily work out the details as follows.

Any geometric line can be encoded as a string of length d over the alphabet Λ =
{1, 2, · · · , n, x, x′} (where x′ represents “reverse x”) with at least one x or x′. The n points
P1, P2,. . ., Pn constituting a geometric line can be obtained by substituting x = 1, 2, . . . , n
and x′ = n + 1 − x = n, n − 1, . . . , 1. If the encoding of a geometric line L contains a
occurences of symbol x and b occurences of symbol x′, and L = {P1, P2, . . . , Pn} where Pi
arises by the choice x = i, the sequence Q(P1), Q(P2), Q(P3),. . ., Q(Pn) (see (4)) has the
form

a(x− 1)2 + b(n− x)2 + c = (a+ b)x2− 2(a+ bn)x+ (c+ a+ bn2) as x = 1, 2, . . . , n. (5)

Let W = HJ(n) · (n − 1)2; the quadratic sequence (5) falls into the interval [0,W ]. A
quadratic sequence Ax2 +Bx+ C with x = 1, 2, . . . , n is called an n-term non-degenerate
quadratic progression if A,B,C are integers and A 6= 0.

Motivated by Van der Waerden’s theorem, we define Wq(n) to be the least integer such
that any 2-coloring of [0,Wq(n)− 1] = {0, 1, 2, . . . ,Wq(n)− 1} yields a monochromatic n-
term non-degenerate quadratic progression. We prove the following inequality (an analog
of (1))

Wq(n)− 1
(n− 1)2

≤ HJ(n). (6)

In order to prove (6), let W = Wq(n) − 1 and let χ be an arbitrary 2-coloring of the
interval [0,W ] = {0, 1, 2, . . . ,W}. We want to show that there is a monochromatic n-term
non-degenerate quadratic progression in [0,W ]. Consider the d-dimensional hypercube [n]d

with d = HJ(n), where [n] = {1, 2, · · · , n}. Let w = (a1, a2, · · · , ad) ∈ [n]d be an arbitrary
point in the hypercube. We can define a color of point w as the χ-color of the quadratic
coordinate sum (see (4))

Q(w) = (a1 − 1)2 + (a2 − 1)2 + (a3 − 1)2 + . . .+ (ad − 1)2.

We refer to this particular 2-coloring of hypercube [n]d as the “lift-up of χ”. Since the
dimension of the hypercube is d = HJ(n), there is a monochromatic geometric line in
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[n]d (monochromatic in the “lift-up of χ”). Thus the quadratic coordinate sums of the n
points on the line form a χ-monochromatic n-term non-degenerate quadratic progression
in [0,W ]. This completes the proof of (6).

Next we need a lower bound for Wq(n); the following simple bound suffices for our
purposes:

Wq(n) ≥ 2n/4

3n2
. (7)

Lower bound (7) is an easy application of the Local Lemma. In fact, we apply the following
well-known corollary of the Local Lemma.

Erdős–Lovász 2-Coloring Theorem. If F is an n-uniform hypergraph, and its Max-
imum Degree is at most 2n−3/n (i.e., every hyperedge intersects at most 2n−3/n other
hyperedges), then the hypergraph has a Proper 2-Coloring (i.e., the points can be colored
by two colors so that no hyperedge A ∈ F is monochromatic).

Remark. The very surprising message of the Erdős–Lovász theorem is that the
“global size” of hypergraph F is irrelevant—it can even be infinite!—only the “local size”
matters.

We apply the Erdős-Lovász 2-coloring theorem as follows. First note that an n-term
non-degenerate quadratic progression Ax2+Bx+C represents at least n/2 different integers
(since a quadratic polynomial has at most 2 real roots). Three different terms “almost”
determine an n-term quadratic progression; more precisely, they determine less than n3

n-term quadratic progressions. Thus, any n-term non-degenerate quadratic progression
contained in [1,W ], where W = Wq(n), intersects fewer than n4 ·W 2 other n-term non-
degenerate quadratic progressions in [1,W ]. It follows that

8n4 ·W 2 > 2n/2; (8)

indeed, otherwise the Erdős-Lovász 2-coloring theorem applies, and yields the existence of a
2-coloring of [1,W ] with no monochromatic n-term non-degenerate quadratic progression,
which contradicts the choice W = Wq(n). Now (8) implies (7).

