Please write down your name in CAPITAL letters. No resources allowed (books, notes, electronic devices, etc.)

1. For $\alpha \in \mathbb{R}$, consider the function

$$F_{\alpha}(t) = \begin{cases} 0, & t < -1, \\ \alpha(t-1) + \frac{1}{2}, & -1 \le t < 1, \\ 1, & t \ge 1. \end{cases}$$

Find all α such that F_{α} is the distribution function of a random variable. For those α , let X_{α} be a random variable with the distribution function F_{α} . Find $\mathbb{P}(X_{\alpha} = -1)$, $\mathbb{P}(X_{\alpha} = 1)$ and $\mathbb{P}(X_{\alpha} > 0)$. Is X_{α} a continuous random variable? Find the distribution function of $Y = X_0^2$.

- 2. Let X and Y be independent random variables such that X is uniformly distributed on [-1, 1] and Y has the exponential distribution with parameter 1. Find $\mathbb{E}[(X+Y)^2]$.
- **3.** Let X and Y be independent standard Gaussian random variables. Let Z = 2X Y. Is Z a Gaussian random variable? Find the mean and variance of Z. Find the density of Z. Consider the random vector $V = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$. Is V a Gaussian random vector? Find the density of V. Does V have independent coordinates?
- 4. Let G be a standard Gaussian vector in \mathbb{R}^2 . Let u and v be unit vectors in \mathbb{R}^2 . Show that

$$\mathbb{E}\left[\left\langle u,G\right\rangle\left\langle v,G\right\rangle\right] = \left\langle u,v\right\rangle$$

and

$$\mathbb{E}\big[\mathrm{sgn}(\langle u, G \rangle) \mathrm{sgn}(\langle v, G \rangle)\big] = \frac{2}{\pi} \operatorname{arcsin}(\langle u, v \rangle)$$

Here $\langle \begin{bmatrix} x_1\\ x_2 \end{bmatrix}, \begin{bmatrix} y_1\\ y_2 \end{bmatrix} \rangle = x_1 y_1 + x_2 y_2$ is the standard scalar product and $\operatorname{sgn}(t) = \begin{cases} 1, t>0, 0, t=0, 0, t=0, -1, t<0. \end{cases}$