Final take-home exam

Work on all question but submit your solutions to only 6 of them. Due the 6 th of December.

1. Consider the unit disk $D=\left\{x \in \mathbb{R}^{2}, x_{1}^{2}+x_{2}^{2} \leq 1\right\}$. Give an example of a set A different than $\frac{1}{2} D$ such that $A-A=D$.
2. If sets K_{1}, \ldots, K_{n} in \mathbb{R}^{d} are convex, then so is their Minkowski sum $K_{1}+\cdots+K_{n}$.
3. Let P be a symmetric convex polytope in \mathbb{R}^{d}. Show that for some n, there is a d-dimensional subspace F in \mathbb{R}^{n} and a linear injective map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ such that $[-1,1]^{n} \cap F=T(P)$ (in words, every symmetric polytope is a central section of the cube in sufficently high dimension).
4. Show that a permutohedron of order n has n ! vertices.
5. (a) Let X be subset of \mathbb{R}^{d}. If every $d+1$ points from X can be covered by a (closed) ball of radius r, then X can be covered by such a ball.
(b) Every set of $d+1$ points in \mathbb{R}^{d} of diameter at most 2 can be covered by a closed ball of radius $r \leq \sqrt{\frac{2 d}{d+1}}$ (which is sharp for a regular simplex).
(c) If X is a subset of \mathbb{R}^{d} with diameter at most 2 , then X can be covered by a closed ball of radius at most $\sqrt{\frac{2 d}{d+1}}$ (Jung's theorem).
(d)* If such X does not lie in any smaller ball, then the closure of X contains the vertices of a regular d-dimensional simplex of edge-length 2 .
6. Let K be a compact convex set in \mathbb{R}^{2} with support function h_{K}.
(a) If K is a polygon, then $|\partial K|=\int_{0}^{2 \pi} h_{P}(\cos \theta, \sin \theta) \mathrm{d} \theta(|\partial K|$ is the perimeter of $K)$.
(b) If K_{1} and K_{2} are two convex polygons in \mathbb{R}^{2} such that $K_{1} \subset K_{2}$, then we have $\left|\partial K_{1}\right| \leq\left|\partial K_{2}\right|$, with equality if and only if $K_{1}=K_{2}$.
(c)* By approximation arguments, show that (a) is valid for all compact convex planar sets K. Deduce Barbier's theorem: all plane convex sets of constant width b have the same perimeter πb.
7. Prove that for every nonnegative numbers $\alpha_{1}, \ldots, \alpha_{d}$ and $\beta_{1}, \ldots, \beta_{d}$, we have

$$
\left(\prod_{i=1}^{d}\left(\alpha_{i}+\beta_{i}\right)\right)^{1 / d} \geq\left(\prod_{i=1}^{d} \alpha_{i}\right)^{1 / d}+\left(\prod_{i=1}^{d} \beta_{i}\right)^{1 / d}
$$

8. Show the following analogue of the Brunn-Minkowski inequality: for $d \times d$ positive semi-definite real matrices A and B, we have

$$
[\operatorname{det}(A+B)]^{1 / d} \geq[\operatorname{det}(A)]^{1 / d}+[\operatorname{det}(B)]^{1 / d} .
$$

9. Show that all norms on \mathbb{R}^{d} are equivalent, that is if $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are two norms on \mathbb{R}^{d}, then there are positive finite constants α, β such that for every x in \mathbb{R}^{d}, we have

$$
\alpha\|x\| \leq\|x\|^{\prime} \leq \beta\|x\| .
$$

10. Let $\|\cdot\|$ be a norm on \mathbb{R}^{d} and let $K=\left\{x \in \mathbb{R}^{d},\|x\| \leq 1\right\}$ be its unit ball. Show that K is symmetric, convex, compact, with nonempty interior (K is a symmetric convex body).
11. Let K be symmetric convex body in \mathbb{R}^{d}. Define for $x \in \mathbb{R}^{d}$, $p_{K}(x)=\inf \{t>0, x \in t K\}$ (the so-called Minkowski's functional of K). Show that p_{K} is a norm on \mathbb{R}^{d} and its unit ball is K.
12. Let $p \in(1, \infty)$. Find an ℓ_{p}-equilateral set in \mathbb{R}^{d} of size $d+1$.

13* Show that n points on the plane determine at most
(a) $O\left(n^{7 / 3}\right)$ triangles with a given angle α,
(b) $O\left(n^{7 / 3}\right)$ triangles with area 1,
(c) $O\left(n^{7 / 3}\right)$ isosceles triangles.