Combining (6) and (7) we obtain

HJ(n) ≥ 2n/4

3n4
. (9)

(9) is somewhat weaker than (3’)-(3”), but it is still exponential, representing a big im-
provement on the original linear lower bound HJ(n) ≥ n of Hales and Jewett.

Note that Berlekamp’s explicit algebraic construction—W (n) > (n− 1)2n−1 if n is a
prime—is a Proper Halving 2-Coloring, where the two color classes have exactly the same
size (or differ by one). The proof of the Erdős–Lovász 2-Coloring Theorem, on the other
hand, does not provide a Proper Halving 2-Coloring. It is not clear at all how to modify the
standard proof of the Local Lemma to get a proper halving 2-coloring. Also the “lift-up”
destroys the halving property. This raises the following natural question. Let HJ1/2(n)
denote the “halving” version of the Hales–Jewett number: let HJ1/2(n) be the least integer
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d such that in each halving 2-coloring of nd there is a monochromatic geometric line (i.e.,
n-in-a-line).

Is it true that the “halving” threshold HJ1/2(n) is also (at least) exponentially large?
The answer is, once again, “yes”. One possible way to prove it is to involve “rainbow”
3-colorings.

A rainbow k-coloring of hypergraph F means that each hyperedge A ∈ F contains all
k different colors.

Of course, the concepts of proper k-coloring and rainbow k-coloring are identical for
k = 2, but become very different for k ≥ 3.

Here is a trivial, but still useful observation.

Rainbow Fact: If F is an arbitrary finite hypergraph such that it has a rainbow 3-coloring,
then it also has a proper halving 2-coloring (i.e., the two color classes have equal size, or
differ by one).

Indeed, let C1, C2, C3 be the 3 color classes of the vertex-set in a rainbow 3-coloring of
hypergraph F , and assume that |C1| ≤ |C2| ≤ |C3|. Since C3 is the largest color class, one
can always divide it into two parts C3 = C3,1 ∪ C3,2 such that the two sums |C1|+ |C3,1|
and |C2| + |C3,2| become equal (or differ by at most one). Coloring C1 ∪ C3,1 red and
C2 ∪ C3,2 blue gives a proper halving 2-coloring of hypergraph F .

One possible way to prove that HJ1/2(n) is also (at least) exponentially large is to
repeat the proof of (9) with rainbow 3-colorings instead of proper 2-colorings, and to apply
the Rainbow Fact.

Another—more direct and much better—way to prove an exponential lower bound for
the halving Hales–Jewett number is to apply the following inequality:

HJ1/2(n) ≥ HJ(n− 2). (10)

Note that inequality (10) is “hypercube-specific”; it does not extend to a general hyper-
graph result like the Rainbow Fact above.

In fact, the following slightly stronger version of (10) holds:

HJ∗1/2(n) ≥ HJ(n− 2), (11)

where HJ∗1/2(n) is the largest dimension d0 such that for any d < d0 the nd hypercube has
a proper halving 2-coloring (proper means that there is no monochromatic geometric line).

Since HJ1/2(n) denotes the least integer d such that in each halving 2-coloring of nd

there is a monochromatic geometric line (i.e., n-in-a-line), we trivially have HJ1/2(n) ≥
HJ∗1/2(n), and we cannot exclude the possibility of a strict inequalityHJ1/2(n) > HJ∗1/2(n)
for some n. This means the halving Hales–Jewett number is possibly(!) a “fuzzy thresh-
old”; unlike the ordinary Hales–Jewett number HJ(n), where there is a critical dimension
d0 such that for every 2-coloring of nd with d ≥ d0 there is always a monochromatic
geometric line, and for every nd with d < d0 there is a 2-coloring with no monochro-
matic geometric line. In the halving case we cannot prove the existence of such a critical
dimension.
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By adding a trivial upper bound to (10)-(11), we have

HJ(n) ≥ HJ1/2(n) ≥ HJ∗1/2(n) ≥ HJ(n− 2). (12)

Here is a proof of (11). The idea is to divide the nHJ(n−2)−1 hypercube into subcubes
of the form (n − 2)j , j ≤ HJ(n − 2) − 1, and color them independently. We make use of
the Hales–Jewett linear lower bound

HJ(n) ≥ n. (13)

The “large dimension” in (13) guarantees that most of the volume of the hypercube
nHJ(n−2)−1 lies on the “boundary”; this is why we can combine the proper 2-colorings
of the subcubes (n − 2)j , j ≤ HJ(n − 2) − 1 to obtain a proper halving 2-coloring of the
whole.

