1. Find the mean, variance, probability generating function and characteristic function of a $\operatorname{Bin}(n, p)$ random variable. Find the limit of its probability generating function as well as characteristic function as $n \rightarrow \infty$ with $n p \rightarrow \lambda$. What is the distribution of the sum of independent Poisson random variables?
2. Find the probability generating function of a Poisson random variable with parameter λ. Let X_{1}, \ldots, X_{n} be independent random variables with the Poisson distribution, each with parameter 1. Find the probability generating function of $S_{n}=X_{1}+\ldots+X_{n}$. What is the distribution of S_{n} ? What is the mean and variance of S_{n} ? Prove that for positive $t, \mathbb{P}\left(S_{n} \geq(1+t) n\right) \leq \frac{1}{t^{2} n}$. Show that $\lim _{n \rightarrow \infty} e^{-n} \sum_{k \geq 1.1 n} \frac{n^{k}}{k!}=0$.
3. Fix $p \in(0,1)$. Let S_{n} be a random variable with the binomial distribution with parameters n and p. Show that for every positive $\varepsilon, \lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}>(p+\varepsilon) n\right)=0$. Does the sequence $\frac{S_{n}}{n}$ converge i) a.s., ii) in probability, iii) in L_{2} iv) in distribution?
4. Let X be a random variable with density $f(x)=\frac{1}{2} e^{-|x|}$. Find $\mathbb{E} X$ and $\mathbb{E}|X|$. Find its variance. Find the distribution function of $|X|, \varepsilon X$ and $\varepsilon+X$ and sketch their plots (ε is an independent of X random sign). Find the distribution function of X^{2}.
5. Let X and Y be independent standard Gaussian random variables and let a, b, c, d be real numbers. What is the distribution of $a X+b Y$? Find $\operatorname{Cov}(a X+b Y, c X+d Y)$. Show that $a X+b Y$ and $c X+d Y$ are independent if and only if the vectors (a, b) and (c, d) are orthogonal. Find the density of $\sqrt{X^{2}+Y^{2}}$.
6. What is the density of a standard Gaussian random variable, that is a Gaussian random variable with mean zero and variance one? Let X and Y be independent standard Gaussian random variables. What is the distribution of $\frac{1}{2} X-\frac{\sqrt{3}}{2} Y$? Are the variables X and $X+Y$ independent? Are the variables $\frac{1}{2} X-\frac{\sqrt{3}}{2} Y$ and $\frac{\sqrt{3}}{2} X+\frac{1}{2} Y$ independent?
7. Let S_{n} be the number of heads after throwing n times a biased coin showing heads with probability $1 / 3$. What is the mean and variance of S_{n} ? Show that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}>n / 3+\sqrt{n}\right)=\int_{\frac{3}{\sqrt{2}}}^{\infty} e^{-x^{2} / 2} \frac{\mathrm{~d} x}{\sqrt{2 \pi}}
$$

8. Let S_{n} be the number of ones when throwing a fair die n times. What is the limit of $\mathbb{P}\left(S_{n}>n / 6+\sqrt{n}\right)$? Let S be the number of ones when throwing a fair die 18000
times. Find a good approximation to $\mathbb{P}(2950<S<3050)$. How can you bound the error you make?
9. Let f be a continuous function on $[0,1]$. Find $\lim _{n \rightarrow \infty} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\frac{x_{1}+\ldots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$ (or show it does not exist).
10. Let f be a continuous function on $[0,1]$. Find $\lim _{n \rightarrow \infty} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\sqrt[n]{x_{1} \cdots \ldots x_{n}}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$ (or show it does not exist).
11. Let v_{1}, \ldots, v_{m} be unit vectors in \mathbb{R}^{n}. Show that there is a choice of signs $\varepsilon_{1}, \ldots, \varepsilon_{m}$ such that the vector $\varepsilon_{1} v_{1}+\ldots+\varepsilon_{m} v_{m}$ has length at least \sqrt{m}.
12. Let g be a standard Gaussian random variable. Find $\mathbb{E} g^{2 n}$.
13. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be independent random signs. Let $X_{n}=\frac{2}{n} \sum_{1 \leq i<j \leq n} \varepsilon_{i} \varepsilon_{j}$. Does the sequence X_{n} converge in distribution? If yes, find its limit.