The exact details go as follows. Let H = [n]d where d = HJ(n − 2) − 1 and [n] =
{1, 2, . . . , n}; so there is a proper 2-coloring for the “center” (n − 2)d ⊂ H. We need to
show that there is a proper halving 2-coloring of H. We divide H into subcubes of the
form (n− 2)j , 0 ≤ j ≤ d: for each “formal vector”

v = (v1, v2, . . . , vd) ∈ {1, c, n}d

(here “c” stands for “center”) we define the subhypercube Hv as the set of of all
(a1, a2, . . . , ad) ∈ H satisfying the following two requirements:

(1) ai = 1 if and only if vi = 1;
(2) ai = n if and only if vi = n.
Then Hv is of size (n − 2)j , where the dimension j = dim(Hv) is the number of

coordinates of v equal to c, and the Hv’s form a partition of H by mimicking the binomial
formula

nd = ((n− 2) + 2)d = (n− 2)d +
(
d

1

)
2 · (n− 2)d−1 +

(
d

2

)
22 · (n− 2)d−2 + . . .+ 2d. (14)

Notice that H(c,...,c) is the “center” of H; by assumption H(c,...,c) has a proper 2-coloring.
Call Hv degenerate if its dimension j = 0; these are the 2d “corners” of hypercube H.
The following fact is readily apparent.

Apparent Proposition: For any geometric line L (n-in-a-line) in H = nd, there is some
nondegenerate subhypercube Hv ⊂ H such that the intersection L∩Hv is a geometric line
((n− 2)-in-a-line) in Hv (considering Hv as an (n− 2)j hypercube).

The Apparent Proposition implies that, any 2-coloring of H which is improper (i.e.,
there is a monochromatic line) must be improper in its restriction to a nondegenerate
subhypercube Hv.

As we said before, the “center” H(c,...,c) ⊂ H has a proper 2-coloring; we use the colors
X and O (like in an ordinary Tic-Tac-Toe play). Let the proportion of X’s in the coloring
be α0; we can assume that α0 ≥ 1/2. Considering all (d − 1)-dimensional “slices” of the
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“center” H(c,...,c), the average proportion of X’s is α0, so the maximum proportion of X’s,
denoted by α1, is greater or equal to α0. It follows that the (n − 2)d−1 subhypercubes
of H can be properly 2-colored with an α1 fraction of X’s (or O’s; we can always flip a
coloring!). Thus, inductively, we find a nondecreasing sequence

1/2 ≤ α0 ≤ α1 ≤ . . . ≤ αd = 1

of “proportions” so that for 0 ≤ j ≤ d, each (n − 2)j subhypercube can be properly 2-
colored with an αd−j fraction of X’s. For each (n−2)j subhypercube we have two options:
either we keep this proper 2-coloring or we flip. By using this freedom, we can easily
extend the proper 2-coloring of the “center” H(c,...,c) ⊂ H to a proper halving 2-coloring
of H as follows. Let

Ak =
⋃

dim(Hv)≥d−k

Hv.

By induction on k (as k = 0, 1, 2, . . . , d), we give a 2-coloring χ of H which is proper on
each of the subhypercubes Hv ⊂ Ak and

disc(χ,Ak) ≤ (2αk − 1) · (n− 2)d−k, (15)

where disc(χ,Ak) denotes the discrepancy, i.e., the absolute value of the difference between
the sizes of the color classes. Notice that 2αk − 1 = αk − (1 − αk) and (n − 2)j is the
volume of a j-dimensional Hv.

At the end, when k = d, coloring χ will be a proper halving 2-coloring (indeed, the
color classes on all of H will differ by at most (2αd − 1) · (n− 2)d−d = 1).

(15) is trivial for k = 0: on A0 = H(c,...,c) (the “center”) our 2-coloring χ is the
above-mentioned proper 2-coloring of the “center” with X-fraction α0.

Next comes the general induction step: let (15) be satisfied for some (k− 1) ≥ 0. The
number Nd−k of subhypercubes Hv of dimension (d− k) is

(
d
k

)
2k (binomial theorem: see

(14)), so by d = HJ(n− 2)− 1 and (13), Nd−k ≥ 2d ≥ n− 2. Thus since αk ≥ αk−1, we
have

Nd−k · (2αk − 1) · (n− 2)d−k ≥ (2αk−1 − 1) · (n− 2)d−(k−1) ≥ disc(χ,Ak−1). (16)

In view of inequality (16) we have room enough to extend χ from Ak−1 to Ak by coloring
a suitable number of the Hv of dimension (d− k) with an αk-fraction of X’s, and the rest
with an αk-fraction of O’s (“we flip the coloring”). This completes the induction proof of
(15), and (11) follows.

We summarize these results in a single statement.

Theorem 1. We have

HJ(n) ≥ HJ1/2(n) ≥ HJ∗1/2(n) ≥ HJ(n− 2) ≥ 2(n−2)/4

3n4
. (17)
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There remains a huge gap between (17) and Shelah’s supertower upper bound. Which
one is closer to the truth?

3. Game-theoretic aspects. Consider the nd Tic-Tac-Toe game with d = HJ(n).
Then draw play is impossible (i.e., every play has a winner), so we have only two options:
(1) either the first player has a winning strategy, (2) or the second player has a winning
strategy. (This follows from a general theorem of Zermelo: every finite 2-player game of
complete information is determined).

Next we apply the so-called

Strategy Stealing Argument. Let (V,F) be an arbitrary finite hypergraph. Playing the
Generalized Tic-Tac-Toe Game on (V,F), the first player can always force at least a draw,
i.e., a draw or possibly a win.

Remark. The Strategy Stealing Argument was used by J. Nash in the late 1940s in
his “existential” solution of the game Hex. Here the Generalized Tic-Tac-Toe Game on
(V,F) simply means that the two players alternately take the points of V , and that player
declared the winner who first occupies a whole winning set A ∈ F ; otherwise the play ends
in a draw.

For completeness we outline the simple proof. It is not constructive! Assume that
the second player (=II) has a winning strategy STR, we want to obtain a contradiction.
The idea is to see what happens if the first player (=I) steals and uses STR. A winning
strategy for a player is a list of instructions telling the player that if the opponent does
this, then he does that, so if the player follows the instructions, he will always win. Now I
can use II’s winning strategy STR to win as follows. I takes an arbitrary first move, and
pretends to be the second player (he ignores his own first move). After II’s each move, I,
as a fake second player, reads the instruction in STR to take action. If I is told to take a
move that is still available, he takes it. If this move was taken by him before as his ignored
“arbitrary” first move, then he takes another “arbitrary move”. The crucial point here
is that an extra move, namely the last “arbitrary move”, only benefits I in a generalized
Tic-Tac-Toe game. ut

Corollary: (“Winning by Ramsey Theory”) Let (V,F) be an arbitrary finite hypergraph.
Suppose that the family F of winning sets has the property that there is no proper halving
2-coloring. Then, playing the Generalized Tic-Tac-Toe Game on (V,F), the first player
can always force a win. ut

The Corollary describes a subclass of Generalized Tic-Tac-Toe Games with the re-
markable property that one can easily determine the winner without being able to say how
one wins.

This is a “soft” existential criterion. Since the main objective of Game Theory is to
find an explicit winning or drawing strategy, we have to conclude that winning is far more
complex than Ramsey Theory!

For example, it is hugely disappointing that we know only two(!) explicit winning
strategies in the whole class of nd Tic-Tac-Toe games: the 33 version, which has an easy
winning strategy, and the 43 version, which has an extremely complicated winning strategy.
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It seems to be highly unlikely that the game-theoretic “phase transition” between win
and draw for the nd Tic-Tac-Toe games is anywhere close to the Hales–Jewett number
HJ(n), but no method is known for handling this problem.

To be precise, we introduce the so-called Win Number. Let w(n−line) denote the least
threshold such that for every d ≥ w(n−line) the nd Tic-Tac-Toe game is a first player win
(“w” stands for “win”). The Corollary above yields the inequality w(n−line) ≤ HJ(n). By
Patashnik’s computer-assisted work we know that w(4−line) = 3 (see Patashnik [1980]);
luckily we don’t really need to know the value of the extremely difficult threshold HJ(4).
Unfortunately we are not so lucky with w(5−line), which remains a total mystery. The
upper bound w(5−line) ≤ HJ(5) is “useless”: Shelah’s proof gives a totally ridiculous
upper bound for HJ(5).

Open Problem 1. Is it true that w(n−line) < HJ(n) for all sufficiently large values of
n? Is it true that

w(n−line)
HJ(n)

−→ 0 as n→∞?

4. Weak Win. We know very little about the Hales–Jewett number HJ(n), and know
very little about the Win Number w(n−line), but we know a lot about the Weak Win
number ww(n−line). What is the Weak Win number, and what is the motivation behind
it?

First we try to pinpoint the reason why the nd Tic-Tac-Toe games are so difficult.
Well, these are all Who-Does-It-First games (which player gets the first n-in-a-line). Who-
Does-It-First reflects competition, a key ingredient of every game playing, but it is not
the most fundamental question. The most fundamental question is “What are the achiev-
able configurations, achievable but not necessarily first?”, and the complementary question
“What are the impossible configurations?”. Drawing the line between “doable” and “im-
possible” (doable but not necessarily first!) is the primary question. First we have to
clearly understand “what is doable”; “what is doable first” is a secondary question. If
“doing-it-first” is ordinary win, then we may call “doing it, but not necessarily first” a
Weak Win. A failure to achieve a Weak Win is called a Strong Draw.

Here is the formal definition. On a given finite hypergraph (V,F) (where V is the
board and F is the family of winning sets) one can play the “symmetric” Generalized Tic-
Tac-Toe Game and also the “one-sided” Maker–Breaker game, where the only difference is
in the goals: (1) Maker’s goal is to occupy a whole winning set A ∈ F , but not necessarily
first, and (2) Breaker’s goal is simply to stop Maker (Breaker does not want to occupy
any winning set). The player who achieves his goal is declared the winner—so a draw
is impossible by definition. Of course, there are two versions: Maker can be the first or
second player.

There is a trivial implication: if the first player can force a win in the Generalized
Tic-Tac-Toe Game on (V,F), then the same play gives him, as Maker, a win in the Maker-
Breaker game on (V,F). The converse is not true: ordinary 32 Tic-Tac-Toe is a simple
counter-example.

We refer to Maker’s win as a Weak Win. Weak Win is easier than ordinary win.
While playing the Generalized Tic-Tac-Toe Game on a hypergraph, both players have
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their own threats, and either of them, fending off the other’s, may build his own winning
set. Therefore, a play is a delicate balancing between threats and counter-threats and can
be of very intricate structure even if the hypergraph itself is simple.

The Maker–Breaker version is usually somewhat simpler. Maker doesn’t have to waste
valuable moves fending off his opponent’s threats. Maker can simply concentrate on his
own goal of building, and Breaker can concentrate on blocking the opponent (unlike the
Generalized Tic-Tac-Toe game in which either player has to build and block at the same
time). Doing one job at a time is definitely simpler.

As we said before, Weak Win is obviously easier than ordinary win, but “easier” does
not mean “easy”. Absolutely not! For example, the well-known and notoriously difficult
Hex is equivalent to a Maker–Breaker game, but this fact doesn’t help to find an explicit
winning strategy. Indeed, let WeakHex be the Maker–Breaker game in which the board is
the n× n hexagonal Hex board, Maker=White, Breaker=Black, and the winning sets are
the connecting chains of White. We claim that Hex and WeakHex are equivalent. To prove
it, first note that in Hex a draw is impossible. Indeed, in order to prevent the opponent
from making a connecting chain, one must build a “river” separating the opponent’s sides,
and a “river” itself must contains a chain connecting the other pair of opposite sides. (This
fact seems plausible, but the precise proof is not completely trivial, see Gale [1979].) This
means that Breaker’s goal in WeakHex (i.e. “blocking”) is identical to Black’s goal in Hex
(i.e. “building first”). Here “identical” means that if Breaker has a winning strategy in
WeakHex then Black has a winning strategy in Hex, and vice versa—in fact, the same
strategy works. Since a draw is impossible, Hex and WeakHex are equivalent.

Now we are ready to define the Weak Win number ww(n−line). Let ww(n−line)
denote the least threshold such that for every d ≥ ww(n−line) the first player can force a
Weak Win in the nd game (“ww” stands for “weak win”). In other words, playing on nd

the first player can always occupy an n-in-a-line (but not necessarily first!).
We have the trivial inequality

HJ(n) ≥ HJ1/2(n) ≥ HJ∗1/2(n) ≥ w(n−line) ≥ ww(n−line). (18)

(18) is trivial because a Strong Draw strategy of the second player—in fact, any drawing
strategy!—yields the existence of a drawing terminal position, i.e., a proper halving 2-
coloring; indeed, the first player can “steal” the second player’s strategy.

A simple study of ordinary Tic-Tac-Toe yields ww(3−line) = 2 < 3 = w(3−line),
and Patashnik’s computer-assisted study of the 43 Tic-Tac-Toe yields ww(4−line) =
w(4−line) = 3 (see Patashnik [1980]).

Open Problem 2. Is it true that ww(n−line) < w(n−line) for all sufficiently large values
of n? Is it true that

ww(n−line)
w(n−line)

−→ 0 as n→∞?

An equally natural problem is the following: Is it true that

ww(n−line)
HJ(n)

−→ 0 as n→∞?
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Here comes the good news: unlike Open Problems 1 and 2, which remain wide open,
for the last question we have a positive solution. We just need to apply the following Weak
Win Criterion (see Beck [1981]).

Weak Win Criterion. Let (V,F) be a finite hypergraph: V is an arbitrary finite set,
and F is an arbitrary family of subsets of V . The Maker-Breaker Game on (V,F) is
defined as follows: the two players, called Maker and Breaker, alternately occupy previously
unoccupied elements of the board V ; Maker’s goal is to occupy a whole winning set A ∈ F ,
Breaker’s goal is to stop Maker. If F is n-uniform and

|F|
|V |

> 2n−3 ·∆2(F),

where ∆2(F) is the Max Pair-Degree, then Maker, as the first player, has a winning strategy
in the Maker-Breaker Game on (V,F).

The Max Pair-Degree is defined as follows: assume that, fixing any two distinct points
of board V , there are ≤ ∆2(F) winning sets A ∈ F containing both points, and equality
occurs for some point pair. Then we call ∆2(F) the Max Pair-Degree of F .

In particular, for Almost Disjoint hypergraphs, where any two hyperedges have at
most one common point (like a family of “lines”), the condition simplifies to |F| > 2n−3|V |.

Remark. If F is n-uniform, then |F|
|V | is 1

n times the Average Degree. Indeed, this
equality follows from the easy identity n|F| = AverDeg(F)|V |.

The hypothesis of the Weak Win Criterion is a simple Density Condition: in a “dense”
hypergraph Maker can always occupy a whole winning set.

The proof of the Criterion is based on a Power-of-Two Scoring System (similar to the
proof of the well-known Erdős–Selfridge theorem [1973]).

We recall that the total number of winning lines in the nd Tic-Tac-Toe is (n+2)d−nd

2
(see Simple Facts (a) at the beginning). Because the line-hypergraph is Almost Disjoint,
the Weak Win Criterion applies and yields a Weak Win if

(n+ 2)d − nd

2
> 2n−3nd.

This is equivalent to (
1 +

2
n

)d
> 2n−2 + 1. (19)

Inequality (19) holds if

d >
1
2

(log 2) · n2. (20)

Consider small values of n. Inequality (19) holds for the 33, 44, 57, 610, 714, 819, 925,
1031, . . . Tic-Tac-Toe games, so in these games the first player can force a Weak Win. Note
that 33 and 44 on the list can be replaced by 32 and 43.

The list of small Weak Win nd games: 32, 43, 57, 610, 714, 819, . . . is complemented by
the following list of known small Strong Draw games: 42, 83, 144, 205, 246, 267, . . .. There
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is a big gap between the two lists, proving that our knowledge of the small nd games is
very unsatisfactory.

Let’s return to (20); it implies the bound

log 2
2

n2 ≥ ww(n−line). (21)

Thus comparing (17), (18), and (21) we have (assume that n is large)

HJ∗1/2(n) ≥ 2(n−2)/4

3n4
>

log 2
2

n2 ≥ ww(n−line), (22)

that is, asymptotically the Hales–Jewett threshold HJ∗1/2(n) is (at least) exponential and
the weak win threshold ww(n−line) is (at most) quadratic. Roughly speaking, Ramsey
Theory has nothing to do with Weak Win!

Inequality (22) leads to a very interesting problem as follows.

Delicate win or delicate draw? A wonderful question! We mention two particularly
interesting subclasses of the family of all finite hypergraphs.

Delicate Win Class (“Forced win but Drawing Position still exists”): It
contains those hypergraphs F which have a Drawing Terminal Position (=proper halving
2-coloring), but playing the Generalized Tic-Tac-Toe Game on F the first player can
nevertheless force a win.

Delicate Draw Class: It contains those hypergraphs F for which the Generalized
Tic-Tac-Toe Game is a Draw, but the first player can still force a Weak Win.

The 43 Tic-Tac-Toe is the only nd game in the Delicate Win Class that we know, and
the ordinary 32 Tic-Tac-Toe is the only nd game in the Delicate Draw Class that we know.
Are there other examples? This is an open problem!

What (22) implies is that the union of the Delicate Win Class and the Delicate Draw
Class is infinite. Indeed, each nd Tic-Tac-Toe with dimension d satisfying the inequality

HJ∗1/2(n) > d ≥ ww(n−line) (23)

belongs to one of these classes: if it is a first player win, the game belongs to the Delicate
Win Class, if it is a draw game, then it goes to the Delicate Draw Class. Of course, (22)
implies that the range (23) is nonempty, in fact, it is a very large range (if n is large).
Unfortunately, we cannot decide which class (Delicate Win or Delicate Draw) for any single
game in the large range (23). To decide which one is a truly wonderful open problem!

We conclude with a remark about inequality (22). It shows that the “halving” Hales–
Jewett number HJ1/2(n) is at least exponential, but, unfortunately, we don’t have a clue
about the true order of magnitude (the best known upper bound is the enormous super-
tower function). The (at least) exponential Ramsey Theory threshold HJ1/2(n) (about
drawing terminal positions) is well-separated from the (at most) quadratic Weak Win
threshold ww(n−line). The major difference between the two thresholds is that the latter
is known to be (roughly) quadratic. Indeed, we have the lower bound

ww(n−line) >
cn2

log n
, (24)
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where c = (log 2)/16− o(1).
We say a few words about the proof of (24). The proof consists of two steps.

Step One: Degree Reduction by Partial Truncation.
A serious technical difficulty is that the nd line-hypergraph is very far from being

degree-regular. Indeed, the Average Degree of the family of winning lines in nd is

AverageDegree(nd) =
n · familysize

boardsize
=
n
(
(n+ 2)d − nd

)
/2

nd
≈ n

2

(
e2d/n − 1

)
.

This is much smaller than the Maximum Degree, which is either (3d−1)/2 (n odd) or 2d−1
(n even), see Simple Facts (b)-(c) at the beginning. In fact, the Average Degree is about
(very roughly speaking) the nth root of the Maximum Degree. It is natural, therefore, to
ask the following

Question A: Can one reduce the Maximum Degree of an arbitrary n-uniform hyper-
graph close to the order of the Average Degree?
The answer is an easy yes if one is allowed to throw out whole winning sets. But throwing
out a whole winning set means that Breaker loses control over that set, and Maker might
completely occupy it. So we cannot throw out whole sets, but we may throw out a few
points from each winning set. In other words, we can partially truncate the winning sets,
but we cannot throw them out entirely. So the right question is

Question B: Can one reduce the Maximum Degree of an arbitrary n-uniform hyper-
graph, by partially truncating the winning sets, close to the order of the Average Degree?

Well, the answer to Question B is no for general n-uniform hypergraphs (we leave it to the
reader to construct an example), but it is yes for the special case of the nd line-hypergraphs.

Degree Reduction Lemma. Let Fn,d denote the family of n-in-a-line’s (i.e., geometric
lines) in the nd board; Fn,d is an n-uniform Almost Disjoint hypergraph. Let 0 < α < 1/2
be an arbitrary real number. Then for each geometric line L ∈ Fn,d there is a 2b( 1

2 −α)nc-
element subset L̃ ⊂ L such that the truncated family F̃n,d = {L̃ : L ∈ Fn,d} has Maximum
Degree

MaxDegree
(
F̃n,d

)
< d+ ddd/αne−1.

Step Two: Game-theoretic Local Lemma.
We combine the Degree Reduction Lemma with the following

Ugly Blocking Criterion for Almost Disjoint Hypergraphs: Assume that hyper-
graph F is n-uniform and Almost Disjoint. If the global size |F| and the Max Degree satisfy
the upper bounds

|F| < 2n
1.1

and MaxDegree(F) < 2n−4n2/5
,

then the second player can put his mark in every A ∈ F , that is, he can force a Strong
Draw.

If the hypergraph is (nearly) degree-regular, then the Average Degree and the Max
Degree are (nearly) equal, and so the Weak Win Criterion above and this Blocking Criterion
nearly complement each other.
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We stop here. For more about Weak Win, we refer the reader to the new book of Beck
titled “Tic-Tac-Toe Theory” (to appear in Cambridge University Press). For example, the
detailed proof of (24) is in this book.
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